离散系统的零极点分析

合集下载

判断系统稳定性

判断系统稳定性

摘要现今数字信号处理理论与应用已成为一门很重要的高新科学技术学科,通过功能强大的MATLAB软件与数字信号处理理论知识相互融合在一起,既使我们对数字信号处理的理论知识能够有更加深厚的解也提高了动手能力,实践并初步掌握了MATLAB 的使用。

根据本次课题要求,通过使用MATLAB,方便了对系统函数的繁琐的计算,并且直观形象的用计算机进行模拟仿真,通过观察图,由图像的特征从而进一步的对系统进行形象的分析。

本课题中给出了系统函数,对其稳定性进行分析我们可以通过MATLAB画零极图观察极点的分布,另外还可以通过MATLAB分析系统的单位阶跃响应、单位脉冲响应、幅频相频特性的图形更加具体的对系统进行分析。

关键字:离散系统函数、MATLAB、零极点分布、系统稳定性。

一、设计原理1.设计要求(1):根据系统函数求出系统的零极点分布图并且判断系统的稳定性。

(2):求解系统的单位阶跃响应,并判断系统的稳定性。

(3):求系统的单位脉冲响应,并判断系统的稳定性(4):求出各系统频率响应,画出幅频特性和相频特性图(zp2tf,zplane,impz等)2、系统稳定性、特性分析进行系统分析时我主要利用MATLAB软件绘制出系统零极点的分布图、单位脉冲响应图、单位阶跃响应图等。

采用MATLAB 软件进行设计时我调用了软件本身的一些函数来对课题进行绘图和分析。

诸如zplane、impz、stepz、freqz等。

对系统函数的零极图而言:极点在单位圆内,则该系统稳定,极点在单位圆外,则该系统为非稳定系统。

当极点处于单位圆内,系统的冲激响应曲线随着频率的增大而收敛;当极点处于单位圆上,系统的冲激响应曲线为等幅振荡;当极点处于单位圆外,系统的冲激响应曲线随着频率的增大而发散。

系统的单位阶跃响应若为有界的则系统为稳定系统。

由以上的判据配合图形对系统的稳定性进行分析,达到我们的课程要求。

系统函数H(z)的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

数字信号处理实验4

数字信号处理实验4

实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。

二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。

三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。

如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。

格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。

其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。

zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。

②roots 函数。

用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。

2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。

1077《数字信号处理》西南大学网教19秋作业答案

1077《数字信号处理》西南大学网教19秋作业答案

1077 20192判断题1、应用DFT分析无限长信号的频谱时,必然会产生误差。

. A.√. B.×2、离散周期信号的DFS中,频域的周期N对应数字频率为2π 。

. A.√. B.×3、实数序列的DFT为共轭对称的序列。

. A.√. B.×4、一个域的周期性,对应另一域的离散性。

. A.√. B.×5、单位圆上的零点,对应幅频特性的零值。

. A.√. B.×6、LP表示的滤波器类型是低通滤波器。

. A.√. B.×7、圆周卷积和线卷积相等的条件是圆周卷积的点数不小于线性卷积的长度。

. A.√. B.×8、单位脉冲序列的DTFT结果为1。

. A.√. B.×9、x(n)与h(n)的卷积的Z变换为X(Z)H(Z)。

. A.√. B.×10、所谓全通系统,就是其频率响应的幅度在任意需要考虑的频率点处均为常数。

. A.√. B.×11、FIR滤波器由于无原点外的极点,故相比IIR阶次更高。

. A.√. B.×12、对连续信号作频谱分析,设信号的采样频率为10KHz,频域的分辨能力为不大于10Hz,则对应DFS点数为1000 点。

. A.√. B.×13、靠近单位圆上的极点,对应幅频特性的极大值。

. A.√. B.×14、线性相位可分为第一类与第二类线性相位两种情况。

. A.√. B.×15、为满足线性相位要求,窗函数本身也应满足相应的对称性。

. A.√. B.×16、冲激响应不变法由于存在混叠,不能设计高通、带通滤波器。

. A.√. B.×17、FIR滤波器的结构往往是非递归型的。

. A.√. B.×18、单位延迟单元对应的硬件是存储器,其数目影响系统的复杂度。

. A.√. B.×19、时域加窗,频域会产生频谱泄漏。

. A.√. B.×20、从s域到z域映射,虚轴和单位圆、左半平面与单位圆内部,都必须对应。

数字信号处理 实验 离散系统的Z域分析

数字信号处理 实验 离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析 学号: 姓名:评语: 成绩:一、实验目的1、掌握离散序列z 变换的计算方法。

2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。

3、掌握利用MATLAB 进行z 反变换的计算方法。

二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:∑∞-∞=-=n nzn x Z X )()(。

在MA TLAB 中可以利用符号表达式计算一个因果序列的z 变换。

其命令格式为: syms n;f=(1/2)^n+(1/3)^n; ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )*h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n nzn h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若∞<∑∞-∞=n n h |)(|,则系统稳定。

由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。

因为∑∞-∞=-=n nzn h z H )()(,若z =1时H (z )收敛,即∞<=∑∞-∞==n z n h z H |)(||)(1,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。

因此因果稳定系统应满足的条件为:1,||<∞≤<ααz ,即系统函数H (z )的所有极点全部落在z 平面的单位圆之内。

3、MA TLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。

实验-Z变换、零极点分析

实验-Z变换、零极点分析

(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

信号与系统复习题(答案全)

信号与系统复习题(答案全)

1、 若系统的输入f (t)、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的)。

2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。

3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10-5 s . 4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。

5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。

6、 连续信号f(t)=sint 的周期T 0= 2π ,若对f(t)以fs=1Hz 进行取样,所得离散序列f(k)=sin(k) ,该离散序列是周期序列? 否 。

7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。

8、 f (t) 的周期为0.1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。

试写出此信号的时域表达式f (t) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) 。

9、 f (k) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。

西安交通大学数字信号处理实验报告

西安交通大学数字信号处理实验报告

数字信号处理实验报告班级:硕姓名:学号:实验1 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解;实验内容:(1)单位抽样序列clc;x=zeros(1,11); x(1)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')延迟5个单位:clc;x=zeros(1,11); x(6)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')nx [n ](2)单位阶跃序列clc;x=[zeros(1,5),ones(1,6)]; n=-5:1:5;stem(n,x,'fill'); title('单位阶跃序列'); xlabel('n'); ylabel('x[n]');nx [n ](3)正弦序列clc; N=50; n=0:1:N-1; A=1; f=1; Fs=50; fai=pi;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x,'fill'); title('正弦序列'); xlabel('n'); ylabel('x[n]'); axis([0 50 -1 1]);nx [n ](4)复正弦序列clc; N=50; n=0:1:N-1; w=2*pi/50; x=exp(j*w*n); subplot(2,1,1); stem(n,real(x)); title('复正弦序列实部'); xlabel('n');ylabel('real(x[n])'); axis([0 50 -1 1]); subplot(2,1,2); stem(n,imag(x)); title('复正弦序列虚部'); xlabel('n');ylabel('imag(x[n])'); axis([0 50 -1 1]);nx [n ](5)指数序列clc; N=10; n=0:1:N-1; a=0.5; x=a.^n;stem(n,x,'fill'); title('指数序列'); xlabel('n'); ylabel('x[n]'); axis([0 10 0 1]);nr e a l (x [n ])ni m a g (x [n ])(6)复指数序列性质讨论:0(j )()enx n σω+=将复指数表示成实部与虚部为00()e cos j sin n n x n n e n σσωω=+1.当σ=0时,它的实部和虚部都是正弦序列。

第七节 离散系统的稳定性分析

第七节 离散系统的稳定性分析

离散系统如上图所示,则
E(z) R(z) 1 Go (z)
若闭环系统稳定,则由终值定理
ess
lim e(k)
k
lim (z
z 1
1) E ( z )
lim (z
z 1
1) R(z) 1 Go (z)
将离散系统仿照连续系统分为0、1、2型:
若系统开环脉冲传递函数G0 (z)中含有 i(i=0,1,2)个|z|=1的极点,则系统称为i型
第七节 离散系统的稳定性分析
如上节所讲,采样会破坏系统的稳定性,所 以在设计采样系统时最先考虑的是稳定性。 对采样系统稳定性分析主要建立在Z变换的 基础上。
连续系统的稳定性
连续系统稳定
所有特征根均具有负实部
方法:劳斯判据,Hurwitz判据及奈氏判据。
在分析采样系统时,可以利用Z变换与拉氏变 换数学上的关系,找到Z平面与S平面之间的周 期映射关系,从而利用原有的各种判据来分析
0
2型
0
2 r(t)=t*1(t)时
静态速度误差系数
R(z)
Tz (z 1)2
, ess
lim [(z
z1
1) 1 1 Go(z)
Tz (z 1)2
]
T
lim z1 (z
1 1)Go ( z)
若定义KV
1 T
lim (z 1)Go (z)
z 1
,则ess
1 Kv
Kv
ess
0型
0
1型 2型
Bode Diagrams
50 40 30 20 10
Phase (deg); Magnitude (dB)
-100 -120 -140 -160

数字信号处理实验离散时间 LTI 系统的时域分析与 Z 域分析

数字信号处理实验离散时间 LTI 系统的时域分析与 Z 域分析

实验一离散时间LTI系统的时域分析与Z域分析一、实验目的1、掌握用MATLAB求解离散时间系统的零状态响应、单位脉冲响应和单位阶跃响应;2、掌握离散时间系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的稳定性。

二、实验原理1、离散时间系统的时域分析(1)离散时间系统的零状态响应离散时间LTI系统可用线性常系数差分方程来描述,即MATLAB中函数filter可对式(1-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。

函数filter的语句格式为:y=filter(b,a,x)其中,x为输入的离散序列;y为输出的离散序列;y的长度与x的长度一样;b与a分别为差分方程右端与左端的系数向量。

(2)离散时间系统的单位脉冲响应系统的单位脉冲响应定义为系统在 (n)激励下系统的零状态响应,用h(n)表示。

MATLAB求解单位脉冲响有两种方法:一种是利用函数filter;另一种是利用函数impz。

impz函数的常用语句格式为impz(b,a,n),其中b和a的定义见filter,n表示脉冲响应输出的序列个数。

(3)离散时间系统的单位阶跃响应系统的单位阶跃响应定义为系统在ε(n)激励下系统的零状态响应。

MATLAB求解单位脉冲响应有两种方法:一种是利用函数filter,另一种是利用函数stepz。

stepz函数的常用语句格式为stepz(b,a,N)其中,b和a的定义见filter,N表示脉冲响应输出的序列个数。

2、离散时间系统的Z域分析(1)系统函数的零极点分析离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即如果系统函数H(z)的有理函数表示式为那么,在MATLAB中系统函数的零极点就可通过函数roots得到,也可借助函数tf2zp得到。

roots的语法格式为:Z=roots(b)%计算零点b=[b1b2…bmbm+1]P=roots(a)%计算极点a=[a1a2…anan+1]tf2zp的语句格式为[Z,P,K]=tf2zp(b,a)其中,b与a分别表示H(z)的分子与分母多项式的系数向量。

绘制离散系统零极点图

绘制离散系统零极点图

绘制离散系统零极点图:zplane()滤波器绘制离散系统零极点图:zplane()zplane(Z,P) 以单位圆为基准绘制零极点图,在图中以'o'表示零点,以'x'表示极点,如果存在重零极点,则在它们的右上方显示其数目。

如果零极点是用矩阵来表示,在不同行内的零极点用不同的颜色来表示。

zplane(B, A) 输入的是传递函数模型,则函数将首先调用root函数以求出它们的零极点。

[H1, H2, H3]=zplane(Z,P) 函数返回图形对象的句柄。

其中,H1返回的是零点线的句柄;H2返回的是极点线的句柄;H3返回的是轴和单位圆线条句柄。

如果有重零极点,它还包括显示在其右上方的文本句柄。

例:设计一个数字椭圆带阻滤波器,具体要求是:通带截止频率是wp1=1500Hz,wp2=2500Hz,阻带截止频率是ws1=1000Hz,ws2=3000Hz,在通带内的最大衰减为0.5dB,在阻带内的最小衰减为60dB程序设计如下:wp1=1500; wp2=2500; ws1=1000; ws2=3000; Fs=10000Hz;rp=0.5; rs=60;wp=[wp1,wp2]; ws=[ws1,ws2];[n,wn]=ellipord(wp/(Fs/2), ws/(Fs/2), rp, rs);[num,den]=ellip(n, rp, rs, wn, 'stop');[H, W]=freqz(num, den);figure;plot(W*Fs/(2*pi), abs(H)); grid;xlabel('频率/Hz');ylabel('幅值');figure;impz(num, den);figure;grpdelay(num, den);figure;zplane(num, den);FREQZ 是计算数字滤波器的频率响应的函数[H,W] = FREQZ(B,A,N) returns the N-point complex frequency responsevector H and the N-point frequency vector W inradians/sample ofthe filter:函数的输出:a.滤波器的频率响应H(N点) b.频率向量W(N点,且单位为弧度)其中,滤波器形式如下:given numerator and denominator coefficients in vectors B andA. Thefrequency response is evaluated at N points equally spacedaround theupper half of the unit circle. If N isn't specified, it defaultsto 512.滤波器的系数:分子为B,分母为A频率向量W,是均匀分布在滤波器的上半区,即:0:pi,这些点上的频率响应都将通过此函数计算出来。

《信号与系统》讲义教案第6章离散信号与系统的Z域分析

《信号与系统》讲义教案第6章离散信号与系统的Z域分析

第 6 章离散信号与系统的Z 域分析6.0 引言与拉氏变换是连续时间傅立叶变换的推广相对应,Z 变换是离散时间傅立叶变换的推广。

Z 变换的基本思想、许多性质及其分析方法都与拉氏变换有相似之处。

当然, Z 变换与拉氏变换也存在着一些重要的差异。

6.1 双边 Z 变换6.1.1双边Z变换的定义前面讨论过,单位脉冲响应为h[n] 的离散时间 LTI 系统对复指数输入z n的响应y[n]为y[ n]H ( z) z n(6.1)其中H ( z)h[ n] z n(6.2)n式 (6. 2) 就称为 h[n] 的双边 Z 变换。

当 z= e j时, Z 变换就转变为傅立叶变换。

因此一个离散时间信号的双边Z 变换定义为:X ( z)x[ n]z n(6.3)n式中 z 是一个复变量。

而x[n]与它的双边z 变换之间的关系可以记做zx[n]X (z)6.1.2双边Z变换的收敛域x[n] 的双边 Z 变换为一无穷级数,因此存在级数是否收敛的问题,即一方面并非所有信号的Z 变换都存在;另一方面即使某信号的Z 变换存在,但并非Z 平面上的所有点都能使X(z)收敛。

那些能够使X(z)存在的点的集合,就构成了X(z)的收敛域,记为ROC。

只有当式 (6.3) 的级数收敛,X (z) 才存在。

X ( z) 存在或级数收敛的充分条件是x[n]z n(6.4)n在 x[ n] 给定的条件下,式 (6.4)级数是否收敛取决于 z 的取值。

在 z 复平面上,使式 (6.4)级数收敛的 z取值区域就是 X(z)的收敛域。

6.1.3零极点图如果X(z) 是有理函数,将其分子多项式与分母多项式分别因式分解可以得到:N ( z)(z z i )X ( z)i(6.5)M(zD ( z)z p )p则由其全部的零极点即可表示出X ( z) ,最多相差一个常数因子。

在Z 平面上表示出全部的零极点,即构成X ( z) 的几何表示——零极点图。

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6-离散时间系统的z域分析————————————————————————————————作者:————————————————————————————————日期:实验6 离散时间系统的z 域分析(综合型实验)一、 实验目的1) 掌握z 变换及其反变换的定义,并掌握MAT LAB实现方法。

2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、 实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MA TLA B中可采用符号数学工具箱z trans 函数和iz trans 函数计算z 变换和z 反变换: Z=ztran s(F)求符号表达式F的z 变换。

F=iztra ns(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外还可采用MATL AB 中zpl ane 函数来求解和绘制离散系统的零极点分布图,zp lane 函数的调用格式为:zplane(b,a) b、a 为系统函数分子分母多项式的系数向量(行向量) zplane (z,p) z 、p为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

离散系统的系统函数

离散系统的系统函数
Y z 3 z 1Y z 2 z 2Y z X z 1 z 1
y k 3 y k 1 2 y k 2 x k x k 1 , 激励
已知离散系统的差分方程为:
Y z 1 z 1 z z 1 z H z 1 2 X z 1 3 z 2 z z 1z 2 z 2 求系统的零状态响应 2 z z z Y z H z X z z 2 z 2 z 2
列差分方程
wk 1
x( k ) 0.3w( k 1) w( k ) w( k ) 4w( k 1) y( k )
分别取z变换 X ( z ) 0.3 z 1W ( z ) W ( z ) 1 W ( z ) 4 z W (z) Y (z)
i


h(i ) z
i
y (k ) z k H ( z )
f (t ) e
0
y (t ) H ( s0 )e
0
系统响应是一个是常数(可能是复数)乘以输入,则: k 系统的特征函数 f ( k ) z0
H ( z0 )
系统的特征值
X
例题7
f (k ) z
k 0
y (k ) H ( z 0 ) z
z域复变量域s域复变量关系: z e sT z re j s j re j =e ( j )T eT e jT r eT T

11 页
X

因果系统函数极点与h(t),h(k)响应的关系 s平面 极点位置
虚轴上 原点s=0 左半平面
收敛域含虚轴
12 页
z平面 极点位置

实验四 离散时间信号与系统分析

实验四 离散时间信号与系统分析

实验四离散时间信号与系统分析实验四离散时间信号与系统分析一、实验目的1、理解离散信号及系统的时频域分析方法2、掌握Matlab进行信号的卷积、z变换及逆z变换的方法。

3、掌握Matlab进行离散系统时频域的分析方法二、实验时数:2学时三、实验相关知识(一)离散信号的卷积利用函数(,)可以计算离散信号的卷积和,c conv a b即c(n)=a(n)*b(n),向量c长度是a,b长度之和减1。

若a(n)对应的n的取值范围为:[n1, n2];b(n)对应的n的取值范围为:[n3, n4],则c(n)=a(n)*b(n)对应的n的取值范围为:[n1+n3, n2+n4]。

例4-1:已知两序列:x(k)={1,2,3,4,5;k=-1,0,1,2,3},y(k)={1,1,1;k=-1,0,1},计算x(k)*y(k),并画出卷积结果。

解:利用conv()函数进行离散信号的卷积,注意卷积信号的k 值范围k_x = -1:3;x=[1,2,3,4,5];k_y = -1:1;y=[1,1,1];z=conv(x,y);k_z= k_x(1)+k_y(1):k_x(end)+k_y(end); stem(k_z,z);(二)离散信号的逆z 变换离散序列的z 变换通常是z 的有理函数,可表示为有理分式的形式,因此可以现将X(z)展开成一些简单而常用的部分分式之和,然后分别求出各部分分式的逆变换,把各逆变换相加即可得到X(z)的逆变换x(n)。

设离散信号的z 变换式如下,120121212()()1()m m n n b b z b z b z num z X z a z a z a z den z ------++++==++++在Matlab 中进行部分分式展开的函数为residuez (),其调用形式如下:[r,p,k] = residuez(num,den)其中num=[b0, b1, …, bm]表示X(z)有理分式的分子多项式为12012m m b b z b z b z ---++++;den=[a0, a1, …, am]表示X(z)有理分式的分母多项式为12012m m b b z b z b z ---++++,注意分子分母多项式均为按z -1的降幂排列的多项式,缺项应补零。

离散系统的频率响应分析和零极点分布

离散系统的频率响应分析和零极点分布

离散系统的频率响应分析和零极点分布离散系统的幅频响应描述了系统对不同频率信号的放大或压缩能力。

幅频响应一般用幅度响应曲线表示,即以输入信号频率为横轴,以输出信号幅度为纵轴绘制的曲线。

幅频响应曲线可以展示离散系统的增益特性,即在不同频率下系统对信号的放大或压缩程度。

幅频响应曲线上的波动和变化可以反映系统对不同频率信号的响应情况。

离散系统的相频响应描述了系统对不同频率信号的相位差。

相频响应也是以输入信号频率为横轴,以输出信号相位为纵轴绘制的曲线。

相频响应可以展示离散系统对不同频率信号的相位延迟或提前情况,即输入信号和输出信号之间的相位差。

相频响应的变化可以反映系统对不同频率信号相位的变化情况。

在频率响应分析中,零极点分布也是非常重要的。

零点是指离散系统传递函数的分子多项式为零的根,极点是指传递函数的分母多项式为零的根。

零极点的分布对离散系统的频率响应和系统特性有着重要的影响。

具体来说,零点会在幅频响应曲线上产生波动或峰值,影响系统的放大或压缩程度。

零点的频率越高,波动或峰值的位置越靠近高频,反之亦然。

而极点会导致幅频响应曲线的趋势变化,影响系统的稳定性和阻尼特性。

极点越接近单位圆,系统越不稳定;极点越远离单位圆,系统越稳定。

相频响应同样受到零点和极点的影响。

零点的频率越高,在相频响应曲线上引起的相位变化越明显。

而极点的频率越接近单位圆,相频响应曲线呈现明显的相位延迟。

极点越远离单位圆,相频响应曲线呈现相位提前的情况。

因此,频率响应分析和零极点分布是研究离散系统特性的重要方法。

通过频率响应分析和零极点分布,我们可以了解离散系统对不同频率输入信号的响应情况、系统的稳定性特点以及系统的放大和压缩能力。

这对于离散系统的设计、控制和优化都有着重要的指导意义。

六、离散LTI系统的零极点分析

六、离散LTI系统的零极点分析
(2)、画出该系统的零极点图;
(3)、绘制系统的幅度响应曲线,并根据幅度响应曲线判断系统的滤波特性;
(4)、若将差分方程改写为 ,谈论该系统的滤波特性。
解:系统函数:
(1)(2)(3)MATLAB代码:
b=[1,0.9];a=[1,-0.9];
figure(1);subplot(2,1,1);zplane(b,a);
B=[1,-0.9];a=[1,0.9];%结果6-6和6-7
实验数据结果及分析
6-1
6-2
6-3
6-4

6-6
6-7
结果分析:1、从6-4和6-5可以看出该系统具有低通特性,属于低通滤波器且具有非线性相位响应。
2、从6-6和6-7可以看出该系统具有高通特性,属于高通滤波器且具有非线性相位响应。
求:
1、系统函数 ,并画出零极点分布图;
2、单位冲激响应 ;
3、系统的频率响应 ,并在 上画出它的幅度和相位。
解(1)对差分方程进行Z变换可以求得系统函数
收敛域: ;
极点: ;
零点: 。
b=[1,0,-1];a=[1,0,-0.81];%分子分母系数
zplane(b,a);%结果6-1
(2)
b=[1,0,-1];a=[1,0,-0.81];
xlabel('n');ylabel('h(n)');%结果6-2
>> [H,W]=freqz(b,a);%求系统频率响应
>> figure(2);subplot(2,1,1);
>> plot(W/pi,abs(H));%绘制幅度响应曲线
>> title('幅度响应曲线');grid on;

离散系统的转移函数_零、极点分布和模拟

离散系统的转移函数_零、极点分布和模拟

二、实验项目名称:离散系统的转移函数,零、极点分布和模拟 三、实验原理:离散系统的时域方程为∑∑==-=-Mm m Nk km n x b k n y a][][其变换域分析方法如下:系统的频率响应为 ωωωωωωωjN N j jM M j j j j ea e a a eb e b b e A e B e H ----++++++==......)()()(1010 Z 域 )()()(][][][][][z H z X z Y m n h m x n h n x n y m =⇔-=*=∑∞-∞=系统的转移函数为 NN MM z a z a a z b z b b z A z B z H ----++++++==......)()()(110110 分解因式 ∏∏∑∑=-=-=-=---==Ni i Mi i N i i kMi ik z z Kz a zb z H 11110)1()1()(λξ ,其中i ξ和i λ称为零、极点。

在MATLAB 中,可以用函数[z,p,K]=tf2zp (num,den )求得有理分式形式的系统转移函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统转移函数的零、极点分布图。

四、实验目的:1、加深对离散系统转移函数、零极点概念的理解;2、根据系统转移函数求系统零极点分布。

五、实验内容:实验内容(一)、使用实验仿真系统(略) 实验内容(二)、MATLAB 仿真六、实验器材(设备、元器件):计算机、MATLAB 软件。

七、实验步骤:对系统系统2181.09.011)(--+-=zz z H1、编程实现系统的参数输入,绘出幅度频率响应曲线和零、极点分布图。

2、根据系统的零极点计算系统频率响应的幅值和相位。

定义omega=[0:511]*pi/256和unitcirc=exp(j*omega)得到在单位圆上512个等分点,在这些点上将要对频率响应)(jw e H 求值。

离散系统的频域分析与零极点分布Ⅱ

离散系统的频域分析与零极点分布Ⅱ

离散系统的频域分析与零极点分布Ⅱ离散系统的频域分析是对离散系统在频域上的特性进行分析和研究。

频域分析的基本思想是将离散系统的输入输出关系表示为频率响应函数的形式,通过频率响应函数来描述离散系统的特性。

而离散系统的零极点分布则是分析离散系统的传递函数的零点和极点在复平面上的分布情况,对于离散系统的稳定性和频率响应特性有着重要的影响。

首先,我们来讨论离散系统的频域分析。

离散系统的频率响应函数是指在复频率域上,将输入信号的频谱与输出信号的频谱之比来描述系统的特性。

离散系统的频率响应函数可以通过系统的传输函数来求得。

传输函数是指系统输出信号与输入信号的拉普拉斯变换之比。

对于离散系统,传输函数可以通过系统的差分方程求解。

然后,使用z变换将差分方程转化为传输函数的形式。

通过传输函数,我们可以得到离散系统的频率响应函数,从而分析系统在不同频率下的特性。

离散系统的频率响应函数通常使用幅频响应和相频响应来描述。

幅频响应表示系统在不同频率下的输出信号的幅度与输入信号的幅度之比,相频响应表示系统在不同频率下的输出信号与输入信号的相位差。

通过幅频响应和相频响应,可以分析系统在不同频率下的输出信号的放大倍数和相位延迟情况。

接下来,我们来介绍离散系统的零极点分布。

离散系统的零点是指系统传递函数的分子多项式所对应的根,零点表示系统在一些频率下对输入信号的抑制或增强。

离散系统的极点是指系统传递函数的分母多项式所对应的根,极点表示系统在一些频率下的共振或抑制。

离散系统的零点和极点在复平面上的分布情况对于系统的稳定性和频率响应特性有着直接的影响。

离散系统的零极点分布的分析方法通常可以使用极坐标图或者单位圆图来表示。

极坐标图将离散系统的零点和极点用复数的模和幅角表示,通过观察零点和极点的分布情况,可以初步判断系统的稳定性和频率响应特性。

更进一步地,可以使用单位圆图来表示离散系统的零点和极点在单位圆上的分布情况。

单位圆图可以直观地显示系统的极点与零点对于频率响应的影响,通过观察单位圆图可以得到离散系统的稳定性和频率响应特性的更详细的信息。

离散系统的系统函数和频率响应

离散系统的系统函数和频率响应
| z |> m | pi | ax
i
p2
p1 p3 Re[z]
⇔ cau sality
p2
Im[z]
p1
| z |< m | pi | ⇔anti - causality in
i
p3
因果、稳定系统: 因果、稳定系统:
H(z)的收敛域为: ( )的收敛域为:
ρ ≤| z |≤ ∞
包含单位圆且 (ROC包含单位圆且极点均在单位圆内) 包含单位圆 极点均在单位圆内)
离散系统的系统函数和频率响应 系统函数: 系统函数: H(z) = FT[h(n)] = Y(z) X (z)
频率响应: 频率响应: H(e ) 单位圆上的系统函数(传输函数 传输函数) 单位圆上的系统函数 传输函数

H(e ) = H(z) |z=e jω

1、零极点分布对系统因果、稳定性的影响: 、零极点分布对系统因果、稳定性的影响: 稳定性: 稳定性:
G = (1− R) 1− 2Rcos(2ω0) + R
2
Resonator----谐振器
3-dB width----3 分贝带宽
|H(e jω)|²
1 1/2
∆ω
ω
0
ω0
π/2
陷波器
梳状滤波器
• Notch and Comb Filters
e
pole

1
|H(ω)|²
unit circle
zero
2、利用零极点分布确定系统的频率特性: 、利用零极点分布确定系统的频率特性:
Y(z) H(z) = = X (z)
M
bi z−i ∑ ai z−i ∑
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
axis([-5,45,-700000,500000]);
3.分析各系统的稳定性与系统零极点位置的关系。
根据Z域条件:离散系统稳定的充要条件为系统函数H(Z)的所有极点位于Z平面的单位圆内。
六个图都没有零点,图1,2,4的极点都在单位圆内,所以系统1,2,4是稳定的,图3,5,6的极点
都在单位圆外,所以系统3,5,6是不稳定的。
My1.m
a=[1 -1];
b=[1];
impz(b,a);
axis([-1,15,0,1.2]);
(2)
My2.m
a=[1 -0.5]; b=[1]; impz(b,a);
axis([-1,15,0,1.2]);
(3)
My3.m
a=[1 -1.5]; b=[1]; impz(b,a);
axis([-5,50,0,800000]);
时域条件:离散系统稳定的充要条件为 ,即系统单位响应绝对求和。
Z域条件:离散系统稳定的充要条件为系统函数H(Z)的所有极点位于Z平面的单位圆内。
2、零极点分布与系统单位响应时域特性的关系
离散系统单位响应h(n)的时域特性完全由系统函数H(z)的极点位置决定。H(z)的每一个极点将决定h(k)的一项时间序列。显然,H(z)的极点位置不同,则h(n)的时域特性也完全不同。
a=[1 –1];
b=[1];impz(b,来自)axis([-5,10,0,1.2])
3分析各系统的稳定性与系统零极点位置的关系。
五,实验过程原始记录(数据,图表,计算等)
1.写出上面6图对应系统的系统函数。
(1)
(2)
(3)
(4)
(5)
(6)
2.编辑各系统函数的相应的.m文件,输出冲激响应波形;
(1)
(4)
My4.m
a=[1 -0.25 0.5]; b=[1]; impz(b,a);
axis([-5,30,-1,1.2]);
(5)
My5.m
a=[1 -2 1.25]; b=[1]; impz(b,a);
axis([-5,150,-1200000,1200000]);
(6)
My6.m
a=[1 -2 2]; b=[1]; impz(b,a);
六,实验结果分析或总结
通过本次实验,我学会使用MATLAB进行离散系统的Z域分析,进一步掌握系统零极点分布与系统稳定性的关系。而且编辑各系统函数的相应的.m文件,输出冲激响应波形。已经达到了实验目的。
数字信号处理实验报告
实验室: 实验日期: 年 月 日
院(系)
年级、专业、班
姓名
成绩
课程
名称
数字信号处理
实验项目
名称
离散系统的零极点分析
指导
教师
一 ,实验目的
1、学会使用MATLAB进行离散系统的Z域分析。
2、进一步掌握系统零极点分布与系统稳定性的关系
二,实验原理
1、离散系统的零极点分布与系统稳定性
对任意有界的输入序列f(n),若系统产生的零状态响应y(n)也是有界的,则称该离散系统为稳定系统,它可以等效为下列条件:
3、在MATLAB中,利用函数impz可绘出对应H(z)的单位响应序列h(n)的波形。
三,使用仪器,材料
微型计算机,MATLAB7.0开发环境
四,实验内容与步骤
1、写出上面6图对应系统的系统函数;
2编辑各系统函数的相应的.m文件,输出冲激响应波形;
例:对图6-1所示的系统,系统函数为H(z)= ,即系统极点为单位园上实极点,则绘制单位响应时域波形的MATLAB命令如下:
相关文档
最新文档