华理大学物理第13章习题课
东华理工大学物理练习册答案

一质点作简谐振动,周期为T.当它由平衡位置向x轴正方向运动时,
(C) T /6.
4.(5186)
(D) T /4.[ C ]
已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间
单位为秒.则此简谐振动的振动方程为:
2 2 (B). x2 (A).x2 cos ( t- ) cos( t )
1.(0580)
振动习题
一长为l的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图
所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量,此 摆作微小振动的周期为
(A)
(C) .
l 2 g
2l 2 3g
(B) . 2
(D) .
O
l 2g
l
l 3g
A
[ C]
y y A
2.(3031) 已知一质点沿y轴作简
t (s)
4.(3013) 一单摆的悬线长l = 1.5 m,在顶端固定点的竖直下方0.45 m处有 一小钉,如图示.设摆动很小,则单摆的左右两方振幅之比 A1/A2的近似值为_______________ . 0.84
0.45 m l
小钉
5.(3570) 1 一物体同时参与同一直线上的两个简谐振动: x 0 . 05 cos( 4 t ) 1 3 2 (SI) ,x 合成振动的振幅为 0 . 03 cos( 4 t- ) (SI) 2 3 __________________m . 0.02
x (cm) t (s) 1
2 2 3 3 O 3 3 -1 4 2 4 2 (C). cos ( t- ) -2 x2 cos( t ) (D).x2 3 3 3 3
4 1 (E) .x2 cos ( t- ) 3 4
大学物理13章习题详细答案(供参考)

大学物理13章习题详细答案(供参考)习题1313-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。
(2)板B 接地时,两板间的电势差。
[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为SQ E 02ε=电势差为SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε== 13-4 两块靠近的平行金属板间原为真空。
使两板分别带上面电荷密度为σ0的等量异号电荷,这时两板间电压为U 0=300V 。
保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为εr =5的电介质,试求(1)金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度σ;(2)金属板间电压变为多少?电介质上下表面束缚电荷面密度多大?13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B和C ,半径分别为R A 、R B 、R C 。
圆柱面B 上带电荷,A 和C 都接地。
求B 的内表面上线电荷密度λ1和外表面上线电荷密度λ2之比值λ1/λ2。
[解] 由A 、C 接地 BC BA U U = 由高斯定理知r E 01I 2πελ-=rE 02II 2πελ= 因此 AB BC 21ln :ln:R R R R =λλ 13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。
试求离左表面的距离为a 的点与离右表面的距离为b 的点之间的电势差。
[解] 导体板内场强0=内E ,由高斯定理可得板外场强为故A 、B 两点间电势差为13-7.为了测量电介质材料的相对电容率,将一块厚为B A-Q/2Q/2Q/2Q/2A B -QQIII ⅠⅡⅢBA1.5cm 的平板材料慢慢地插进一电容器的距离为2.0cm 的两平行板中间。
华南理工大学大学物理习题答案

1.答案:37.4%;不是; 。
2.答案: 。
3.答案: 。
三、计算题
1.答案:(1) ;(2) ;(3) 。
2.答案:(1) ,熵增加;(2) , 。
3.答案:(1) ;(2) ;(3) J/K。
4.答案: 。
习题四
一、选择题
1.B;2.C;3.C;4.B;5.D。
二、填空题
1.答案:10 cm;(/6) rad/s;/3。
2.答案:(b,f);(a,e)。
3.答案: ; 。
4.答案: ; 。
5.答案:802Hz
三、计算题
1.答案:证明(略),
2.答案:(1) , ;(2) , ;
(3) 。
3.答案:(1) ;(2) 。
5.答案:(1)4000条;(2)0.5mm;(3) 。
三、计算题
1.答案: 。
2.答案:(1)648.2nm;(2)0.15。
3.答案:(1) ;(2) 。
4.答案: 。
5.答案:546nm。
习题七
一、选择题
1.D;2.B;3.B;4.C;5.D。
二、填空题
1.答案:3mm。
2.答案: 。
3.答案: ; 。
2.答案: ;垂直。
3.答案:(1)双折射;(2)相等;(3)相等。
4.答案:355nm;396nm。
三、计算题
1.答案:
2.答案:2/5.
3.答案:(1)48.4°;(2)41.6°。
4.答案:54.7°
5.答案:
习题九
一、选择题
1.B;2.A;3.A;4.C;5.A。
二、填空题
1.答案: ; ; 。
3.答案:小于;大于。
华南理工大学物理光学习题

ห้องสมุดไป่ตู้
一衍射光栅,每厘米 200 条透光缝,每条透光缝宽为 a=2×10-3 cm,在光栅 后放一焦距 f=1 m 的凸透镜,现以=600 nm (1 nm=10 9 m)的单色平行光垂直照 射光栅,求: (1) 透光缝 a 的单缝衍射中央明条纹宽度为多少? (2) 在该宽度内,有几个光栅衍射主极大(亮纹)? 解:(1) 当 x<< f 时, tg sin , a x / f = k , a sin = k 取 k= 1 有 tg = x / f
x= f l / a= 0.03 m
∴中央明纹宽度为
x= 2x= 0.06 m
(2)
( a + b) sin k
k ( a+b) x / (f )= 2.5
取 k = 2,有 k = 0,±1,±2 共 5 个主极大 4. 如图所示,平行单色光垂直照射到薄膜上,经上下两 表面反射的两束光发生干涉,若薄膜的厚度为 e,并且 n1<n2>n3,1 为入射光在折射率为 n1 的媒质中的波长, 则两束反射光在相遇点的相位差为 (A) 2n2e / ( n1 1). (C) [4n2e / ( n1 1) ]+. (C) 5 某种透明媒质对于空气的临界角(指全反射)等于 45°, 光从空气射向此媒质 时的布儒斯特角是 (A) 35.3°. (C) 45°. (E) 57.3°. (D) 6 若一双缝装置的两个缝分别被折射率为 n1 和 n2 的两块厚度均为 e 的透明介 质所遮盖,此时由双缝分别到屏上原中央极大所在处的两束光的光程差=() (n1-n2)e 或(n2-n1)e 均可 7 一个平凸透镜的顶点和一平板玻璃接触,用单色光垂直照射,观察反射光形 成的牛顿环,测得中央暗斑外第 k 个暗环半径为 r1.现将透镜和玻璃板之间的空 气换成某种液体(其折射率小于玻璃的折射率),第 k 个暗环的半径变为 r2,由此 可知该液体的折射率为____________________. (B) 40.9°. (D) 54.7°. [ ] (B)[4n1e / ( n2 1)] + . (D) 4n2e / ( n1 1). [ ] n2 n3 n1
华东理工大学大学物理作业答案2

2f 2 1 600 10 9 3 10 3 m a 0.4 10 3 (2)由 a sin k (k 1) 得 x sin 1.5 10 3 r a d a
44
大学物理习题册解答
7、用 1mm 内有 500 条刻痕的平面透射光栅观察钠光谱(λ =589nm) ,问: (1)光线垂直入射时,最多能看到第几级光谱; (2)光线以入射角 300 入射时,最多能看到第几级光谱。 解: (1) d
1 2 10 3 mm 500 由 d sin k 及最多能看到的谱线时 sinθ ~1 可得 d 2 10 3 k m ax 3.4 589 10 6
0
(3)最多能看到的谱线级数 sinθ ~1
k d 2400 4 600
∴
k=0,±1,±2
共5条谱线
45
大学物理习题册解答
9、一双缝,缝间距 d=0.1mm,缝宽 a=0.02mm,用波长λ =480nm 的平行单色光垂直入 射双缝,双缝后放一焦距为 50cm 的透镜,试求: (1)透镜焦平面上,干涉条纹的间距; (2)单缝衍射中央亮纹的宽度; (3)单缝衍射的中央包线内有多少条干涉的主极大? x 解: (1)由双缝干涉明条纹条件 d sin d k 得 f
12、一束自然光,入射到由 4 片偏振片构成的偏振片组上。每一片偏振片的偏振化方向 0 相对于前面一片的偏振化方向沿顺时针方向转过 30 角。问通过偏振片组后的光强是入 射光强的百分之几? 解: 设入射光强为 I0,通过偏振片的光强为 I1、I2、I3、I4 1 I1 I 0 2
华东理工大学2020版大学物理(下)习题册答案

解:设电子在无穷远处初动能为 Ek ,0 点电子动能 0
R2
A e(U 0 U ) EK EK
R1
U 0
dq R2 2rdr 4 0 r R1 4 0 r
2 0 (R2 R1 )
EK
eU 0
e 2 0
(R2
R1 )
17、一电偶极子原来与均匀电场平行,将它转到与电场反平行时,外力作功为 A,则当 此电偶极子与场强成 45角时,此电偶极子所受的力矩为多少?
0
r R1
q1 0
E1 0
R1 r R2
q2 1h
E2
1 2 0r
r R2
q3 (1 2 )h
E3
1 2 2 0r
(2) E1 和 E2 不变, E3 0
9、一厚度为 d 的无限大平板,均匀带电,体电荷密度 为 ,求平板体内、外场强的分布,并以其对称面为 坐标原点作出 E x 的分布曲线。
解:设内球带电量为 q 内,依据题意可知电场分布
0
q内
E
4 0q内
0
r2 Q
40r 2
r R1 R1 r R2 R2 r R3 r R3
U
R2
R1
q内 40
r
2
dr
R 3
q内 Q 40 r 2
dr
q内 40
面,q 在该平面的轴线上的 A 点处.求通过此圆平面的 R
电通量。
O
解法一:以 A 为中心,r 为半径作一球面,则通过圆平
面的电通量与通过以圆平面为底的球冠电通量相等。
设球面积 S0 4r 2 , 通量
q 0 0
球冠面积 S 2r(r r c o s) 通量
r A q
华东理工大学大学物理作业答案

第十七章 量子物理基础1、 某黑体在某一温度时,辐射本领为5.7W/cm 2,试求这一辐射本领具有的峰值的波长λm ?解:根据斯忒藩定律 )K m J 1067.5(T )T (E 3284⋅⋅⨯=σσ=-得 4)T (E T σ= 再由维恩位移定律 )K m 10898.2b ( b T 3m ⋅⨯==λ- m 1089.21067.5107.510898.2)T (E bTb68434m --⨯=⨯⨯⨯=σ==λ2、在天文学中,常用斯特藩—玻尔兹曼定律确定恒星半径。
已知某恒星到达地球的每单位面积上的辐射能为28m /W 102.1-⨯,恒星离地球距离为m 103.417⨯,表面温度为 5200 K 。
若恒星辐射与黑体相似,求恒星的半径。
解:对应于半径为m 103.417⨯的球面恒星发出的总的能量 21R 4E W π⋅= 则恒星表面单位面积上所发出能量E 0为22122120rR E r 4R 4E r 4WE =ππ=π= (1)由斯忒藩定律 40T E σ= (2) 联立(1)、(2)式得 m 103.75200103.41067.5102.1T R E r 92178821⨯=⨯⨯⨯=σ=--3、 绝对黑体的总发射本领为原来的16倍。
求其发射的峰值波长λm 为原来的几倍? 解:设原总发射本领为E 0,温度T 0,峰值波长0λ,则由斯忒藩-波耳兹曼定律可得 4040T 16T E 16E σ=σ==21T T 161)T T (040==∴又 由位移定律 b T m =λ可得 21T T 00m ==λλ∴4、从铝中移出一个电子需要4.2eV 的能量,今有波长为200nm 的光投射到铝表面上,问:(1)由此发射出来的光电子的最大动能为多少? (2)遏止电势差为多大? (3)铝的截止波长有多大? 解:由爱因斯坦方程 A E h k +=ν(1)eV 01.22.4106.1100.21031063.6A hc A h E 197834k =-⨯⨯⨯⨯⨯⨯=-λ=-ν=--- (2)由光电效应的实验规律得0k eU E = (U 0为遏止电势差)V 01.2101.2e E U K 0===(3)00hch A λ=ν= m 10958.2106.12.41031063.6A hc 7198340---⨯=⨯⨯⨯⨯⨯==λ∴5、 以波长为λ=410nm 的单色光照射某一光电池,产生的电子的最大动能E k =1.0eV ,求能使该光电池产生电子的单色光的最大波长是多少? 解:爱因斯坦光电效应方程,A E h K +=ν λ=νh 得)1(A E hcK +=λ按题意最大波长时满足 0E K = 得)2(A hc =λ则(1)、(2)得hcE 11K 0=λ-λ 即 6348197K 01064.11063.6103106.1101.41hc E 11⨯=⨯⨯⨯⨯-⨯=-λ=λ--- 故最大波长 nm 7.6090=λ6、一实验用光电管的阴极是铜的(铜的逸出功为4.47eV )。
华南理工大学大学物理习题试卷、习题册详细答案(下册)

3.答案:(1) ;(2) 。
4.答案:(1) , 线的方向为逆时针方向;(2) , 的方向指向轴心。
5.答案:(1) ;(2) 。
习题七
一、选择题
1.B;2.D;3.B;4.B;5.A。
二、填空题
1.答案: ; 。
2.答案: ; ; ; 。
3.答案: 。
4.答案: 。
5.答案:0.91c; 。
3.答案:(1)5个, ;(2)9个, ;(3)5;(4)18。
4.答案:10; ; 。
5.答案:
三、计算题
1.答案:(1) ;
(2) ;
(3)能级跃迁图如图所示。
2.答案:(1) , ;
(2) 。
3.答案:(1)0.19;(2)0.40。
4.答案:(1) ;
(2)在 (即 )处概率最小,其值均为零。
3.答案: 。
4.答案: ;方向沿轴向上。
习题四
一、选择题
1.D;2.B;3.A;4.A。
二、填空题
1.答案: ;M = 0。
2.答案:(1) ;(2) 。
3.答案:(1)霍尔;(2) 。
4.答案: ; 。
5.答案: 。
三、计算题
1.答案: ,方向:垂直于ab向上。
2.答案:(1) ;
(2)线圈法线与 成 或 角时。
3.答案:(1) ,方向水平向左;(2) ;
(3) ,方向水平向右。
4.答案: 。
5.答案: 。
习题六
一、选择题
1.C;2.B;3.B;4.D;5.A。
二、填空题
1.答案:方向;常;变。
2.答案:a;b;c;c;b;a。
3.答案: 。
华南理工大学大学物理下册习题册习题详解

=
q 4πε0 3l
+
−q 4πε 0l
=
−q 6πε 0l
,
UO
=
q 4πε 0l
+
−q 4πε 0l
=
0
,
A
=
Q(U
O
−U
D
)
=
1×
⎛ ⎜ ⎝
0
−
−q 6πε 0l
⎞ ⎟ ⎠
=
q 6πε 0l
(2)
A′
=
Q′(U D
−U∞ )
=
−1×
⎛ ⎜ ⎝
−q 6πε 0l
−
⎞ 0⎟
⎠
=
q 6πε 0l
4.如图所示,两同心带电球面,内球面半径为 r1 = 5cm ,带电荷 q1 = 3×10−8 C ;外球面半径为 r2 = 20cm , 带电荷 q2 = −6 ×10−8 C 。
O
2a
x
答案:D
解:由高斯定理知 ΦS = q ε0 。由于面积S1和S2相等且很小,场强可视为均匀。根据场强 叠加原理, E1 = 0, E2 < 0 ,所以 Φ1 = 0, Φ2 > 0 。
3.半径为 R 的均匀带电球体的静电场中各点的电场强度的大小 E 与距球心的距离 r 的关 系曲线为 [ ]
(C) E = 0, U = λ ln b ; 2πε0 a
答案:C
(B) E = λ , U = λ ln b ;
2πε 0 r
2πε0 r
(D) E = λ , U = λ ln b 。
2πε 0 r
2πε0 a
a
b
rP λ
解:由高斯定理知内圆柱面里面各点 E=0,两圆柱面之间 E = λ ,则 P 点的电势为 2πε 0 r
华东理工大学大学物理作业答案3

e (2k 1) 4n 2
550 105 .8 (nm ) 4 1.30
2
e m in (k 0)
8、一厚度为 625nm、折射率为 n2=1.40 的煤油膜浮于水 面(水的折射率 n3=1.33) ,一波长为 500nm 的单色光从 空气(n1=1.00)中垂直入射在油膜上(如图所示) ,求: (1)反射光的光程差、相位差,并说明其干涉结果; (2)透射光的光程差、相位差,并说明其干涉结果 解: (1)垂直入射 i =0,有半波损失 光程差 相位差
3
2 10
32 1
0
1
23
根据 m ax
7 2k 1 得 4 2
k 3.5
12、以钠光灯作为光源(λ =589.3nm) ,在迈克耳逊干涉仪的一支光路上,放置一个长 度为 d=140mm 的玻璃容器,当以 NH3 注入容器时,测得干涉条纹移动Δ N=180 条,求 NH3 的折射率。 解:迈克耳逊干涉仪每移过一条条纹光程差改变 2(n 1)d 1 8 0
2 2 解: (1) 2e n 2 2 n1 sin i k
(最小厚度 k=1)
5.0 10 5 2.03 10 5 cm
e m in
2 2 n2 30 0 2 sin
2 1.33 2 (0.5) 2
(2)从法线方向观察 i=0, 2n 2 e min k 可得 k=1 k=2
1 2 (D 2 k 5 D k ) 590 nm 20 R
40
大学物理习题册解答
11、使平行光垂直入射图(a)和(b)所示装置的上表面来观察等厚干涉。试画出反射 光的干涉条纹(只画暗条纹) ,并标出条纹级次。
大学物理第十三章习题

第十三章习题例题: 13-8,13-12一、填空题1.设运动粒子波函数如图所示,则确定粒子动量确定度最大的是( )2. 已知一单色光照射在钠表面上,测得光电子最大动能是1.2eV,而钠的红限波长是5400Å,那么入射光的波长约是( )(1eV=1.602⨯10-19J,c=3⨯108m/s,h=6.626⨯10-19J•s,1 Å=10-10m)A. 5350 ÅB. 5000 ÅC. 3550 ÅD. 4350 Å3. 在康普顿效应实验中,若散射光波长是入射波长的1.2倍,则散射光子能量ε与反冲电子动能E k之比ε/E k为 ( )A. 5B. 4C. 3D. 24. 关于不确定关系Δx Δp≥h/(2π)以下说法正确的是(1)粒子的动量不可能确定(2)粒子的坐标不可能确定(3)粒子的动量和坐标不可能同时确定(4)不确定关系不仅适用于电子和光子,也适用于其它粒子A. (1) (2)B. (2) (4)C.(3) (4)D. (4) (1)5.用频率为υ的单色光照射某种金属,逸出光电子的最大动能为E k,若用频率为2υ的单色光照射此金属时,则逸出光子的最大动能为A. 2E kB. hυ+E kC. hυ-E kD. 2hυ-E k6. 如图所示,一束动量为p的电子,通过缝宽为a的狭缝,在距离狭缝为R处放置一荧光屏,则d等于A. 2a2/RB.2ha/pC.2ha/(Rp)D. 2Rh/(ap)7. 以下关于波函数错误的是A. 波函数ψ与Aψ描述的是同一状态B. 波函数Aψ所描述的粒子在某处出现的概率比ψ所描述的粒子大A2倍C. 波函数是一个单值函数D. 波函数是一个连续函数8.下列物体中属于绝对黑体的是( )A. 不辐射可见光的物体B. 不辐射任何光线的物体C. 不能反射可见光的物体D. 不能反射任何光线的物体9.关于光子的性质,下列说法正确的是A.不论真空或介质中的光子速度都是光速cB.光子有动量和能量但没质量C.光子动量为hυ/cD. 光电效应中光子与金属中电子发生了弹性碰撞二、填空题1. 钾的光电效应红限波长为λ0=0.62μm。
大学物理第十三章课后习题答案

第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg-1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500DA BD ACB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V B A (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A ==(2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量.解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()BC AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122ln V V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=.解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。
华南理工大学2013级大学物理习题答案-推荐下载

4
,
v2
。
的圆周运动,运动学方程为
;
ds dt
(v0
v2 0
4 Rb
v0
bt)2 R
s
a
1g 2
,所以
d2x dt 2
i
d2y dt 2
s
2ti
v2 an
j
v0t
(2
2 j
;加速度大小为 b 时,质点沿圆周运行的圈数为
。
bt , a
解:
a
2
gj
an a cos g cos 30 。又因
2.
3g
a
,轨道的曲率半径 =
a sin
一质点在 xy 平面内运动,其运动学方程为 r
秒为单位,则从 t = 1 秒到 t = 3 秒质点的位移为
度为
答案: 4i 8 j
解:
r
; 2 j
5. 一细直杆 AB,竖直靠在墙壁上,B 端沿水平方向以速度 v 滑离墙壁,则当细杆运动到图示位置时,细杆中
点 C 的速度 [ D ] (A)大小为 v / 2 ,方向与 B 端运动方向相同; (B)大小为 v / 2 ,方向与 A 端运动方向相同; (C)大小为 v / 2 , 方向沿杆身方向;
2
s(t)
b2
s(0)
a
b,
v0
d 2s dt 2
an n
v0 b
得
b
a
t v0 b
华东理工大学大学物理作业答案2

大学物理习题册解答
第十四章 光的衍射、第十五章 光的偏振
1、波长为λ =589nm 的单色光垂直入射到宽度为 a=0.40mm 的单缝上,紧贴缝后放一焦 距为 1.0m 的凸透镜,使衍射光射到放在透镜焦平面处的屏上,求屏上: (1)第一暗纹离中心的距离; (2)第二明纹离中心的距离。 x 解: (1) a sin a f
f 589 10 9 1 1.47 10 3 m 3 a 0.4 10 x (2) a sin a (2k 1) (k=2) f 2 2f x 3.69 10 3 (m) 2a x
2、以波长λ =500nm 的平行光,垂直照射到宽度 a=0.25mm 的单缝上,在缝后放置一个 焦距 f=25cm 的凸透镜,则透镜焦平面处的屏幕上出现衍射条纹,试求: (1)中央明条纹的宽度; (2)中央明条纹两侧第三级暗条纹之间的距离。 解:(1)中央明条纹的宽度为左右第一条暗条纹之间的宽度
n2 n1
其中空气折射率 n1,电介质折射率 n2
n 2 n 1 tgi b tg57 0 1.54
16、一束太阳光,以某一入射角入射到平面玻璃上,这时反射光为完全偏振光,透射光 0 的折射角为 32 ,试求: (1)太阳光的入射角是多少? (2)玻璃的折射率是多少? 解: (1)反射光为全偏振光时 i b 2 i b 90 0 32 0 58 0 2 (2) 由布儒斯特定律 n tgi b 2 n 2 n1 n 2 tg58 0 1.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 e2 e1 4.5(2 1 )=225 2
【填空题6】检验滚珠大小的干涉装置示意如图 (a)。S为单色光源,波长为λ,L为会聚透镜,M为 半透半反镜。在平晶T1、T2之间放置A、B、C三 个滚珠,其中A为标准件,直径为d0。在M上方观
察时,观察到等厚条纹如图(b)所示.若轻压C端 d0 ,条纹间距变小,则可算出B珠的直径d1=______
其右边条纹的执行部分的切线相切。则工件的上
表面缺陷是【】 (A)不平处为凸起纹,最大高度为500nm; (B)不平处为凸直纹,最大高度为250nm ; (C)不平处为凹槽,最大深度为500nm ; (D)不平处为凹槽,最大深度为250nm 。 a
b
【选择题4】在双缝干涉实验中,入射光的波长为 λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光
相干光的光程差应为 ;从劈尖棱边算起,第
三条明纹中心离棱边的水平距离为
。
n1=1 n2=1.25 n3=1.15
2n2 e
2n2e
2
2.5e k
2
2
2.5e 3
2
2.5 e
l sin l sin
(1)形状——直线
e
级次——外小中间大,
中间疏,两侧密
2e k 2 2d 0 kmax (d0 2) 2 kmax 4.5
r k 1, 2,3, 4 (2 ) e d 0 2R r2 2e 2(d0 ) k 2 2R 2
【选择题6】在折射率n3=1.60的玻璃片表面镀一层 折射率n2=1.38的MgF2薄膜作为增透膜。为了使波 长为λ=500nm的光,从折射率n1=1.00的空气垂直 入射到玻璃片上的反射尽可能地减少, MgF2 薄
膜的厚度e至少是【】
(A)250nm;(B) 181.2nm ; (C)125nm;(D) 90.6nm 。
由n0<n1<n2>n3可知,a和b有半波损失,c无半波损失。 a和b之间:光程差 1 = 2n1e1
2 e1 相位差 1 = 1 = 2n1e1 = 3 2 2 2 e2 b和c: 2 = 2n2e2-λ/2 2 = 2 = 2n2e2 = 2 3 2 2
( r2 e 2 n 2 e 2 ) ( r1 e1 n1 e1 ) 0
r2 r1 0
e1 n2 1 e2 n1 1
S
S1
e1
r 1
P
S2
e2
r2
【填空题3】波长为680 nm的平行光照射到L=12 cm长的两块玻璃片上,两玻璃片的一边相互接触 ,另一边被厚度D=0.048 mm的纸片隔开。试问在 这12 cm长度内会呈现 条暗条纹 ? 解
1
S2
T2
【填空题7】检验滚珠大小的干涉装置示意如图(a) .S为光源,L为会聚透镜,M为半透半反镜.在 平晶T1、T2之间放置A、B、C三个滚珠,其中A为 标准件,直径为d0.用波长为的单色光垂直照射
平晶,在M上方观察时观察到等厚条纹如图(b)所
示.轻压C端,条纹间距变大,可算出B珠的直径 d0+λ 。 d1=______ d +λ/2 ;C珠的直径d2=______
O
S2
【选择题9】如图在双缝干涉实验中,在屏幕上P 点处是明条纹,若将缝S2遮盖住,并在S1、S2连 线的垂直平分面处放置一反射镜M,则【】 (A)P点处仍然是明纹; (B)P点处为暗纹; (C)不能确定P点处是明纹还是暗纹; (D)无干涉条纹。 S1 S S2
P
M
【选择题10】由两块玻璃片(n1=1.75)所形成的空
形成的牛顿环的各暗环半径。
2ek λ / 2 (2k +1) 2 2ek =k
rk2 ( 2 e0 + )=k 2R
rk R(k 2e0 )
rk
空气
ek e0
k 2e0 0
2e0 k 且取整数
【计算题3】玻璃上镀有双层增透膜,折射率分别 为n1和n2,设空气折射率为n0,玻璃折射率为n3, 今有波长为λ的光垂直照射,设三束反射光(只考 虑一次反射)a,b,c在空气中振幅相等,要使三 束光相干后总强度为0,第一层最小厚度t1和第二 层最小厚度t2分别为多少? a 【暗纹】如果所有缝的光束在相遇点 b
【计算题4】常用瑞利干涉仪测定气体在某种温度 和压强下的折射率。图中T1,T2为长度相等的玻 璃管,测量前T1,T2均充以相同的纯净空气(折 射率为n0),然后将T2内的空气换为待测气体, 观察干涉条纹的移动。已知,若待测气体所含甲 烷的百分比为x%,则待测气体折射率n与x的关系 满足:n=n0+1.3910-6x%。现以波长=590nm的单 色光入射,玻璃管长l=42.37cm,若测量中观察到 干涉条纹移动了2条,求待测气体中甲烷的百分率 x%。 T1 S
d x14 λ 500nm D k4 k1
k=1 k=0
1D λ 1.5mm (2) x' 2d
【填空题2】在杨氏双缝干涉实验中,先用一折射 率为n1,厚度为e1的透明介质薄片遮盖狭缝S1,条 纹将发生移动,再用折射率为n2、厚度为e2的透明 介质薄片遮盖另一条狭缝S2,此时条纹恰好恢复 原位,则两透明介质薄片的厚度e1:e2= ?
气劈形膜,其一端厚度为零,另一端厚度为0.002
cm。现用波长为700nm的单色平行光,沿入射角
为30°角的方向射在膜的上表面,则形成的干涉
条纹数为【?】 (A) 27; (B) 40; (C) 56; (D) 100;
【选择题11】用白光进行双缝实验,若用纯红色 的滤光片遮盖一条缝,用纯蓝色的滤光片遮盖另 一条缝,则【 】 (A)产生红色和蓝色两套干涉条纹; (B)条纹的宽度发生变化; (C)干涉条纹的亮度发生变化; (D)不产生干涉条纹。
上,双缝与屏幕的垂直距离为D=1m。若第一级明纹
到同侧的第四级明纹间的距离为7.5mm,则单色光
的波长为
;若入射光的波长为600nm,则中央
?
明纹中心距离最邻近的暗纹中心的距离是
求:(1)∆x14=7.5mm,λ=?(2)λ=600nm,∆x’= k=4 D k=3 解 (1) Δx14 x4 x1 k4 k1 x14 d k=2
【填空题5】有一平凸透镜,凸面朝下放在一平玻 璃板上,透镜刚好与玻璃板接触,波长分别为 λ1=600nm和λ2=500nm的两种单色光垂直入射,观
察反射光形成的牛顿环,从中心向外数的两种光
的第5个明环所对应的空气膜厚度之差为 ? nm
2e1
1
2e2
2
2
2
51 52
【选择题12】在真空中波长为的单色光,在折射 率为n的透明介质中从A沿某路径传播到B,若A、
B两点的相位差为3,则此路径AB的光程为【】
(A)1.5 ; (B)3 ; (C)1.5 /n; (D)3 /n
2 πr 2π nr 0 / n 0 2 πr
A
n
B
【填空题1】以单色光照射到相距为d=0.2mm的双缝
r 2en2 2k 1
2
e
4n2
=90.6nm
【选择题7】关于双缝,下列说法正确的是 (A)为使屏上的干涉条纹间距增大,可以把两个
缝的宽度稍微调窄;
(B)若将双缝中的一条缝宽度略变窄,干涉条纹 间距不变,但原极小处的光强将不再为零。 (C)若将一劈尖状透明物b遮住一条缝后,缓慢 向上移,如图所示,则条纹间隔变小,且向下移
0
角度变大 角度变小
S f L
45° M T1 T2 B
A C
图(a)
图(b)
第十三章 光的干涉
【选择题1】 在相同的时间内,一束波长为λ的单 色光在空气中和在玻璃中 (A)传播的路程相等,走过的光程相等; (B)传播的路程相等,走过的光程不相等; (C)传播的路程不相等,走过的光程相等; (D)传播的路程不相等,走过的光程不相等。
光在不同煤质中传播时,速率不同,传播路程不
2
1 r 2Rd0 (k ) R 2
k 1, 2,3,
1 2 Rd 0 (k ) R 0 2
( 3 ) d 0 2 4 2d0 k 2(2 ) 5 k 5 2 4 2
共9条
【计算题2】如图所示,牛顿环装置的平凸透镜与 平板玻璃有一小缝隙e0.现用波长为的单色光垂 直照射,已知平凸透镜的曲率半径为R,求反射光
A、劈尖夹角变化,条 纹如何变化? ↓条纹变宽,条纹向 远离棱边方向运动
B、劈尖上表面平行上 移,条纹如何变化?( 不变) 上移↑,条纹宽度不变 ,条纹向棱边方向移 动。只影响条纹的级 次。
【选择题3】如图a所示一空气劈尖,用波长
λ=500nm的单色光垂直照射。看到的反射光的干
涉条纹如图b所示。有些条纹弯部分的顶点恰好与
叠加后,合成为零振幅,则出现暗纹 设与之对应的相邻两
δθ δθ
A2 A1 AN A3 δθ
c
n0 n1
n2 n3
缝光束的相位差为δθ
2
合振幅 A 0
n0<n1<n2>n3
解:三个矢量旋转闭合,至少2,强度为零
2/3
c n0 n1
a
b
c
b
2/3 a
n2 n3
n0<n1<n2>n3
程比相同厚度的空气的光程大2.5λ,则屏上原来
的明纹处【 】
(A)仍为明条纹; (B)变为暗条纹; (C)既非明纹也非暗纹; (D)无法确定是明纹还是暗纹。