大学物理第13章 量子物理习题解答(1)

合集下载

大学物理第13章 量子物理习题解答(1)

大学物理第13章 量子物理习题解答(1)

习题13-1设太阳是黑体,试求地球表面受阳光垂直照射时每平方米的面积上每秒钟得到的辐射能。

如果认为太阳的辐射是常数,再求太阳在一年内由于辐射而损失的质量。

已知太阳的直径为1.4×109 m ,太阳与地球的距离为1.5×1011 m ,太阳表面的温度为6100K 。

【解】设太阳表面单位面积单位时间发出的热辐射总能量为0E ,地球表面单位面积、单位时间得到的辐射能为1E 。

()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失的质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2 用辐射高温计测得炉壁小孔的辐出度为22.8 W/cm 2,试求炉内温度。

【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体的温度16000T = K ,问1350λ= nm 和2700λ= nm 的单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 的单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。

(完整版)南华物理练习第13章答案

(完整版)南华物理练习第13章答案

第十三章 早期量子论和量子力学基础练 习 一一. 选择题1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。

2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A)2; (B) 2/1; (C) 2 ; (D) 1/2 。

3. 一般认为光子有以下性质( A )(1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。

以上结论正确的是 ( A )(A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。

4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤; (B) 0hc eU λ≥; (C) 0eU hc λ≤; (D) 0eU hcλ≥。

二. 填空题1. 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 1.416×103K 。

2. 设太阳表面的温度为5800K ,直径为13.9×108m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。

3. 汞的红限频率为1.09×1015Hz ,现用λ=2000Å的单色光照射,汞放出光电子的最大初速度0v =57.7310 m/s ⨯ ,截止电压U a = 1.7V 。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

大学物理(机械工业出版社)第13章课后答案

大学物理(机械工业出版社)第13章课后答案

第十三章 振动#13-1 一质点按如下规律沿x 轴作简谐振动:x = 0.1 cos (8πt +2π/3 ) (SI),求此振动的周期、振幅、初相、速度最大值和加速度最大值。

解:周期T = 2π/ ω= 0.25 s振幅A = 0.1m初相位φ= 2π/ 3V may = ωA = 0.8πm / s ( = 2.5 m / s )a may = ω2 A = 6.4π2m / s ( = 63 m / s 2)13-2 一质量为0.02kg 的质点作谐振动,其运动方程为:x = 0.60 cos( 5 t -π/2) (SI)。

求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力。

解:(1) )( )25sin(0.3 SI t dt dx v π--==0.3 20x m ma x ω-== (2) 2x m ma F ω-==5.13.052.0,2/ 2N F A x -=⨯⨯-==时13-3 如本题图所示,有一水平弹簧振子,弹簧的倔强系数k = 24N/m ,重物的质量m = 6kg ,重物静止在平衡位置上,设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05m ,此时撤去力F ,当重物运动到左方最远位置时开始计时,求物体的运动方程。

解:设物体的运动方程为:x = A c o s (ωt +φ)恒外力所做的功即为弹簧振子的能量:F ⨯ 0.05 = 0.5 J当物体运动到左方最位置时,弹簧的最大弹性势能为0.5J ,即:1 /2 kA 2 = 0.5 J ∴A = 0.204 mA 即振幅ω2 = k / m = 4 ( r a d / s )2ω= 2 r a d / s按题目所述时刻计时,初相为φ= π∴ 物体运动方程为x = 0.204 c o s (2 t +π) ( SI ) 13-4 一水平放置的弹簧系一小球。

已知球经平衡位置向右运动时,v =100cm ⋅s -1,周期T =1.0s ,求再经过1/3秒时间,小球的动能是原来的多少倍?弹簧的质量不计。

南华物理练习第13章答案

南华物理练习第13章答案

第十三章 早期量子论和量子力学基础练 习 一一. 选择题1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。

2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A)2; (B) 2/1; (C) 2 ; (D) 1/2 。

3. 一般认为光子有以下性质( A )(1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。

以上结论正确的是 ( A )(A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。

4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤; (B) 0hceU λ≥; (C) 0eU hc λ≤; (D) 0eU hc λ≥。

二. 填空题1. 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 1.416×103K 。

2. 设太阳表面的温度为5800K ,直径为13.9×108m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。

3. 汞的红限频率为1.09×1015Hz ,现用λ=2000Å的单色光照射,汞放出光电子的最大初速度0v =57.7310 m/s ⨯ ,截止电压U a = 1.7V 。

量子力学练习题答案

量子力学练习题答案
量子力学练习题参考答案
一、 简答题 1. 简述光电效应中经典物理学无法解释的实验现象。 答:光电效应中经典物理学无法解释的实验现象有: (1)对入射光存在截止频率ν0 ,小于该频率的入射光没有光电子逸出;(2) 逸出的光电子的能量只与入射光的频率ν 有关,入射光的强度无关;(3) 截止频率只与材料有关而与光强无关;(4)入射光的强度只影响逸出的光 电子的数量;(5)无论多弱的光,只要其频率大于截止频率,一照射到金 属表面,就有光电子逸出。 2. 简述 Planck 的光量子假设。 答:Planck 的光量子假设为,对于一定的频率为ν 的辐射,物体吸收或发 射的能量只能以 hν 为单位来进行。 3. 写出 Einstein 光电方程,并阐述 Einstein 对光电效应的量子解释。 答:Einstein 光电方程为 hν = 1 mv2 + W 。
⎤ ⎥ ⎦
16. 简述粒子动量与位置的不确定关系。
答:若要想精确地知道粒子的动量值,就无法得知粒子的具体位置;要想
精确地知道粒子的位置,就无法得知粒子的具体动量值,位置分布的均方
差和动量分布的均方差受到下面关系的制约
Δx ⋅ Δp ≥ = 2
17. 简述量子力学的态叠加原理。
答:量子力学的态叠加原理是指如果ψ1 、ψ 2 、ψ 3 ……均是体系的可能状态,
ψ ( x, t) = eip0x / = ⋅ e−iEt / = = e−i(Et− p0x)/ =
14. 写出动量算符、动能算符以及在直角坐标系中角动量各分量的算符的
表达式。 答:动量算符 lpK = −i=∇
动能算符 Tl = 1 (−i=∇)2
2m
角动量各分量的算符
L x
=
−i=
⎛ ⎜

上海理工 大学物理 第十三章 量子力学基础1答案

上海理工 大学物理 第十三章 量子力学基础1答案

(黑体辐射、光电效应、康普顿效应、玻尔理论、波粒二象性、波函数、不确定关系)一. 选择题[ D]1. 当照射光的波长从4000 Å变到3000 Å时,对同一金属,在光电效应实验中测得的遏止电压将:(A) 减小0.56 V.(B) 减小0.34 V.(C) 增大0.165 V.(D) 增大1.035 V.[](普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C)解题要点:)()(1212λλccehvvehUa-=-=∆∴[ C]2. 下面四个图中,哪一个正确反映黑体单色辐出度M Bλ(T)随λ 和T的变化关系,已知T2 > T1.解题要点:斯特藩-玻耳兹曼定律:黑体的辐射出射度M0(T)与黑体温度T的四次方成正比,即.M0 (T)随温度的增高而迅速增加维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长mλ向短波方向移动。

[ D]3. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍.(B) 1.5倍.(C) 0.5倍.(D) 0.25倍.解题要点:(B)因散射使电子获得的能量:202c m mc K -=ε 静止能量:20c m[ C ]4. 根据玻尔的理论,氢原子在n =5轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 5/4. (B) 5/3.(C) 5/2. (D) 5.解题要点:L = m e v r = n 第一激发态n =2[ B ]5. 氢原子光谱的巴耳末线系中谱线最小波长与最大波长之比为 (A) 7/9. (B) 5/9. (C) 4/9. (D) 2/9.解题要点:从较高能级回到n=2的能级的跃迁发出的光形成巴耳末系l h E E h -=νc =λν23max E E ch-=λ2min E E ch-=∞λ[ B ]6. 具有下列哪一能量的光子,能被处在n = 2的能级的氢原子吸收? (A) 1.51 eV . (B) 1.89 eV .(C) 2.16 eV . (D) 2.40 eV .解题要点:26.13n eV E n -=l h E E h -=ν=⎪⎭⎫⎝⎛---2226.136.13eV n eV[ D ]7. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将 (A) 增大D 2倍. (B) 增大2D 倍. (C) 增大D 倍. . (D) 不变.解题要点:注意与各点的概率密度区分开来.二. 填空题姓名 __________ 学号 ____________ 《大学物理Ⅱ》答题纸 第十三章1. 康普顿散射中,当散射光子与入射光子方向成夹角φ =___π___时,散射光子的频率小得最多;当φ = ___0___ 时,散射光子的频率与入射光子相同.解题要点:频率小得最多即波长改变量最大2. 氢原子基态的电离能是 __13.6__eV .电离能为+0.544 eV 的激发态氢原子,其电子处在n =__5__ 的轨道上运动.解题要点:电离能是指电子从基态激发到自由状态所需的能量. ∴氢原子基态的电离能E =1E E -∞=⎪⎭⎫⎝⎛--∞-2216.136.13eV eV E =n E E -∞ 即 +0.544 eV=26.13neV3. 测量星球表面温度的方法之一,是把星球看作绝对黑体而测定其最大单色辐出度的波长λm ,现测得太阳的λm 1 = 0.55 μm ,北极星的λm 2 = 0.35 μm ,则太阳表面温度T 1与北极星表面温度T 2之比T 1:T 2 =___7:11___.解题要点:由维恩位移定律: T m λ=b∴m λ∝T1 即21T T =12m m λλ 4. 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λ =___33___λc .解题要点:电子的动能:22c m mc e K -=ε 静止能量:2c m e22c m mc e K -=ε=2c m e221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ 5. 若太阳(看成黑体)的半径由R 增为2 R ,温度由T 增为2 T ,则其总辐射功率为原来的__64__倍.解题要点:由斯特藩-玻耳兹曼定律:太阳的总辐射功率:024M R M ⋅=π424T R σπ⋅=6. 波长为0.400μm 的平面光波朝x 轴正向传播.若波长的相对不确定量∆λ / λ =10-6,则光子动量数值的不确定量 ∆p x =___s m kg /1066.133⋅⨯-_ _,而光子坐标的最小不确定量∆x =___0.03m___.解题要点:λh p =λλλλλ∆⋅=∆=∆h h p 2三. 计算题1. 图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同.(2) 由图上数据求出普朗克恒量h .解:(1)由得A h U e a -=ν e A e h U a /-=ν 常量==e h d U d a ν/ ∴对不同金属,曲线的斜率相同 (2)s J eetg h ⋅⨯=⨯--==-3414104.610)0.50.10(00.2θ |14Hz)姓名 __________ 学号 ____________ 《大学物理Ⅱ》答题纸 第十三章 2. 用波长λ0 =1 Å的光子做康普顿实验. (1) 散射角φ=90°的康普顿散射波长是多少? (2) 反冲电子获得的动能有多大?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)解:(1)λλλ∆+=0m 1010024.1-⨯=(2)根据能量守恒:∴反冲电子获得动能:202c m mc K -=εννh h -=0λλchch-=0)(00λλλλ∆+∆=hceV J 2911066.417=⨯=-3. 实验发现基态氢原子可吸收能量为 12.75 eV 的光子. (1) 试问氢原子吸收该光子后将被激发到哪个能级?(2) 受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请画出能级图(定性),并将这些跃迁画在能级图上.解:(1)l h E E h -=ν=⎪⎭⎫⎝⎛---2216.136.13eV n eV =12.75 n=4(2)可以发出41λ、31λ、21λ、43λ、42λ、32λ六条谱线4. 质量为m e 的电子被电势差U 12 = 100 kV 的电场加速,如果考虑相对论效应,试计算其德布罗意波的波长.若不用相对论计算,则相对误差是多少?(电子静止质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)n=1n=2n=3n=4解:考虑相对论效应:22c m mc e K -=ε=12eU221cu m m e -=21⎪⎭⎫ ⎝⎛-===c u u m h m u h p h e λ=)2(21212c m eU eU hc e +=3.71m 1210-⨯若不用相对论计算:221u m e =12eU u m h p h e =='λ=122eU m he =3.88m 1210-⨯ 相对误差:λλλ-'=4.6﹪5. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式≥∆E t∆2 =5.276J 2710-⨯=3.297eV 810-⨯ 根据光子能量与波长的关系==νh E λchEc h=λ=3.67m 710-⨯ 波长的最小不确定量为2EE hc∆=∆λ=7.13m 1510-⨯ [选做题]1. 动量为p的原子射线垂直通过一个缝宽可以调节的狭缝S ,与狭缝相距D 处有一接收屏C ,如图.试根据不确定关系式求狭缝宽度a 等于多大时接收屏上的痕迹宽度可达到最小.解:由不确定关系式 2≥∆∆y p y姓名 __________ 学号 ____________ 《大学物理Ⅱ》答题纸 第十三章而 a y =∆,θsin p p y =∆ 则有 pa2sin ≥θ 由图可知,屏上痕迹宽带不小于 paD a D a y+=+=θsin 2 由0=da dy可得 pD a= 且这时 022>dayd 所以狭缝的宽度调到p D a =时屏上痕迹的宽度达到最小。

量子物理答案

量子物理答案

量子物理答案【篇一:量子物理作业答案】ile2~file5?mt?b表示,其中b?2.8978?10?3m?k。

求人体热辐射的峰值波长(设体温为37?)。

解:由定律?mt?b可得:bb2.8978?10?3?m???m?9.35?10?6mtt?to37?273即,人体热辐射的峰值波长为9350nm。

2. 宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于t=2.726k黑体辐射。

此辐射的峰值波长是多少?在什么波段?解:根据维恩位移定律?mt?b,得:b2.8978?10?3?m??m?1.06?10?3mt2.726即该辐射峰值波长为1.06mm,属于红外波段。

3. 波长?=0.01nm的x射线光子与静止的电子发生碰撞。

在与入射方向垂直的方向上观察时,散射x射线的波长为多大?碰撞后电子获得的能量是多少ev?解:依题意,在垂直方向观察时散射角,??90?由波长改变量公式??????0?h?1?cos??,得散射后x射线波长: m0c6.63?10?34???0????0.01?10?(1?cos90?)?0.0124?10?9m ?3189.1?10?3?10?9?x射线损失的能量等于电子增加的动能?ee??ex?hchc111??6.63?10?34?3?108??9?(?) ?0?100.010.0124?ee?3.85?10?15j?2.4?104ev所以,散射x射线波长为0.0124nm,电子获得能量为2.4?104ev 4. 在一束电子束中,单电子的动能为e=20ev,求此电子的德布罗意波长。

解:电子动能较小,固忽略其相对论效应,所以由e?1mv2,得电子速率v?22emh p又?p?mv,由德布罗意公式??h????mv6.63?10?34?192?20?1.6?109.1?10?31?9.1?10?31m?2.75?10?10m即电子德布罗意波长为2.75?10?10m。

file61.设归一化波函数:??x??ae化常数a。

量子力学习题及答案

量子力学习题及答案

量子力学习题及答案1. 简答题a) 什么是量子力学?量子力学是一门研究微观领域中原子和基本粒子行为的物理学理论。

它描述了微观粒子的特性和相互作用,以及它们在粒子与波的二重性中所呈现出的行为。

b) 什么是波函数?波函数是描述量子体系的数学函数。

它包含了关于粒子的位置、动量、能量等信息。

波函数通常用符号ψ表示,并且可用于计算概率分布。

c) 什么是量子态?量子态是描述量子系统的状态。

它包含了有关系统性质的完整信息,并且根据量子力学规则演化。

量子系统可以处于多个量子态的叠加态。

d) 什么是量子叠加态?量子叠加态是指量子系统处于多个不同态的线性叠加。

例如,一个量子比特可以处于0态和1态的叠加态。

2. 选择题a) 下列哪个物理量在量子力学中具有不确定性?1.速度2.质量3.位置4.电荷答案:3. 位置b) 关于波函数的哪个说法是正确的?1.波函数只能描述单个粒子的行为2.波函数可以表示粒子的位置和动量的确定值3.波函数的模的平方表示粒子的位置概率分布4.波函数只适用于经典力学体系答案:3. 波函数的模的平方表示粒子的位置概率分布c) 下列哪个原理是量子力学的基本假设?1.宏观世界的实在性2.新托尼克力学3.不确定性原理4.不可分割性原理答案:4. 不可分割性原理3. 计算题a) 计算氢原子的基态能级氢原子的基态能级可以通过解氢原子的薛定谔方程得到。

基态能级对应的主量子数为n=1。

基态能级的能量公式为: E = -13.6 eV / n^2代入n=1,可以计算得到氢原子的基态能级为:-13.6 eVb) 简述量子力学中的双缝干涉实验双缝干涉实验是一种经典的量子力学实验,用于研究光和物质粒子的波粒二象性。

实验装置包括一道光源、两个狭缝和一个光屏。

当光的波长足够小,两个狭缝足够细时,光通过狭缝后会形成一系列的波纹,这些波纹会在光屏上出现干涉条纹。

实验结果显示,光在光屏上呈现出干涉现象,表现为明暗相间的条纹。

这种实验结果说明了光具有波动性,同时也具有粒子性。

大学物理量子力学习题答案解析

大学物理量子力学习题答案解析

一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。

写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。

解:()⎰Ω=adrr r d P 022,,ϕθψ。

2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。

解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。

解:有两个条件:0],[,0==∂∂H Q t Q。

4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。

),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。

5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。

解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。

6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。

解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。

大学物理-量子力学基础习题思考题及答案

大学物理-量子力学基础习题思考题及答案

习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。

解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c=+ 可得p ===h p λ==834-=131.210m -=⨯(2)对于质子,利用德布罗意波的计算公式即可得出:3415h 9.110m p λ--====⨯22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。

解:(1)用非相对论公式:mmeU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:420222c m c p +=EeU E E k ==-20c mm eU eU c m hmE h 12220107.722p h -⨯=+===)(λ22-3.一中子束通过晶体发生衍射。

已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:3411h 1.410m λ--====⨯再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…11111.410sin 0.095k λϕ--⨯=== , 5.48ϕ= 22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长A 1=λ,电子在此场中应该飞行多长的距离?解:3410h 110p m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。

22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。

大学物理第十三章课后习题答案

大学物理第十三章课后习题答案

第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg-1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500DA BD ACB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V B A (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A ==(2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量.解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()BC AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122ln V V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=.解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。

大学物理13章习题详细答案

大学物理13章习题详细答案

习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。

(2)板B 接地时,两板间的电势差。

[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== B A-Q/2Q/2Q/2Q/2A B -QQ13-4 两块靠近的平行金属板间原为真空。

使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。

保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求(1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。

圆柱面B 上带电荷,A 和C 都接地。

求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。

[解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-=rE 02II 2πελ= AB 0101I BA ln 2d 2d ABA BR Rr r U R R R R πελπελ=-==⎰⎰r E IIIB C 0202II BC ln 2d 2d CB CBR R r r U R R R R πελπελ===⎰⎰r EBC 02A B 01ln 2ln 2R R R R πελπελ= 因此 AB BC 21ln :ln:R R R R =λλ13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。

大学物理_第十三章_课后答案

大学物理_第十三章_课后答案

a sin ϕ = (2k + 1)
λ 2 , k = 1,2,3 ⋅ ⋅ ⋅
x 1.4 = = 3.5 × 10 −3 = tan ϕ ≈ sin ϕ f 400 由 2a sin ϕ 2 × 0.6 λ= = × 3.5 × 10 −3 2k + 1 2k + 1 故 1 = × 4.2 × 10 −3 2k + 1 mm o λ = 6000 A 当 k = 3 ,得 3
得 (2)因第四级缺级,故此须同时满足
0.20(a + b) = 2 × 6000 × 10 −10 0.30(a + b) = 3 × 6000 × 10 −10 a + b = 6.0 × 10 −6 m (a + b) sin ϕ = kλ a sin ϕ = k ′λ a+b a= k ′ = 1.5 × 10 −6 k ′ 4
答:因为衍射角 ϕ 愈大则 a sin ϕ 值愈大,分成的半波带数愈多,每个半波带透过的光通量 就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小. 13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公
a sin ϕ = ± (2k + 1)
式 在水中的波长?
λ 答: 不矛盾. 单缝衍射暗纹条件为 a sin ϕ = kλ = 2 k 2 , 是用半波带法分析(子波叠加问题). ϕ 相邻两半波带上对应点向 方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故
形成暗纹;而双缝干涉明纹条件为 d sin θ = kλ ,描述的是两路相干波叠加问题,其波程差 为波长的整数倍,相干加强为明纹.
o
a+b =
解:

量子物理初步习题及解答

量子物理初步习题及解答

一 选择题 (共30分)1. (本题 3分)(4387) 光电效应中发射的光电子最大初动能随入射光频率ν 的变化关系如图所示.由图中的(A) OQ (B) OP (C) OP /OQ (D) QS /OS 可以直接求出普朗克常量. [ ]2. (本题 3分)(4503) 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 2倍. (B) 1.5倍. (C) 0.5倍. (D) 0.25倍. [ ]3. (本题 3分)(4739) 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的能量为 0.1 MeV ,则散射光波长的改变量∆λ与入射光波长λ0之比值为 (A) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ ]4. (本题 3分)(4185) 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å ,那么入射光的波长是 (A) 5350 Å. (B) 5000 Å. (C) 4350 Å. (D) 3550 Å. [ ]5. (本题 3分)(4206) 静止质量不为零的微观粒子作高速运动,这时粒子物质波的波长λ与速度v 有如下关系:(A) v ∝λ . (B) v /1∝λ.(C) 2211c−∝v λ. (D) 22v −∝c λ. [ ]6. (本题 3分)(4242) 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是 0.4Å ,则U 约为 (A) 150 V . (B) 330 V .(C) 630 V . (D) 940 V . [ ](普朗克常量h =6.63×10-34J ·s)7. (本题 3分)(4770) 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同. (B) 能量相同.(C) 速度相同. (D) 动能相同. [ ]不确定关系式h ≥⋅∆∆x p x 表示在x 方向上(A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定.(C) 粒子位置和动量都不能准确确定.(D) 粒子位置和动量不能同时准确确定. [ ]9. (本题 3分)(5234) 关于不确定关系h ≥∆∆x p x ()2/(π=h h ,有以下几种理解:(1) 粒子的动量不可能确定.(2) 粒子的坐标不可能确定.(3) 粒子的动量和坐标不可能同时准确地确定.(4)不确定关系不仅适用于电子和光子,也适用于其它粒子.其中正确的是:(A) (1),(2). (B) (2),(4).(C) (3),(4). (D) (4),(1). [ ]10. (本题 3分)(5619) 波长λ =5000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为(A) 25 cm . (B) 50 cm .(C) 250 cm . (D) 500 cm . [ ]二 填空题 (共39分)11. (本题 3分)(0475) 某光电管阴极, 对于λ = 4910 Å的入射光,其发射光电子的遏止电压为0.71 V .当入射光的波长为__________________Å时,其遏止电压变为1.43 V . ( e =1.60×10-19 C ,h =6.63×10-34 J ·s )12. (本题 5分)(4179) 光子波长为λ,则其能量=____________;动量的大小 =_____________;质量=_________________ .13. (本题 4分)(4187) 康普顿散射中,当散射光子与入射光子方向成夹角φ = _____________时,散射光子的频率小得最多;当φ = ______________ 时,散射光子的频率与入射光子相同.波长为λ =1 Å的X 光光子的质量为_____________kg . (h =6.63×10-34 J ·s)15. (本题 3分)(4608) 钨的红限波长是230 nm (1 nm = 10-9m),用波长为180 nm 的紫外光照射时,从表面逸出的电子的最大动能为___________________eV .(普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19C)16. (本题 3分)(4742) 某金属产生光电效应的红限为ν0,当用频率为ν (ν >ν0 )的单色光照射该金属时,从金属中逸出的光电子(质量为m )的德布罗意波长为________________.17. (本题 3分)(4740) 在X 射线散射实验中,散射角为φ 1 = 45°和φ 2 =60°的散射光波长改变量之比∆λ1:∆λ2 =_________________.18. (本题 3分)(4611) 某一波长的X 光经物质散射后,其散射光中包含波长________和波长__________的两种成分,其中___________的散射成分称为康普顿散射.19. (本题 3分)(4207) 令)/(c m h e c =λ(称为电子的康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子的动能等于它的静止能量时,它的德布罗意波长是λ =________________λc .20. (本题 3分)(4524) 静止质量为m e 的电子,经电势差为U 12的静电场加速后,若不考虑相对论效应,电子的德布罗意波长λ=________________________________.21. (本题 3分)(4771) 为使电子的德布罗意波长为1 Å,需要的加速电压为_______________. (普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C ,电子质量m e =9.11×10-31 kg)在电子单缝衍射实验中,若缝宽为a = 0.1 nm (1 nm = 10-9 m),电子束垂直=______________N·s.射在单缝面上,则衍射的电子横向动量的最小不确定量∆py(普朗克常量h =6.63×10-34 J·s)三计算题 (共33分)23. (本题 8分)(4505)用波长λ0 =1 Å的光子做康普顿实验.(1) 散射角φ=90°的康普顿散射波长是多少?(2) 反冲电子获得的动能有多大?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me24. (本题 5分)(4522)为粒子考虑到相对论效应,试求实物粒子的德布罗意波长的表达式,设EK 的动能,m为粒子的静止质量.25. (本题 5分)(4535)若不考虑相对论效应,则波长为 5500 Å的电子的动能是多少eV?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me26. (本题 5分)(4631)假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的2倍时,其德布罗意波长为多少?=9.11×10-31 kg) (普朗克常量h =6.63×10-34 J·s,电子静止质量me27. (本题10分)(1813)若光子的波长和电子的德布罗意波长λ相等,试求光子的质量与电子的质量之比.一 选择题 (共30分)1. (本题 3分)(4387) (C)2. (本题 3分)(4503) (D)3. (本题 3分)(4739) (B)4. (本题 3分)(4185) (D)5. (本题 3分)(4206) (C)6. (本题 3分)(4242) (D)7. (本题 3分)(4770) (A)8. (本题 3分)(4211) (D)9. (本题 3分)(5234) (C)10. (本题 3分)(5619) (C)参考解:根据 p = h / λ则 22/λλ∆∆=h p x λλ∆∆≥/2x min x ∆λλ∆=/2=5000×10-10×5000×103= 2.5 m= 250 cm二 填空题 (共39分)11. (本题 3分)(0475) 3.82×103 3分12. (本题 5分)(4179) λ/hc 1分λ/h 2分 )/(λc h 2分13. (本题 4分)(4187) π 2分 0 2分14. (本题 3分)(4250) 2.21×10-32 3分1.5 3分16. (本题 3分)(4742))(20νν−m h3分17. (本题 3分)(4740) 0.586 3分18. (本题 3分)(4611) 不变 1分 变长 1分 波长变长 1分3分20. (本题 3分)(4524) 2/112)2/(eU m h e 3分21. (本题 3分)(4771) 150 V 3分22. (本题 3分)(5372) 1.06×10-24 (或 6.63×10-24或0.53×10-24 或 3.32×10-24) 3分参考解:根据 h ≥∆∆y p y ,或 h p y y ≥∆∆,或h 21≥∆∆y p y ,或h p y y 21≥∆∆,可得以上答案.三 计算题 (共33分)23. (本题 8分)(4505) 解:(1) 康普顿散射光子波长改变: =−=∆)cos 1)((φλc hm e 0.024×10-10 m=+=∆λλλ0 1.024×10-10 m 4分 (2) 设反冲电子获得动能2)(c m m E e K −=,根据能量守恒: K e E h c m m h h +=−+=ννν20)(即 KE hc hc ++=∆)]/([/00λλλ故 )](/[00λλλλ∆∆+=hc E K =4.66×10-17 J =291 eV 4分24. (本题 5分)(4522) 解:据 202c m mc E K −=20220))/(1/(c m c c m −−=v 1分得 220/)(c c m E m K += 1分)/(220202c m E c m E E c K K K++=v 1分将m ,v 代入德布罗意公式得2022/c m E E hc h/m K K+==v λ 2分解:非相对论动能 221v e K m E =而 v e m p = 故有 eK m p E 22= 2分又根据德布罗意关系有 λ/h p = 代入上式 1分则 ==)/(2122λe K m h E 4.98×10-6 eV 2分26. (本题 5分)(4631) 解:若电子的动能是它的静止能量的两倍,则:2222c m c m mc e e =− 1分故: e m m 3= 1分由相对论公式 22/1/c m m e v −= 有 22/1/3c m m e e v −= 解得 3/8c =v 1分德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8−×≈ m 2分27. (本题10分)(1813) 解:光子动量: p r = m r c = h /λ ① 2分 电子动量: p e = m e v = h /λ ② 2分两者波长相等,有 m r c = m e v得到 m r / m e = v / c ③电子质量 220/1c v m m e −=④ 2分式中m 0为电子的静止质量.由②、④两式解出)/(122220h c m cv λ+=2分代入③式得)/(1122220h c m m m e r λ+= 2分。

大学物理-量子力学基础习题思考题及答案word精品文档5页

大学物理-量子力学基础习题思考题及答案word精品文档5页

习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。

解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c =+ 可得(2)对于质子,利用德布罗意波的计算公式即可得出:22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。

解:(1)用非相对论公式:m meU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:22-3.一中子束通过晶体发生衍射。

已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长 A 1=λ,电子在此场中应该飞行多长的距离? 解:3410h 110p m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。

22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。

解:由测不准关系: 3424101.0510 5.2510220.110h p x ---⨯∆===⨯∆⨯⨯ 由波长关系式:Ec h =λ 可推出: E E c h ∆=∆λ 22-6.氢原子的吸收谱线 A 5.4340=λ的谱线宽度为A 102-,计算原子处在被激发态上的平均寿命。

解:能量hcE h νλ==,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两者之间的关系为:2hcE λλ∆=∆由测不准关系,/2,E t ∆∆≥平均寿命τ=Δt ,则22-7.若红宝石发出中心波长m 103.67-⨯=λ的短脉冲信号,时距为)s 10(ns 19-,计算该信号的波长宽度λ∆。

第13章量子力学基础习题解答

第13章量子力学基础习题解答

140第13章 量子力学基础13-1 将星球看成黑体,由维恩位移定律k m 10897.2,3⋅⨯==-b b T m λ 对北极星:k 103.81035.010897.23311⨯=⨯⨯==--bm bT λ对天狼星:k 100.11029.010897.24322⨯=⨯⨯==--bm bT λ13-2 由斯特藩-玻耳兹曼定律4)(T T M σ=及维恩位移定律b T m =λ,可得辐出度与峰值波长关系为 44)(mb T M λσ=所以 422411m m M M λλ=即 63.3)5.0/69.0()/(:42112===m m M Mλλ13-3 太阳表面单位时间单位面积辐射的能量为.4T E σ=以太阳为中心,t 时间通过半径为R 的球面的能量为tE R E 24π='。

根据相对论质能关系式2mc E ∆=',可得太阳一年内由于辐射而损失的质量为2422244cTRt ctE R cE m σππ∆=='=164828109/58001067.5360024365)1096.6(4⨯⨯⨯⨯⨯⨯⨯⨯⨯=-πkg 1037.117⨯=13-4 太阳每秒钟发射到地球表面每平方厘米的辐射能量为0.14J. 每个光子的能量为λεhchv ==则发射的光子的数目为个1783491087.31031062.61055014.014.0⨯=⨯⨯⨯⨯⨯==--εN .13-5 (1)单位时间内传到金属单位面积上的能量为J 1039-⨯.每个光子的能量为λεhchv ==则单位时间内照射到金属单位面积上的光子数为个983479100.6100.31063.6100.4103⨯=⨯⨯⨯⨯⨯⨯=---N141(2)由爱因斯坦光电效应方程A mv hv m +=221光电子的初动能A hv mv m-=221eV 1.10.2106.1100.41031063.6197834=-⨯⨯⨯⨯⨯⨯=---13-6 由爱因斯坦光电产应方程A mv hv m +=221光子的最大初动能A hcA hv mvm-=-=λ221eV 0.22.4106.1102001031063.6199834=-⨯⨯⨯⨯⨯⨯=---a m eu mv =221,所以遏止电势差V 0.2/212==e mv u m aA ch=0λ,红限波长nm 2966.1102.41031062.6198340=⨯⨯⨯⨯⨯==--Ahc λ13-7 (1) 红光光子的能量、动量和质量分别为kg1016.3)103(1084.2s m kg 1047.91070001062.6p J1084.21070001031063.6362819211128103411191083411---------⨯=⨯⨯==⋅⋅⨯=⨯⨯==⨯=⨯⨯⨯⨯==cE m hhv E λ(2) X 射线的能量、动量和质量分别为kg1082.8)103(1094.7s m kg 1065.21025.01063.6p J1094.71025.01031063.63228152221231034221510834222---------⨯=⨯⨯==⋅⋅⨯=⨯⨯==⨯=⨯⨯⨯⨯===cE m h hchv E λλ(3) r 射线的能量、动量和质量分别为kg1078.1)103(106.1s m kg 1034.51024.11063.6p J106.11024.11031063.63228152331221234221512834333---------⨯=⨯⨯==⋅⋅⨯=⨯⨯==⨯=⨯⨯⨯⨯===cE m h hchv E λλ14213-8 由康普顿散射公式 2sin22sin222ϕλϕλ∆c m h ==m 1043.212-⨯=c λ又因为%10=λλ∆,所以︒︒=⨯⨯==A A 43.201.05.00243.02%10λ∆λ 13-9 X 射线的能量为0.6MeV ,相应X 射线的波长为6.00hc =λ经散射后 002.1λλ∆λλ=+= 散射后X 射线能量为02.1λλhc hc=反冲电子量为MeV 1.0)2.111(6.0)2.111(0=-⨯=-=-λλλhc hchc13-10 散射前后能量守恒,所以有2022200)111()(c m cvcm m hchc --=-=-λλ整理得m cm cvhchc122022103.4)111(-⨯=---=λλ517.0100243.02103103.422sin ,2sin22110121221020=⎪⎪⎭⎫⎝⎛⨯⨯⨯-⨯=⎪⎪⎭⎫ ⎝⎛-==-=---c c λλλϕϕλλλλ∆ 8162)517.0arcsin(2'︒==ϕ 13-11 (1)由康普顿公式2sin22ϕλλc =∆02202201201145sin2,45sin2λλλλ∆λλλλ∆︒=︒=c c故401020220111040004.0:-===λλλλ∆λλ∆由能量守恒,反冲电子获得的动能为λλhchcE k -=20202101011,λ∆λλλ∆λλ+-=+-=hchcE hchcE k k143故⎪⎪⎭⎫⎝⎛∆+-⎪⎪⎭⎫ ⎝⎛∆+-=2020210101211111:λλλλλλk k E E =10-8 (2) 入射光波长与c λ相差不大时,康普顿效应显著。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题13-1设太阳是黑体,试求地球表面受阳光垂直照射时每平方米的面积上每秒钟得到的辐射能。

如果认为太阳的辐射是常数,再求太阳在一年内由于辐射而损失的质量。

已知太阳的直径为1.4×109 m ,太阳与地球的距离为1.5×1011 m ,太阳表面的温度为6100K 。

【解】设太阳表面单位面积单位时间发出的热辐射总能量为0E ,地球表面单位面积、单位时间得到的辐射能为1E 。

()484720 5.671061007.8510W/m E T σ-==⨯⨯=⨯22014π4πE R E R →=太阳地球太阳()()()29232102110.7107.85 1.7110W/m 1.510R E E R→⨯==⨯=⨯⨯太阳2地球太阳太阳每年损失的质量()()()790172287.851040.710365243600 1.6910kg 3.010E S t m c π⨯⨯⨯⨯⨯⨯⨯∆∆===⨯⨯太阳 13-2用辐射高温计测得炉壁小孔的辐出度为22.8 W/cm 2,试求炉内温度。

【解】由40E T σ=得()1/41/440822.810 1.416 K 5.6710E T σ-⎛⎫⨯⎛⎫=== ⎪ ⎪⨯⎝⎭⎝⎭13-3黑体的温度16000T = K ,问1350λ= nm 和2700λ= nm 的单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 的单色辐出度增加了几倍?【解】由普朗克公式()5/1,1hc k TT eλρλλ-∝-34823911 6.6310310 6.861.3810600035010hc k T λ---⨯⨯⨯==⨯⨯⨯⨯ 21123.43 5.88hc hck T k T λλ==()()11 3.48 6.8621,700 1.03,350T e T ρλρλ-==()()12 6.86 5.8811, 2.66,T e T ρλρλ-==13-4在真空中均匀磁场(41.510B -=⨯T )内放置一金属薄片,其红限波长为2010λ-=nm 。

今用单色γ射线照射时,发现有电子被击出。

放出的电子在垂直于磁场的平面内作半径为0.10R = m 的圆周运动。

假定γ光子的能量全部被电子吸收,试求该γ射线的能量、波长和频率。

【解】电子逸出功hcA λ=34814116.6310 3.010 1.98910 J 10---⨯⨯⨯==⨯ 电子运动半径mv R qB=光子能量212RqB h m A m ν⎛⎫=+ ⎪⎝⎭()219414310.1 1.610 1.510 1.9891029.110----⨯⨯⨯⨯=+⨯⨯⨯141.98910 J -≈⨯1419341.98910 3.010 Hz 6.6310ν--⨯==⨯⨯ 1110m=0.01 nmcλν-==13-5以钠作为光电管阴极,把它与电源的正极相联,而把光电管阳极与电源负极相联,这反向电压会降低以至消除电路中的光电流。

当入射光波长为433.9 nm 时,测得截止电压为0.81 V ,当入射光波长为312 nm 时,测得截止电压为1.93 V ,试计算普朗克常数h 并与公认值比较。

【解】11hcA eU λ-= (1)22hcA eU λ-= (2)解得()212111e U U hc λλ⎛⎫-=- ⎪⎝⎭()()211221e U U h c λλλλ-=- ()()1918891.610 1.930.81433.9312103.010433.931210---⨯⨯-⨯⨯⨯=⨯-⨯ 346.6310 J s -⨯⋅13-6若有波长为0.10λ= nm 的X 射线束和波长为31.8810λ-=⨯ nm 的γ射线,分别和自由电子碰撞,问散射角为π/2时,(1)波长的改变量为多少?(2)反冲电子的动能是多少?(3)入射光在碰撞时失去的能量占总能量的百分比。

【解】 24.810sin2θλ-∆=⨯(1) π2θ=2224.810 2.410 m λ--∆=⨯=⨯⎝⎭(2) 00011k E h h hc ννλλλ⎛⎫=-=-⎪+∆⎝⎭34891116.63103.010100.1000.1024k E -⎛⎫=⨯⨯⨯⨯-⨯ ⎪⎝⎭()174.6610J 291 eV -=⨯=348122116.63103.010101.88 1.88 2.4k E -⎛⎫=⨯⨯⨯⨯-⨯ ⎪+⎝⎭()1455.9310J3.710 e V-=⨯=⨯(3)110101k k E E E hcλ= 1793484.66100.1102.34%6.6310310---⨯⨯⨯==⨯⨯⨯ 220202k k E E E hcλ= 14123485.9310 1.881056%6.6310310---⨯⨯⨯==⨯⨯⨯ 13-7 在康普顿实验中,当能量为0.50 MeV 的X 射线射中一个电子时,该电子会获得0.10 MeV 的动能,若电子原来是静止的。

试求:(1)散射光子的波长;(2)散射光子与入射方向的夹角。

【解】 00.50.10.4 MeV k hch E E νλ==-=-=(1) 3486196.6310 3.0100.410 1.610hc h λν--⨯⨯⨯==⨯⨯⨯ 123.110m -=⨯(2) 3486190 6.6310 3.0100.510 1.610hc E λ--⨯⨯⨯==⨯⨯⨯ 122.4810m -=⨯1200.6210 m λλλ-∆=-=⨯()122.4101cos λθ-∆=⨯-cos 0.74θ= 42.27θ= 13-8一个波长λ=5 Å的光子与原子中电子碰撞,碰撞后光子以与入射方向成150º角方向反射,求碰撞后光子的波长与电子的速率。

【解】 ()122.4101cos150λ-∆=⨯-()124.4810nm -=⨯9120510 4.4810λλλ--=+∆=⨯+⨯5.0048 n m=k hchcE λλ=-=3489116.63103.010105 5.0048-⎛⎫⨯⨯⨯⨯-⨯ ⎪⎝⎭203.810J =0.238 e V-⨯ 由于0.51 MeV kE (电子的静电能)因此,采用非相对论方式v == 52.910 m /s=⨯ 13-9设0λ和λ分别为康普顿散射中入射与散射光子的波长,k E 为反冲电子动能,ϕ为反冲电子与入射光子运动方向夹角,θ为散射光子与入射光子运动方向的夹角,试证明: (1)00k E hcλλλλ-=; (2) 当π2θ=时,ϕ=【证】(1) 00k hchcE h h ννλλ=-=-hcλλλλ-= (2) 由动量定理cos cos90e ex hhp p ϕλλ+==sin sin 90e ey hp p ϕλ==cosϕ==ϕ= 证毕13-10 根据玻尔理论计算氢原子中的电子在第一至第四轨道上运动的速度以及这些轨道的半径。

【解】 ()260112.1810 m/s 2n e v h n nε=⋅=⨯⋅()220200.0529 nm n h r n n m e επ=⋅=62 1.0910 m/s v =⨯ 537.2710 m /sv =⨯ 54 5.4510 m/s v =⨯20.2116 nm r = 30.4761 n m r = 40.8464 nm r =13-11 在氢原子被外来单色光激发后发出的巴耳末系中,仅观察到三条光谱线,试求这三条谱线的波长以及外来光的频率。

【解】 43220111()8me h c m n λε=-巴耳末系的三条谱线为2m =;3,4,5n =711111.09737310()49λ=⨯⨯- 1656 nm λ=721111.09737310()416λ=⨯⨯- 2486 nm λ=731111.09737310()425λ=⨯⨯- 3434 nm λ=13-12 动能为20 eV 的电子与处于基态的氢原子相碰,并使氢原子激发,当氢原子返回基态时,辐射出波长为121.6 nm 的光子,求碰撞后电子的速度。

【解】 200.51 MeV kE m c =,可以用非相对论近似212k hc mv E λ=-v =3481923192 6.6310 3.010[20 1.6109.110121.610⨯⨯⨯=⨯⨯⨯⨯⨯1----(-)] 61.85410 m /s ⨯13-13 具有能量为15 eV 的光子,被氢原子中处于第一玻尔轨道上的电子所吸收,然后电子被释放出来,试求放出来电子的速度。

【解】 200.51 MeV kE m c =,可以用非相对论近似211||2mv E E =-光 1513.581.42=-=v =57.0710 m /s=⨯ 13-14 原则上讲,玻尔理论也适用于太阳系,地球相当于电子,太阳相当于核,而万有引力相当于库仑力。

(1)求地球绕太阳运动的允许半径公式;(2)地球运行实际半径为1.5×1011 m ,与此半径对应的量子数n 多大? (3)地球实际轨道和它的下一个较大可能轨道半径差值多大? (M 地=5.98×1024 kg ,M 日=1.99×1030 kg ,G =6.67×10-11 N·m 2/kg 2)【解】(1) 22M M v G M r r⋅=日地地 2M v r GM M =⋅日地地 (1)由角动量守恒条件2πhL M vr n ==⋅地 (2) ()()12消去r :21nGM M v h n π⋅=⋅日地()()221消去v :2224πn h r r n GM M ==⋅日地(3)(2) ()()2341221130246.63104π 6.67101.9910 5.9810r --⨯=⨯⨯⨯⨯⨯⨯1382.310 m -=⨯21n r n r =742.5510n ==⨯ (3) 由(3)式:12r r n n ∆=⋅∆令1n ∆=138742.3102 2.5510r -∆=⨯⨯⨯⨯631.17310m -=⨯13-15 一质子经206 V 的电压加速后,德布罗意波长为12100.2-⨯m 。

试求:(1)质子的质量?=p m(2)如果质子的位置不确定量等于其波长,则其速度的不确定量必不小于多少? 【解】(1)h p λ===()2342219246.631022 1.610206410p hm eV λ---⨯==⨯⨯⨯⨯⨯ ()271.66710kg -⨯(2) 因为质子的位置不确定量等于其波长,即x λ∆=由不确定关系x p x x p x m v ∆⋅∆=∆⋅∆≥,取等号计算,可得3427121.05101.667102.010x p p v m x m λ---⨯∆===∆⨯⨯⨯()43.1510 m /s =⨯ 13-16 若已知运动电子的质量比其静止质量大1%,试确定其德布罗意波长。

相关文档
最新文档