天线的特性

合集下载

天线的主要参数

天线的主要参数

天线的主要参数一、引言天线是无线通信系统中至关重要的组成部分,它负责将无线信号转换成电磁波并进行传输。

天线的性能直接影响到通信系统的覆盖范围、传输质量和容量等方面。

本文将探讨天线的主要参数,包括增益、方向性、频率响应、带宽、极化和效率等。

二、增益增益是衡量天线辐射功率相对于理想点源天线的能力的参数。

增益越高,天线辐射的功率越大,覆盖范围也就越广。

增益的单位通常用dBi(dB相对于理想点源天线)来表示。

天线的增益受到天线结构、天线尺寸和工作频率等因素的影响。

三、方向性方向性是指天线在空间中辐射或接收电磁波的能力。

天线的方向性可以分为全向性和定向性两种。

全向性天线可以在水平方向上均匀地辐射或接收信号,适用于需要覆盖全方向的应用场景。

定向性天线则可以将信号主要辐射或接收到某个特定方向,适用于需要特定方向性的应用场景。

四、频率响应频率响应是指天线在不同频率下的辐射或接收能力。

天线的频率响应通常以辐射图或接收图的形式呈现,用于描述天线在不同频段下的辐射或接收特性。

频率响应对于天线的设计和使用非常重要,不同频率下的天线性能差异可能导致通信系统的不稳定性或性能下降。

五、带宽带宽是指天线能够工作的频率范围。

天线的带宽决定了它在不同频段下的适用性。

带宽越宽,天线在不同频段下的性能越稳定。

带宽可以通过调整天线结构和参数来进行优化,以满足不同频段的需求。

六、极化极化是指天线辐射或接收电磁波时电场或磁场的振动方向。

常见的极化方式包括水平极化、垂直极化和圆极化等。

天线的极化方式需要与通信系统中其他设备的极化方式相匹配,以确保信号的传输效果。

七、效率效率是指天线将输入的电能转换成辐射电磁波的能力。

天线的效率越高,输入的电能转换成辐射电磁波的比例就越大,系统的传输效率也就越高。

天线的效率受到天线结构、材料和工作频率等因素的影响。

八、总结天线的主要参数包括增益、方向性、频率响应、带宽、极化和效率等。

这些参数直接影响到天线的性能和应用范围。

有关天线的知识点总结

有关天线的知识点总结

有关天线的知识点总结一、天线的工作原理天线的工作原理可以简单地理解为两个方面:接收信号和辐射信号。

当接收信号时,天线将接收到的电磁波转换成电信号;而在辐射信号时,天线将电信号转换成电磁波辐射出去。

这样一来,天线就起到了收发信号的作用。

二、天线的分类根据不同的分类标准,天线可以分为很多种类。

其中最常见的分类方法有以下几种:1. 按照频率分类:根据天线工作的频率范围不同,可以分为超高频天线、甚高频天线、超高频天线、微波天线等;2. 按照结构分类:根据天线的结构和形状不同,可以分为偶极子天线、单极天线、方向性天线、非方向性天线等;3. 按照用途分类:根据天线的用途不同,可以分为通信天线、导航天线、雷达天线、电视天线等。

三、天线的特性1. 增益:天线的增益是指天线辐射的电磁波功率与理想点源辐射的电磁波功率的比值。

增益越高,天线的辐射效率越高。

2. 阻抗:天线的输入阻抗是指天线在工作频率下的端口电阻。

一般来说,天线的阻抗要与传输线的阻抗匹配,否则会导致信号回波,影响通信质量。

3. 方向性:天线的方向性是指天线在空间中辐射和接收电磁波信号的能力。

方向性越好,天线的指向性就越强。

4. 带宽:天线的带宽是指天线可以工作的频率范围。

一般来说,带宽越宽,天线的适用范围就越广。

四、天线的设计和调试天线的设计和调试是天线工程师的主要工作之一。

在设计天线时,需要考虑到天线的工作频率、带宽、增益、方向性等参数,并根据具体的应用场景选择合适的天线结构和材料。

在调试天线时,需要使用专业的测试设备进行天线的性能测试,一般包括驻波比测量、辐射图测量、方向图测量等。

五、天线的应用天线的应用非常广泛,几乎涵盖了各个领域。

在通信领域,天线用于手机、基站、卫星通信等设备;在雷达领域,天线用于目标探测和跟踪;在导航领域,天线用于车载导航、航空导航等设备;在电视领域,天线用于接收地面数字电视信号等。

总的来说,天线作为一种重要的通信装置,在现代社会中有着不可替代的作用。

天线技术基础第2章天线的基本特性参数

天线技术基础第2章天线的基本特性参数

第二章 天线的基本特性参数2.1 方向图函数和方向图天线的最基本特性是它的方向特性。

对发射天线来说,方向特性通常是表示在相同距离条件下天线的远区辐射场与它的空间方向之间的关系。

描述天线的方向特性,最常用的是方向图函数和方向图。

方向图函数是定量表示远区天线辐射能量在空间相对分布情况的一个参数,通常是指远区同一距离处天线辐射场强(或能流密度)的大小与方向坐标关系的函数。

若用图形把它描绘出来,便是天线方向图。

其中表示场强大小与方向关系的,称为场强振幅方向图,表示能流密度大小与方向关系的,称为功率方向图。

习惯上又把场强振幅方向图简称为场强方向图,或进一步简称为方向图。

把场强振幅方向图函数用),(θf 表示,或进一步简写成f (,)θϕ。

把最大值为1的方向图称为归一化方向图。

把归一化场强振幅方向图函数用F (,)θϕ表示,或进一步简写成F (,)θϕ。

方向图一般是三维立体图形。

为了简单,大多数实际应用场合中通常只画出两个具有代表性的正交平面上的方向图。

这两个正交的平面称为主平面。

主平面经常选取水平面(平行于地面的面)和垂直面(垂直于地面的面),或E 面(包含天线最大辐射方向及其电场方向的面)和H 面(包含天线最大辐射方向及其磁场方向的面)。

有时也选取XY 面、YZ 面、ZX 面等。

在所有方向的辐射都相同的天线称为无方向性天线。

显然无方向性天线的立体方向图呈球状,它在任一平面的方向图均为园。

在某一平面上无方向性的天线称为该平面全向天线,它在该平面上的方向图为园。

天线的平面方向图有两种表示方式。

一种是以直角坐标表示的,称为直角坐标方向图.。

此时横轴代表角度(以度为单位),纵轴代表函数值。

另一种是以极坐标表示的,称为极坐标方向图。

它用极角(射线与极轴的夹角)代表角度(以度为单位),用射线的长度代表函数值。

极坐标方向图由于直观形象,应用很广。

天线的平面方向图一般呈花辫状。

我们把它的每一个辫称为波辫。

其中把包含最大辐射方向的一个辫称为主辫,位于主辫相反方向的辫称为后辫,与主辫完全相同的辫称为栅辫。

电路基础原理理想天线与天线的特性

电路基础原理理想天线与天线的特性

电路基础原理理想天线与天线的特性电路基础原理:理想天线与天线的特性在现代通信中,天线是电路中不可或缺的组成部分,它起到传输和接收无线信号的重要作用。

天线的种类繁多,其特性也有所不同。

本文将探讨电路基础原理中的理想天线及天线的特性。

一、理想天线所谓理想天线,是指一种无损耗、有无限增益和在所有方向上均匀辐射或接收电磁波能量的虚构天线。

虽然现实中不存在完全符合这些条件的天线,但通过理想天线的研究,我们可以更好地了解和设计实际天线的特性。

二、天线的增益与方向性天线的增益是描述天线辐射或接收效果的物理量,它与天线的方向性有关。

方向性较强的天线具有较高的增益,意味着它的信号辐射或接收能力更强。

而方向性较低的天线增益较小,其信号覆盖范围更广。

三、波束宽度与前后比波束宽度是描述天线辐射或接收信号分布范围的指标,也是天线方向性的一个重要特性。

通常来说,波束越窄,天线的方向性越强。

另外,前后比是指天线在水平方向上前方辐射或接收信号的能力与后方能力之比,它也是评估天线方向性的一个重要指标。

四、驻波比和带宽驻波比是衡量天线阻抗匹配状态的一个重要参数,它反映了信号在天线和输入电路之间的能量损耗情况。

良好的阻抗匹配状态可以最大化能量传输效率。

带宽则是指天线在某个频率范围内能够工作的能力。

带宽越宽,天线的应用范围越广。

五、天线的整体性能除了上述特性外,天线的整体性能还包括天线效率、相对增益、极化方式等。

天线效率是指天线将输入功率转化为辐射功率的能力,高效的天线可以最大程度地利用输入能量。

相对增益是指天线与参考天线辐射或接收信号的能力比较。

而极化方式是指天线上的电磁波振动方向,它对信号的传输和接收也有重要影响。

六、实际应用天线在无线通信、雷达、卫星通信等领域广泛应用。

不同的应用场景需要不同类型的天线,因此对天线特性的研究和了解十分重要。

合理选择合适的天线类型和性能,可以提高通信质量,扩大信号覆盖范围,提升系统的可靠性和稳定性。

天线的主要性能指标

天线的主要性能指标

天线的主要性能指标天线是无线通信系统中的重要组成部分,它的性能直接影响到通信系统的稳定性、可靠性和性能。

天线的主要性能指标可以分为以下几个方面。

1.频率范围:天线的频率范围是指天线能够工作的频率范围。

不同的无线通信系统需要不同的频率范围,因此天线的频率范围应该能够覆盖所需的频率范围。

2.增益:天线的增益是指天线在特定方向上相对于理想同轴电缆天线的功率增加量。

增益越高,天线的接收和发射效果就越好。

增益与天线的指向性有关,指向性越高,增益越高。

3.方向性:天线的方向性是指天线在空间范围内辐射和接收电磁信号的特性。

天线的方向性可以通过天线的辐射图来表示,主要包括主瓣方向和边瓣。

4.波束宽度:波束宽度是指天线主瓣的宽度,也可以理解为天线对信号的接收和发送的方向选择性。

波束宽度越小,方向选择性越好,但覆盖范围也会减小。

5.阻抗匹配:天线的阻抗匹配是指天线的输入阻抗与馈线的阻抗保持一致。

阻抗匹配不好会导致信号的反射和损耗,影响信号的传输质量。

6.驻波比:驻波比是指天线输入端口处的反射波和传输波之比。

驻波比越小,说明天线的阻抗匹配越好,信号的传输质量越好。

7.前后比:前后比是指天线在其中一方向上的辐射功率与在反方向上的辐射功率之比。

前后比越大,说明天线的方向性越好,信号的传输干扰越小。

8.极化方式:天线的极化方式有垂直极化、水平极化、圆极化等。

天线的极化方式应与无线通信系统的极化方式一致,以保证信号的传输效果。

9.环境适应性:天线的环境适应性是指天线在不同的环境条件下的性能表现。

例如,天线在恶劣天气条件下的性能是否稳定,是否受到周围物体的干扰等。

10.承载能力:承载能力是指天线能够承受的最大功率。

天线的承载能力应该能够满足无线通信系统所需的功率要求,以确保天线的稳定运行。

总之,天线的性能指标决定了它在无线通信系统中的适用性和性能表现。

无论是接收还是发射信号,在选购天线时,需要根据具体的应用需求,选择适合的天线,并通过合理的安装和调试,实现最佳的通信效果。

第3章天线特性参数

第3章天线特性参数
3
3.1 天线的辐射功率和辐射电阻
以天线为中心,作一球面(球面半径 r>>波 长 ),则从天线辐射出来的能 量必须全部通过这球面。
1、辐射功率:在单位时间内通过球面向 外辐射的电磁能量的平均值。
4
3.1 天线的辐射功率和辐射电阻
z
rsin
r I d
rsind
rd
S
1 2
E
H
y dsr2sindd
• 所谓方向性,就是在相同距离的条件下
天线辐射场的相对值与空间方向(子午
角θ、方位角φ)的关系。若天线辐射的
电场强度为E(r,θ,φ),把电场强度(绝对
值)写成
E(r,,60I f(,)
r
13
3.2 天线的方向性和增益
3.2.1 归一化方向性函数
天线的辐射场强在空间的分布是不均匀的, 即在以天线为中心的球面上,各方向的场 强大小是不同的。对任何天线,在空间的 电场公式均可写成:
R23 l 2
在自由空间中,
R
80 2
l
2
11
3 天线效率:天线辐射功率与输入有功功率的比 值,称为天线的效率。
P A P P n P n 1 2Im 2R n P 1 2Im 2R
P P AP P P nR R R n
物理意义:表示有百分之几的高频电流的输入 有功功率转变成了辐射出去的电磁波能量。
• E面即电场强度矢量所在并包含最大辐射 方向的平面;
• H面即磁场强度矢量所在并包含最大辐射 方向的平面。
19
平面性方向图
它分为H面方向图和E面方向图。 所谓的H面是指在天线辐射的周围空间里,磁场矢量所 在的平面,这个面的方向图就叫H面方向图; 同样,E面是指电场矢量所在的平面,这个面的方向图 就叫天线的E面方向图。

天线的电特性参数

天线的电特性参数
|U|max= |U|min 则根据驻波比定义可得: S=1
精选课件
7
二、驻波状态
当传输线终端短路、开路和接纯电抗负载时,将产生全反射, 线上反射波与入射波幅度相等,二者叠加,在线上形成纯驻波, 这种状态称为驻波状态。
(一)传输线终端短路
由于短路,终端出电压必然为零,即终端入射波电压与反射波 电压幅度相等,相位相反,他们在终端处互相抵消的结果,同 时短路处入射电流与反射电流大小相等,相位相同,只有这样 才能使全部功率反射回去。在此状态下|U+|=|U-|
行驻波电压和电流分布规律与驻波状态完全类似,其不同点是 行驻波的波腹不为入射波振幅的2倍,波节也不为零。
精选课件
11
▪总结
实际环境中,由于天馈线系统并非理想状态,总存在一 定损耗,所以天馈线系统内的入射波无法达到匹配状态,天 馈线系统内实际是行驻波状态,为使能量在天馈线系统内不 至产生大的损耗,所以我们才会以驻波比来作为衡量天线性 能的一项重要指标。驻波比越接近1,则越接近于理想状态。件
1
➢方向性图 ➢天线增益 ➢输入阻抗 ✓驻波比 ➢极化方式 ➢效率系数等等
精选课件
2
▪驻波比(VSWR)的定义:
驻波系数(驻波比)定义为馈线上信号合成波电压(或 电流)的最大值与馈线上的信号合成波电压(或电流)的最 小值之比,它是行波系数的倒数,其值在1到无穷大之间。 驻波比为1,表示完全匹配;驻波比为无穷大表示全反射, 完全失配。在移动通信系统中,一般要求驻波比小于1.5, 但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的 覆盖并造成系统内干扰加大,影响基站的服务性能。
精选课件
12
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!

第二章 天线特性参数

第二章  天线特性参数
第二章
天线的特性参数
天线特性参数
机械特性参数:形状,尺寸,材料,可靠性等
一次参数:方向性图,输入阻抗,效率
电特性参数 二次参数:方向性系数,增益,波瓣宽度, 前后比,极化特性等
第一节 天线的辐射功率和辐射电阻
1. 辐射功率: 在单位时间内通过球面向外辐射的 电磁能量的平均值。
例:求电偶极子的辐射功率?
2)已知天线的辐射电阻和最大辐射方向的方向
性函数,求D
1 2 S 1 , 1 E 1 , 1 2Z S D P 4r
2
S 1 , 1 E 1 , 1 D 2r 2 S D ZP
CDMA垂直极化定向天线
三、方向性图的主瓣宽度和旁瓣电平
在方向性图中,一般有两个或更多个波瓣。在这些波瓣 中,最大辐射方向所在波瓣称为主瓣,其余波瓣称为旁瓣。
1. 主瓣宽度: 主瓣电平的最大值降到该值的0.707倍(即 -3dB)时,两个方向之间的张角宽度。
-3dB点
2 0.5
峰值 -3dB点
2
2
2. 辐射电阻:
将辐射功率视为一个电阻所消耗的功率, 并使流过电阻的电流等于天线上的电流振幅, 则该电阻就称为天线的辐射电阻。
根据定义,
1 2 P I m R 2
2 P R 2 Im
R 称为辐射电阻
例:求电偶极子的辐射电阻?
电偶极子的辐射功率为:
I 2 P 2 3
2
l
2
2
2 R 3
在自由空间中,
l

2 2
l R 80
第二节 天线的方向性
天线的辐射场强与方向有关的特性,称 为天线的方向性。

天线的主要参数

天线的主要参数

天线的主要参数天线是一种电子设备,用来接收或发射无线电波信号。

它是通信系统的重要组成部分,用于传输和接收无线信号。

天线的主要参数包括增益、频率范围、方向性、带宽、阻抗匹配、极化方式等。

本文将对这些主要参数进行详细介绍。

一、增益天线的增益是指天线辐射或接收信号的能力。

增益越高,天线的辐射或接收能力就越强。

增益通常用分贝(dB)来表示。

天线的增益与其尺寸、形状、辐射模式等因素密切相关。

二、频率范围天线的频率范围是指天线能够工作的频率范围。

不同的天线适用于不同的频率范围。

例如,对于无线电通信系统,常见的频率范围包括2.4GHz、5GHz等。

三、方向性天线的方向性是指天线在空间中辐射或接收信号的特性。

方向性可以分为全向性和定向性。

全向性天线可以在360度范围内辐射或接收信号,而定向性天线只能在特定方向上进行辐射或接收。

定向性天线通常具有较高的增益。

四、带宽天线的带宽是指天线能够工作的频率范围。

带宽越大,天线在不同频率下的性能就越好。

带宽通常用百分比表示。

五、阻抗匹配天线的阻抗匹配是指天线的输入端阻抗与传输线或无线电设备的输出阻抗之间的匹配程度。

阻抗匹配对于天线和设备之间的信号传输非常重要。

如果阻抗不匹配,就会导致信号反射和损耗。

六、极化方式天线的极化方式是指天线辐射或接收信号时电磁波的振动方向。

常见的极化方式包括垂直极化、水平极化和圆极化。

不同的应用场景需要不同的极化方式。

七、天线类型根据不同的应用需求和工作频率,天线可以分为各种类型,包括定向天线、全向天线、扇形天线、饼状天线、螺旋天线等。

不同类型的天线具有不同的特点和适用范围。

八、天线材料天线的性能和特性与其材料密切相关。

常见的天线材料包括金属、塑料、陶瓷等。

不同的材料具有不同的电磁特性,影响天线的性能。

九、天线设计天线的设计是为了满足特定的应用需求和性能要求。

天线设计需要考虑到天线的形状、尺寸、材料、辐射模式等因素,以达到最佳的性能。

天线的主要参数包括增益、频率范围、方向性、带宽、阻抗匹配、极化方式等。

天线电子元器件特征及应用

天线电子元器件特征及应用

天线电子元器件特征及应用天线电子元器件指的是用来接收和发送电波信号的装置,它可以将电能转化为无线电波能量,并与其它设备进行无线通信。

天线可以用于各种通信系统,如无线电通信、电视、射频识别(RFID)、卫星通信、雷达和导航系统等。

下面将详细介绍天线电子元器件的特征及应用。

天线电子元器件的特征主要包括以下几个方面:1. 频率特性:天线的频率特性是指在一定的频率范围内,天线的性能表现。

不同频率的无线电波信号需要使用不同类型的天线进行接收和发送。

通常,天线会被设计成能够在特定的频带内工作。

2. 增益特性:天线的增益是指其向某个方向辐射或接收无线电波的能力。

增益决定了天线的辐射范围和接收机灵敏度。

通常,天线的增益与其尺寸有关,较大的天线通常具有较高的增益。

3. 方向性特性:天线的方向性是指其在空间中辐射和接收无线电波的特性。

有些天线是全向的,即在所有方向上具有相同的增益,适用于需要覆盖广域区域的通信系统;而有些天线是定向的,即只在特定方向上具有较高的增益,适用于需要远距离通信的系统。

4. 输入阻抗:天线的输入阻抗是指其在工作频率下的输入端电阻和电抗。

天线的输入阻抗应与接收机或发射机的输出阻抗匹配,以最大化能量传输效率。

天线电子元器件的应用十分广泛,以下是一些典型的应用领域:1. 通信系统:天线是现代通信系统的重要组成部分,用于无线电通信、蜂窝网络、卫星通信和无线局域网等。

例如,手机上的天线用于接收和发送无线电信号,以实现语音和数据的传输。

2. 电视和广播:天线广播是传统广播接收的一种常用方法,也是收看电视节目的一种途径。

通过安装合适的天线,可以接收到电视和广播信号,从而在电视机或收音机上收听和收看节目。

3. 射频识别(RFID):天线广泛用于射频识别系统中,用于无线识别和跟踪标签上的信息。

RFID系统通常包括一个读写器和一个或多个带有天线的标签,通过天线和读写器之间的无线电波相互作用,实现数据的传输和标签的识别。

天线的主要特性

天线的主要特性

天线的主要特性(一)天线是微波收发信设备的“出入口”,它既要将发信机的微波沿着指定的方向放射出去,同时还要接受对方传来的电磁波并送到微波收信机。

因此,天线性能的好坏将直接影响到整个微波通信系统的正常运行。

这里我们将对天线的性能指标及要求作一介绍。

天线的方向性通常一副天线向各个方向辐射电磁波的能力是不同的,它沿各个方向辐射电磁能量的强弱可用天线的方向系数来表示。

所谓天线的方向系数是指在某点产生相等电场强度的条件下,无方向性天线总辐射功率PF0与定向天线总辐射功率PF的比值,常用“D”来表示,即天线方向性图(3-4)不难想象,定向天线沿各个方向辐射的电场强度是不相同的,因而定向天线的方向系数也将随着观测点的位置不同而有所不同。

其中方向系数最大的地方,即辐射增强的方向,称主射方向。

通常人们用天线的方向图来表示天线对各个方向的方向系数大小,如图所示。

由图可以看出,天线的方向性图像象花朵的叶瓣,各叶瓣称为方向叶。

处于主射方向的方向叶称为主叶,处于主叶反方向位置的方向叶称为后叶,其他方向的方向叶统称为副叶。

显然主叶的宽度越窄,说明天线的方向性也好。

天线方向性的好坏,工程上常采用半功率角和零功率角两个参量来表示。

所谓半功率角是指主叶瓣上场强为主射方向场强的1/√2= 0.707时(即功率下降1/2时),两个方向间的夹角,即为“2θ0.5”;所谓零功率角是指偏离主射方向最近的两个零射方向(辐射场强为零的方向)之间的夹角,记为“2θ0”。

半功率角和零功率角越小,表示主叶瓣的宽度越窄,说明天线的方向性越好。

一副方向性良好的天线,除了必须具备上述具有较小的半功率角和零功率角外,还应该包括后叶瓣和副叶瓣尽可能小,以减小可能出现的窜扰。

天线的主要特性(二)天线增益所谓天线增益是指天线将发射功率往某一指定方向发射的能力。

天线增益定义为:取定向天线主射方向上的某一点,在该点场强保持不变的情况下,此时用无方向性天线发射时天线所需的输入功率Pi0,与采用定向天线时所需的输入功率Pi之比称为天线增益,常用“G”表示。

天线技术简介

天线技术简介

天线技术简介1、概述在无线电通信中,天线主要完成导行波(或高频电流)与空间电波能量之间的转换,是一个能量转换器,它有四项最基本的功能:1、天线是一个良好的“电磁开放系统”,它要能够与它的源或负载匹配;2、天线具有方向性特性;3、天线能发射或接收预定极化的电磁波;4、天线具有一定的工作频率范围。

天线的形式有很多,有多种不同的分类方法。

(1)按使用范畴分,有通信天线、雷达天线、广播天线、导航天线等;(2)按天线特性分,如按方向特性分,有定向天线、全向天线、强方向性天线、弱方向性天线;(3)从极化特性分,有线极化(垂直极化、水平极化)天线、圆极化天线;(4)从频带特性分,有窄带天线、宽带天线、超宽带天线;(5)按馈电方式分,有对称天线、非对称天线;(6)按天线上电流分,有行波天线、驻波天线;(7)按使用波段分,有超长波、长波、中波、短波、超短波、微波天线;(8)按外形分,有V型天线、菱形天线、环形天线、螺旋天线、鞭状天线、喇叭天线、抛物面天线等等。

(9)此外,新型天线还有相控阵天线、智能天线、有源天线和手机上常用的微带天线、振子天线、印刷振子天线。

2、天线参数发射天线与接收天线的作用是一个可逆的过程,同一副天线用作发射和用作接收的特性参数(如方向特性、极化特性、阻抗特性等等)是相同的,但是,特性参数的定义却根本不同,也就是说,收发互易性仅限于同一天线收发参数数值的相同,但工作方式与参数定义却是截然不同的。

比如,接收天线上的电流分布与它用作发射时的分布不同。

接收天线电参数是以来波对接收天线的作用(接收电流或感应电动势)为目标,而不像发射天线那样是以辐射场参数(电场强度或功率密度)为目标的。

天线的电参数主要有输入阻抗、辐射电阻、方向图、方向性系数、效率、增益系数、频带宽度和极化系数等等,下面,我们对其中最常用到的几项作简要介绍。

2.1 方向图天线的辐射电磁场在固定距离上随空间角坐标(θ,Φ)分布的图形,称为辐射方向图或辐射波瓣图,简称方向图。

天线简介介绍

天线简介介绍

天线的历史与发展
历史
天线的发展可以追溯到20世纪初,当时的天线主要用于无线电报和广播。随着通 信技术的发展,天线也逐渐发展出了更多的种类和应用领域。
发展
目前,天线技术正在不断地发展和改进。新型材料、加工技术和计算机辅助设计 等技术的应用,使得天线的性能和可靠性得到了极大的提升。同时,智能天线的 出现也使得无线通信系统的性能和效率得到了显著提高。
研究热点包括新型太赫兹天线设计、高性能太赫兹天线制造 技术、太赫兹频段的传播特性等。
THANKS
感谢观看
阻抗失配
当天线与发射设备或接收设备之间的 阻抗不匹配时,会导致信号反射和能 量损失。
阻抗匹配电路
为了解决阻抗失配问题,需要设计阻 抗匹配电路,使天线与发射设备或接 收设备之间的阻抗匹配。
天线的极化方式
线极化
天线可以发射和接收线极化电磁波,即电场矢量在传播方向上的投影为一条直 线。
圆极化
天线可以发射和接收圆极化电磁波,即电场矢量在传播方向上的投影为一条旋 转的圆弧线。
天线的电参数
天线增益
天线增益是指天线在某特定方向 上的辐射强度与理想点源的辐射 强度之比,增益越高,信号传输
距离越远。
天线效率
天线效率是指天线辐射出去的功率 与输入到天线的功率之比,效率越 高,天线性能越好。
天线带宽
天线带宽是指天线能够正常工作的 频率范围,带宽越宽,天线的应用 范围越广。
天线的阻抗匹配
02
天线的基本Байду номын сангаас理
电磁波传播原理
01
02
03
电磁波的产生
天线是用来发射和接收电 磁波的设备,电磁波是由 交变的电场和磁场组成的 。

第二章__天线的特性参数

第二章__天线的特性参数

1. 主瓣宽度: 主瓣宽度: 主瓣电平的最大值降到该值的0.707倍(即 主瓣电平的最大值降到该值的 倍 -3dB)时,两个方向之间的张角宽度。 两个方向之间的张角宽度。 )
-3dB点 点
2θ 0.5
峰值 -3dB点 点
2. 旁瓣电平:相对主瓣最大值的比值。 旁瓣电平:相对主瓣最大值的比值。
ξn =
第三节 天线的方向性系数
1. 定义: 定义: 天线辐射功率一定, 天线辐射功率一定,在任意方向 (θ1 , ϕ1 ) 辐射功率密度与相等的辐射功率均匀辐射时 的平均功率密度之比。 的平均功率密度之比。
S (θ1 , ϕ1 ) D=
S µD
2. 物理意义: 物理意义: 由于天线有方向性, 由于天线有方向性,使某方向的辐射功 率密度比均匀辐射时增加的倍数D。实际上, 率密度比均匀辐射时增加的倍数 。实际上, D反映了天线集中辐射能量的特性。 反映了天线集中辐射能量的特性。 反映了天线集中辐射能量的特性 3. 方向性系数的求法: 方向性系数的求法: 1)已知归一化方向性函数求 )已知归一化方向性函数求D
2
ε 2 2 E max F (θ , ϕ )r 2 sin θdθdϕ µ
2 max
r E ∴ P∑ = 2
ε 2π π 2 ∫0 ∫0 F (θ , ϕ )sin θdθdϕ µ
∴ S µD
2 E max P∑ = 2 = 4πr 8π
ε 2π π 2 ∫0 ∫0 F (θ , ϕ )sin θdθdϕ µ
1)电流元在赤道面内的方向性函数和方向性图: )电流元在赤道面内的方向性函数和方向性图:
πl f (ϕ ) = λ
180 °
90 °
E
ϕ
ϕ = 0°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线的特性:共振: 任何天线都谐振在一定的频率上,我们要接收哪个频率的信号,就希望天线谐振在那个频率上。

天线谐振是对天线最基本的要求,要不然,就没那么多讲究了,随便扔根线出去不也是天线嘛。

天线的谐振问题涉及到的主要数据是波长及其四分之一。

计算波长的公式很简单,300/f。

其中f的单位是MHz,而得到的结果的单位是米。

1/4波长是称作基本振子,如偶极天线是一对基本振子,垂直天线是一根基本振子。

不过天线中的振子的长度并不正好是 1 /4 波长,因为电波在导线中行进的速度与在真空中的不同,一般都要短一些,所以有一个缩短因子。

这个因子取决于材料。

带宽: 这也是一个重要但容易被忽略的问题。

天线是有一定带宽的,这意味着虽然谐振频率是一个频率点,但是在这个频率点附近一定范围内,这付天线的性能都是差不多好的。

这个范围就是带宽。

我们当然希望一付天线的带宽能覆盖一定的范围,最好是我们所收听的整个FM 广播波段。

要不然换个台还要换天线或者调天线也太麻烦了。

天线的带宽和天线的型式、结构、材料都有关系。

一般来说,振子所用管、线越粗,带宽越宽;天线增益越高,带宽越窄。

阻抗: 天线可以看做是一个谐振回路。

一个谐振回路当然有其阻抗。

我们对阻抗的要求就是匹配:和天线相连的电路必须有与天线一样的阻抗。

和天线相连的是馈线,馈线的阻抗是确定的,所以我们希望天线的阻抗和馈线一样。

一般生产的馈线,主要是300 欧姆、75 欧姆和50 欧姆三种阻抗,国外过去还有450 欧姆和600 欧姆阻抗的馈线。

基本偶极天线的阻抗是75欧姆左右,V型偶极天线是50欧姆左右,基本垂直天线阻抗50欧姆。

其他天线一般阻抗都不是50 或75 欧姆,那么在把它们与馈线连接之前,需要有一定的手段来做阻抗变换。

平衡: 对称的天线是平衡的,如偶极天线、八木天线,而同轴电缆是不平衡的,把这两者连接起来,就需要解决平衡不平衡转换的问题。

增益: 天线是无源器件,但是天线是可以有增益的。

这个增益当然是相对增益,是相对于基本偶极天线而言的。

FM DX所用的天线,当然希望增益越高越好。

不过别忘了,增益高往往伴随着带宽窄。

方向性: 不是所有的天线都有方向性的。

便携式收音机上的拉杆天线就没有方向性。

偶极天线有弱的方向性,八木等定向天线可以得到较好的方向性。

好的方向性意外着能够集中收集所需方向的电波,还有一个重要的能力就是能部分地减弱本地电台信号的影响。

但是定向天线并不是什么情况下都好。

当没有目标而等待的时候,定向天线就有可能使你错过天线背面的信号。

所以比较合理的方式,是用一个垂直天线和一付定向天线配合使用,用垂直天线等待,听到信号后,再用定向天线转过去对准了听。

仰角: 天线的仰角是指电波的仰角,而并不是天线振子本身机械上的仰角。

仰角反映了天线接收哪个高度角来的电波最强。

对于 F 层传播,我们希望仰角低,可以传播地远,对于Es 层,电波主要是从高处来,我们希望仰角高。

仰角的高低取决于天线型式和架设高度。

一般来说,垂直天线具有低仰角,其他天线的仰角随架设高度变化。

架设高度: 天线有一个架设高度。

这个高度实际上是两个高度,一个高度我们考虑它的水平面高度,这个高度对于本地信号有些用,对于DX 其实用处不大。

第二个常常被忽略的高度是地面高度,是指天线到电气地面的高度。

比如架设在钢筋水泥房顶的天线,虽然房子高有20 米,但是天线距房顶只有 1 米,那么这付天线的高度只是 1 米。

天线的高度对不同的天线有不同的影响,一般会影响天线的阻抗和仰角。

通常我们认为天线的地面高度应在0.4 个波长以上,才比较不受地面的影响。

驻波比: 最后介绍这个最不被中国的爱好者熟悉的特征。

情况。

它是以天线作为发射天线时发射出去和反射回来的能驻波比反映了天馈系统的匹配量的比来衡量天线性能的。

驻波比是由天馈系统的阻抗决定的。

天线的阻抗与馈线的阻抗与接收机的阻抗一致,驻波比就小。

驻波比高的天馈系统,信号在馈线中的损失很大。

天调的作用:1、匹配阻抗,使天线系统(天调+天线)对于发射机来说是阻抗匹配, 这样才能让天线系统中的天线电缆部分辐射效率最高2、谐振天线,按照电磁理论来讲天线阻抗Z=R+jX当X=0时视为天线谐振。

不自然谐振的天线使用天调后,天调通过加感或加容,使得Z=R+jX中X=0。

3、加天调后的天线相对于自然谐振天线的电效率问题,将天线调谐到相对于发射机来说是阻抗匹配,靠的是天调内部的LC网络,有很大一部分功率在天调的L、C内吞吐”不辐射电磁波。

由于L、 C 不是理想元件,会消耗一部分能量,因此天线越不自然谐振(特别是等效辐射电阻偏离50 欧越远),加天调后的电效率就越低。

1.1天线的作用无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。

如图1.1 a所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b所示,电场就散播在周围空间,因而辐射增强。

必须指出,当导线的长度L远小于波长入时,辐射很微弱;导线的长度L增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

图l x mnb(原文件名H120422351-0.jpg)引用图片1.2对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子,见图1.2a。

另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。

图 1.2a(原文件名H120422351-1.jpg)引用图片1.4天线的极化天线向周围空间辐射电磁波。

电磁波由电场和磁场构成。

人们规定:电般使用的天线为单极化的。

下图示出了两种基本的单极化的情况:垂直极化---是最常用的;水平极化---也是要被用到的。

1.4.1双极化天线下图示出了另两种单极化的情况:+45°极化与-45°极化,它们仅仅在特殊场合下使用。

这样,共有四种单极化了,见下图。

把垂直极化和水平极化两种极化的天线组合在一起,或者,把+45°极化和-45°极化两种极化的天线组合在一起,就构成了一种新的天线---双极化天线。

下图示出了两个单极化天线安装在一起组成一付双极化天线,注意,双极化天线有两个接头。

双极化天线辐射(或接收)两个极化在空间相互正交(垂直)的波。

对称匪f图t.2b场的方向就是天线极化方向。

垂武扱化术平根优(原文件名H120422351-2.jpg)V/H(華rv水平}型母摄化* 4笄#,酣型取概化(原文件名H120422351-4.jpg)引用图片1.4.2极化损失垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。

右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。

当来波的极化方向与接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。

例如:当用+ 45°极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收+45°极化或-45°极化波时,等等情况下,都要产生极化损失。

用圆极化天线接收任一线极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失只能接收到来波的一半能量。

当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量,这种情况下极化损失为最大,称极化完全隔离。

1.4.3极化隔离理想的极化完全隔离是没有的。

馈送到一种极化的天线中去的信号多少总会有那么一点点在另外一种极化的天线中出现。

例如下图所示的双极化天线中,设输入垂直极化天线的功率为10W结果在水平极化天线的输出端测得的输出功率为10mW杠这种悄况F邑啜叱隔离为X=1OLg(1O,O0OmW10mW)=30{dB}(原文件名H120422351-5.jpg)引用图片1.5天线的输入阻抗Zin定义:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。

输入阻抗具有电阻分量Rin和电抗分量Xin,即Zin = Rin + j Xin 。

电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。

事实上,即使是设计、调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。

输入阻抗与天线的结构、尺寸以及工作波长有关,半波对称振子是最重要的基本天线,其输入阻抗为Zin = 73.1 +j 42.5 (欧)。

当把其长度缩短(3〜5)%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为Zin = 73.1 (欧),(标称75欧)。

注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。

顺便指出,半波折合振子的输入阻抗为半波对称振子的四倍,即Zin = 280(欧),(标称300 欧)。

有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近50欧,从而使得天线的输入阻抗为Zin = Rin = 50 欧--------- 这是天线能与馈线处于良好的阻抗匹配所必须的。

1.6天线的工作频率范围(频带宽度)无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义——一种是指:在驻波比SWR W 1.5条件下,天线的工作频带宽度;一种是指:天线增益下降3分贝范围内的频带宽度。

在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR不超过1.5时,天线的工作频率范围。

相关文档
最新文档