椭圆偏振侧厚仪实验原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验原理
使一束自然光经起偏器变成线偏振光。再经1/4波片,使它变成
椭圆偏振光入射在待测的膜面上。反射时,光的偏振状态将发生变化。
通过检测这种变化,便可以推算出待测膜面的某些光学参数。
1、椭偏方程与薄膜折射率和厚度的测量
如右图所示为一光学均匀和Array各向同性的单层介质膜。它有两
个平行的界面。通常,上部是折
射率为n1的空气(或真空)。中间
是一层厚度为 d折射率为n2的介
质薄膜,均匀地附在折射率为n3
的衬底上。当一束光射到膜面上时,在界面1和界面2上形成多次反
射和折射,并且各反射光和折射光分别产生多光束干涉。其干涉结果
反映了膜的光学特性。
设φ1表示光的入射角,φ2和φ3分别为在界面1和2上的折射角。
根据折射定律有
n1sinφ1= n2sinφ2= n3sinφ 3
(1 )
光波的电矢量可以分解成在入射面内振动的p分量和垂直于入射
面振动的s分量。若用Eip和Eis分别代表入射光的p和s分量,用
Erp及Ers分别代表各束反射光K0, K1,K2,…中电矢量的p分量之和及
s分量之和,则膜对两个分量的总反射系数Rp 和Rs定义为
Rp=Erp/Eip 和Rs=Ers/Eis (2)
经计算可得
Erp=(r1p+r2p e-i2δ) (1+ r1p r2p e-i2δ)Eip和
Ers=(r1s+r2s e-i2δ)/(1+ r1s r2s e-i2δ)Eis (3)
式中r1p或r1s和r2p或r2s分别为p或s分量在界面1和界面2上一
次反射的反射系数。2δ为任意相邻两束反射光之间的位相差。
根据电磁场的麦克斯韦方程和边界条件可以证明
r1p=tan(φ1-φ2)/ tan(φ1+φ2), r1s= -sin(φ1-φ2)/sin(φ1+
φ2)
r2p=tan(φ2-φ3)/ tan(φ2+φ3) ,r2s= -sin(φ2-φ3)/sin(φ2+
φ3)(4)
式(4)即有名的菲涅尔反射系数公式。由相邻两反射光束间的程
差,不难算出
2δ=4πd/λn2cosφ2=4πd/λ(n22-n12sin2φ1)1/2
(5)
式中λ为真空中的波长,d和n2为介质膜的厚度和折射率,各φ
角的意义同前。
在椭圆偏振法测量中,为了简便,通常引入另外两个物理量ψ和
Δ来描述反射光偏振态的变化。它们与总反射系数的关系定义如下:
tanψe iΔ=Rp/Rs (6a)
= ( r
1p
+r
2p
e-i2δ) (1+ r
1s
r
2s
e-i2δ)
(1+ r
1p
r
2p
e-i2δ) (r
1s
+r
2s
e-i2δ)
(6b)
式(6)简称为椭偏方程,其中的称为椭偏参数(由于具有角度量
纲也称椭偏角)。
由(1),(4),(5)和(6)式已经可以看出,参数ψ和Δ是n1,n2,n3,
φ1,λ和d的函数。其中n1, n3,λ和φ1可以是已知量,如果能从实验
中测出ψ和Δ的值,原则上就可以算出薄膜的折射率n2和厚度d。这
就是椭圆偏振法测量的基本原理。
实际上,究竟ψ和Δ的具体物理意义是什么,如何测出它们,以
及测出后又如何得到n2和d,均须作进一步的讨论。
2.ψ和Δ的物理意义
3.现用复数形式表示入射光的p和s分量
E ip=︱E ip︱exp(iθip), E is=︱E is︱exp(iθis)
E rp=︱E rp︱exp(iθrp), E rs=︱E rs︱exp(rθrs)
(7)
(7)式中各绝对值为相应电矢量的振幅,各θ值为相应界面处的
位相。
由(6a),(2)和(7)式可以得到
tanψe i=︱E rp︱︱E is︱/(︱E rs︱︱E ip︱)exp{i[(θrp-θrs) -(θip-
θis)]} (8)
比较等式两端即可得
tanψ= ︱E rp︱︱E is︱/(︱E rs︱︱E ip︱) (9)
Δ=[(θrp-θrs) -(θip-θis) (10)
(9)式表明,参量与反射前后p和s分量的振幅比有关。而(10)
式表明,参量Δ与反射前后p和s分量的位相差有关。可见,ψ和Δ
直接反映了光在反射前后偏振态的变化。一般规定,和Δ的变化范围
分别为0≤ψ<π/2和0≤Δ≤2π。
当入射光为椭圆偏振光时,反射后一般为偏振态(指椭圆的形状
和方位)发生了变化的椭圆偏振光(除开ψ=π/4且Δ=0的情况)。
为了能直接测得ψ和Δ,须将实验条件作某些限制以使问题简化。也
就是要求入射光和反射光满足以下两个条件:
(1)要求入射在膜面上的光为等幅椭圆偏振光(即p和s二分量
的振幅相等)。这时,︱E ip︱/︱E is︱=1,公式(9)则简化为
tanψ= ︱E rp︱/︱E rs︱
(11)
(2)要求反射光为一线偏振光。也就是要求(θrp-θrs)=0
(或π),公式(10)则简化为
Δ=-(θip-θis)
(12)
满足后一条件并不困难。因为对某一特定的膜,总反射系数比
Rp/Rs是一定值。公式(6a)决定了Δ也是某一定值。根据(10)式
可知,只要改变入射二分量的位相差(θip-θis),直到大小为一适
当值(具体方法见后面的叙述),就可以使(θrp-θrs)=0(或π),
从而使反射光变成一线偏掁光。利用一检偏器可以检验此条件是否已
满足。
以上两条件都得到满足时,公式(11)表明,tan恰好是反射光的
反射光线偏振方向与s方向
间的夹角,如右图所示。公
式(12)则表明,Δ恰好
是在膜面上的入射光中s
和p分量之间的位相差。
3.ψ和Δ的测量
实现椭圆偏振法测量的仪器称为椭圆偏振仪(简称椭偏仪)。它的
光路原理如图所示。由氦氖激光管发出的波长为6328A°的自然光,
先后通过起偏器Q,1/4波片C入射在待测薄膜F上,反射光通过检偏
器R射入光电接