拓扑排序算法

合集下载

迪杰斯特拉算法用于求解拓扑排序问题

迪杰斯特拉算法用于求解拓扑排序问题

一、引言在计算机科学中,算法是解决问题的步骤和方法的描述。

而拓扑排序问题是图论中的一个经典问题,它主要用于对有向无环图(DAG)进行排序。

迪杰斯特拉算法是一种经典的图论算法,被广泛应用于求解最短路径问题。

然而,很少有人知道,迪杰斯特拉算法也可以用于求解拓扑排序问题。

本文将详细介绍迪杰斯特拉算法在求解拓扑排序问题中的应用,并对其算法原理和具体步骤进行详细解析。

二、迪杰斯特拉算法简介1.迪杰斯特拉算法的背景迪杰斯特拉算法由荷兰数学家艾兹赫尔·迪杰斯特拉在1959年提出,用于求解单源最短路径问题。

该问题是在具有权值的有向图中,从一个顶点到其他所有顶点的最短路径。

迪杰斯特拉算法采用贪心的策略,通过逐步确定源节点到其他节点的最短路径。

该算法具有良好的时间复杂度,并且被广泛应用于路由算法、网络拓扑等领域。

2.迪杰斯特拉算法的原理迪杰斯特拉算法的核心思想是将图中的节点分为两个集合:已访问集合(S)和未访问集合(U)。

算法从起始节点开始,计算到达其他节点的最短路径,并将这些节点逐步加入已访问集合中。

具体步骤如下:步骤1:初始化起始节点和集合S。

将起始节点的最短路径设置为0,其余节点的最短路径设置为正无穷大。

步骤2:选择未访问集合中最短路径的节点,将其加入已访问集合S。

步骤3:更新与新加入节点相邻节点的最短路径。

如果通过新加入节点可以获得更短的路径,更新相邻节点的最短路径。

步骤4:重复步骤2和步骤3,直到所有节点都已加入已访问集合S。

步骤5:算法结束,所有节点的最短路径已经计算完成。

三、拓扑排序问题及其求解1.拓扑排序问题的定义拓扑排序是指将有向无环图中的节点线性排序,使得任意一条有向边的起点在排序中都排在终点的前面。

拓扑排序满足任意一条有向边(u, v)的起点u在排序中都排在终点v的前面。

拓扑排序问题常用于任务调度、依赖关系分析等场景中。

2.拓扑排序问题的解决方法迪杰斯特拉算法可以用于求解拓扑排序问题的原因在于,当图中不存在环时,每个节点的最短路径都可以唯一确定。

dag的拓扑序计数

dag的拓扑序计数

dag的拓扑序计数有向无环图(Directed Acyclic Graph,DAG)是一种常见的图数据结构,它包含一组有向边,边的方向使得图不包含任何环路。

在DAG中,顶点可以表示任务或事件,边则表示顶点之间的依赖关系。

拓扑序是指DAG中所有顶点的一个线性排序,使得对于任意有向边(u, v),u在拓扑序中排在v之前。

拓扑排序是一种常用的图算法,它可以用来解决许多实际问题,比如任务调度、编译器优化等。

下面将介绍一种高效的拓扑排序算法,并分析其时间复杂度。

一种经典的拓扑排序算法是Kahn算法,它的基本思想是不断地找到入度为0的顶点,并将其加入拓扑序列中,然后删除这个顶点及其出边。

具体步骤如下:1. 初始化一个队列,将所有入度为0的顶点加入队列中;2. 不断从队列中取出一个顶点,将其加入拓扑序列中,并删除该顶点及其出边;3. 更新剩余顶点的入度,如果某个顶点的入度变为0,则将其加入队列中;4. 重复步骤2和3,直到队列为空。

Kahn算法的核心思想是通过不断删除入度为0的顶点来找到拓扑序。

由于每个顶点最多被加入队列一次,因此算法的时间复杂度为O(V+E),其中V表示顶点数,E表示边数。

下面我们通过一个例子来演示Kahn算法的运行过程。

假设有以下任务和其依赖关系:任务A依赖于任务B和任务C;任务B依赖于任务D和任务E;任务C依赖于任务E;任务D和任务E没有依赖关系。

我们可以用如下的DAG来表示这些任务和依赖关系:D -> B/ \A D -> C\ /-> E首先,我们可以计算出每个顶点的入度:A的入度为0,B的入度为1,C的入度为1,D的入度为2,E的入度为2。

根据Kahn算法的步骤,我们首先将入度为0的顶点A加入队列中。

然后,我们从队列中取出顶点A,并将其加入拓扑序列中。

接下来,我们删除顶点A及其出边,此时剩余顶点的入度变为:B的入度为0,C的入度为0,D的入度为1,E的入度为2。

接着,我们将入度为0的顶点B和C加入队列中,并分别将其取出加入拓扑序列中。

数据结构(牛小飞)3 拓扑排序

数据结构(牛小飞)3 拓扑排序

2021/8/5
25
5
拓扑排序-定义
拓扑排序是对有向无圈图的顶点的一种排序,使 得如果存在一条从vi到vj的路径,那么在排序中vj 就出现在vi的后面。
✓ 显然,如果图中含有圈,那么拓扑排序是不可能的, 因为对于圈上的两个顶点v和w,v优先于w同时w又优 先于v。
2021/8/5
6
拓扑排序-举例
B
A
D
C
不能求得它的拓扑有序序列。
// 对尚未访问的顶点调用DFS
}
while(!Empty(S)) //输出拓扑排序的结果
System.out.print(S.pop());
} 2021/8/5
21
拓扑排序-方法2
void DFS-T(int v) { // 从顶点v出发,深度优先搜索遍历连通图 vertexs[v].visited = true; for(w=FirstAdjVex(v);w>=0; w=NextAdjVex(v,w)) { if (!vertexs[w].visited) DFS-T(w); } // 对v的尚未访问的邻接顶点w递归调用DFS-T S.push(v); //顶点v的DFS函数执行完毕
q.enqueue(v);
while (!q.isEmpty( ) { //如果队列非空
…………
}
if (counter!=NUM_VERTICES) //有圈
throw new CycleFoundException( );
}
2021/8/5
15
拓扑排序-方法1
void topsort( ) throws CycleFoundException { …….
} // DFS-T

拓扑排序例子 -回复

拓扑排序例子 -回复

拓扑排序例子-回复什么是拓扑排序?为什么要进行拓扑排序?如何进行拓扑排序?这篇文章将为你逐步解答这些问题。

拓扑排序是一种用于有向无环图(DAG)的算法,它将图中的节点按照一种特定的顺序进行排序。

拓扑排序往往用于解决有依赖关系的任务调度问题,其中任务的执行必须按照一定的顺序。

通过拓扑排序,我们可以确定任务的执行顺序,确保每个任务在它所依赖的任务执行完毕之后再执行。

那么为什么要进行拓扑排序呢?想象一下,你要为一本书编写目录,你希望按照章节的顺序来编写目录,否则读者可能会迷失在无序的章节中。

在这个例子中,每个章节都相当于一个任务,它们之间存在一定的依赖关系,因为后续的章节可能会引用之前的内容。

通过拓扑排序,你可以确定每个章节的先后顺序,确保目录的编写顺利进行。

那么如何进行拓扑排序呢?拓扑排序使用了一种叫做“深度优先搜索”的算法。

算法从一个未访问的节点开始遍历图,当遍历到一个节点时,它将其标记为已访问,并继续遍历该节点的所有邻接节点。

当一个节点的所有邻接节点都被访问完毕后,它将被添加到排序结果的头部。

最终,我们得到的排序结果就是拓扑排序的结果。

下面,我们来举一个具体的例子来演示拓扑排序的过程。

假设我们有以下的任务依赖关系图:[1] > [2] > [4]\\ v> [3] > [5]在这个图中,节点表示任务,箭头表示任务之间的依赖关系。

例如,节点2依赖于节点1,节点4依赖于节点2,等等。

我们的目标是按照依赖关系的顺序对节点进行排序。

首先,我们从一个未访问的节点开始,假设我们选择节点1。

我们接下来需要遍历节点1的所有邻接节点,即节点2和节点3。

然后,我们继续遍历这两个节点的邻接节点,依次为节点4和节点5。

由于节点4和节点5都没有邻接节点,它们被添加到排序结果的头部。

接着,我们回溯到节点2,它的邻接节点3已经被访问过了,所以它也被添加到排序结果的头部。

最后,我们回溯到节点1,将其添加到排序结果的头部。

图基本算法拓扑排序(基于dfs)

图基本算法拓扑排序(基于dfs)

图基本算法拓扑排序(基于dfs) 拓扑排序,是对有向⽆回路图进⾏排序,以期找到⼀个线性序列,这个线性序列在⽣活正可以表⽰某些事情完成的相应顺序。

如果说所求的图有回路的话,则不可能找到这个序列。

在⼤学数据结构课上,我们知道求拓扑排序的⼀种⽅法。

⾸先⽤⼀个⼊度数组保存每个顶点的⼊度。

在进⾏拓扑排序时,我们需要找到⼊度为0的点,将其存⼊线性序列中,再将其从图中删除(与它相关的边都删除,相邻的顶点的⼊度均减1),再重复上⾯的操作,直⾄所有的顶点都被找到为⽌。

如果不对每次找⼊度为0的顶点的⽅法进⾏处理,⽽直接去遍历⼊度数组,则该算法的时间复杂度为O(|V|2),如果使⽤⼀个队列来保存⼊度为0的顶点,则可以将这个算法的复杂度降为O(V+E)。

今天在算法导论上看了⽤dfs来求拓扑排序的算法,才发现其⾼深之处,膜拜之Orz…下⾯是算法导论的叙述: 本节说明了如何运⽤深度优先搜索,对⼀个有向⽆回路图(dag)进⾏拓扑排序。

对有向⽆回路图G=(V,E)进⾏拓扑排序后,结果为该图顶点的⼀个线性序列,满⾜如果G包含边(u, v),则在该序列中,u就出现在v的前⾯(如果图是有回路的,就不可能存在这样的线性序列)。

⼀个图的拓扑排序可以看成是图中所有顶点沿⽔平线排列⽽成的⼀个序列。

使得所有的有向边均从左指向右。

因此,拓扑排序不同于通常意义上的排序。

在很多应⽤中,有向⽆回路图⽤于说明时间发⽣的先后次序,下图1即给出⼀个实例,说明Bumstead教授早晨穿⾐的过程。

他必须先穿好某些⾐服,才能再穿其他⾐服(如先穿袜⼦后穿鞋),其他⼀些⾐服则可以按任意次序穿戴(如袜⼦和裤⼦),在图1中,有向边<u,v>表⽰⾐服u必须先于⾐服v穿戴。

因此,该图的拓扑排序给出了⼀个穿⾐的顺序。

图2说明了对该图进⾏拓扑排序后,将沿⽔平线⽅向形成⼀个顶点序列,使得图中所有有向边均从左指向右。

拓扑排序算法具体步骤如下:1、调⽤dfs_travel();2、在dfs_travel()每次调⽤dfs()的过程中,都记录了顶点s的完成时间,将顶点s按完成顺序保存在存放拓扑排序顺序的数组topoSort[]中。

数据结构之拓扑排序算法详解

数据结构之拓扑排序算法详解

数据结构之拓扑排序算法详解拓扑排序算法是一种常用于有向无环图(DAG)的排序算法,它可以将图中的顶点按照一定的顺序进行排序,使得图中任意一条有向边的起点在排序结果中都排在终点的前面。

在实际应用中,拓扑排序算法常用于解决任务调度、依赖关系分析等问题。

本文将详细介绍拓扑排序算法的原理、实现方法以及应用场景。

### 一、拓扑排序算法原理拓扑排序算法的原理比较简单,主要包括以下几个步骤:1. 从DAG图中选择一个入度为0的顶点并输出。

2. 从图中删除该顶点以及以该顶点为起点的所有有向边。

3. 重复步骤1和步骤2,直到图中所有顶点都被输出。

### 二、拓扑排序算法实现下面以Python语言为例,给出拓扑排序算法的实现代码:```pythondef topological_sort(graph):in_degree = {v: 0 for v in graph}for u in graph:for v in graph[u]:in_degree[v] += 1queue = [v for v in graph if in_degree[v] == 0] result = []while queue:u = queue.pop(0)result.append(u)for v in graph[u]:in_degree[v] -= 1if in_degree[v] == 0:queue.append(v)if len(result) == len(graph):return resultelse:return []# 测试代码graph = {'A': ['B', 'C'],'B': ['D'],'C': ['D'],'D': []}print(topological_sort(graph))```### 三、拓扑排序算法应用场景拓扑排序算法在实际应用中有着广泛的应用场景,其中包括但不限于以下几个方面:1. 任务调度:在一个任务依赖关系图中,拓扑排序可以确定任务的执行顺序,保证所有任务按照依赖关系正确执行。

详解C++实现拓扑排序算法

详解C++实现拓扑排序算法

详解C++实现拓扑排序算法⽬录⼀、拓扑排序的介绍⼆、拓扑排序的实现步骤三、拓扑排序⽰例⼿动实现四、拓扑排序的代码实现五、完整的代码和输出展⽰⼀、拓扑排序的介绍拓扑排序对应施⼯的流程图具有特别重要的作⽤,它可以决定哪些⼦⼯程必须要先执⾏,哪些⼦⼯程要在某些⼯程执⾏后才可以执⾏。

为了形象地反映出整个⼯程中各个⼦⼯程(活动)之间的先后关系,可⽤⼀个有向图来表⽰,图中的顶点代表活动(⼦⼯程),图中的有向边代表活动的先后关系,即有向边的起点的活动是终点活动的前序活动,只有当起点活动完成之后,其终点活动才能进⾏。

通常,我们把这种顶点表⽰活动、边表⽰活动间先后关系的有向图称做顶点活动⽹(Activity On Vertex network),简称AOV⽹。

⼀个AOV⽹应该是⼀个有向⽆环图,即不应该带有回路,因为若带有回路,则回路上的所有活动都⽆法进⾏(对于数据流来说就是死循环)。

在AOV⽹中,若不存在回路,则所有活动可排列成⼀个线性序列,使得每个活动的所有前驱活动都排在该活动的前⾯,我们把此序列叫做拓扑序列(Topological order),由AOV⽹构造拓扑序列的过程叫做拓扑排序(Topological sort)。

AOV⽹的拓扑序列不是唯⼀的,满⾜上述定义的任⼀线性序列都称作它的拓扑序列。

⼆、拓扑排序的实现步骤1.在有向图中选⼀个没有前驱的顶点并且输出2.从图中删除该顶点和所有以它为尾的弧(⽩话就是:删除所有和它有关的边)3.重复上述两步,直⾄所有顶点输出,或者当前图中不存在⽆前驱的顶点为⽌,后者代表我们的有向图是有环的,因此,也可以通过拓扑排序来判断⼀个图是否有环。

三、拓扑排序⽰例⼿动实现如果我们有如下的⼀个有向⽆环图,我们需要对这个图的顶点进⾏拓扑排序,过程如下:⾸先,我们发现V6和v1是没有前驱的,所以我们就随机选去⼀个输出,我们先输出V6,删除和V6有关的边,得到如下图结果:然后,我们继续寻找没有前驱的顶点,发现V1没有前驱,所以输出V1,删除和V1有关的边,得到下图的结果:然后,我们⼜发现V4和V3都是没有前驱的,那么我们就随机选取⼀个顶点输出(具体看你实现的算法和图存储结构),我们输出V4,得到如下图结果:然后,我们输出没有前驱的顶点V3,得到如下结果:然后,我们分别输出V5和V2,最后全部顶点输出完成,该图的⼀个拓扑序列为:v6–>v1—->v4—>v3—>v5—>v2四、拓扑排序的代码实现下⾯,我们将⽤两种⽅法来实现我么的拓扑排序:1.Kahn算法2.基于DFS的拓扑排序算法⾸先我们先介绍第⼀个算法的思路:Kahn的算法的思路其实就是我们之前那个⼿动展⽰的拓扑排序的实现,我们先使⽤⼀个栈保存⼊度为0 的顶点,然后输出栈顶元素并且将和栈顶元素有关的边删除,减少和栈顶元素有关的顶点的⼊度数量并且把⼊度减少到0的顶点也⼊栈。

拓扑排序及关键路径

拓扑排序及关键路径

2.有向图在实际问题中的应用 一个有向图可以表示一个施工流程图,或产品生产流程
图,或数据流图等。设图中每一条有向边表示两个子工程之 间的先后次序关系。
若以有向图中的顶点来表示活动,以有向边来表示活动 之间的先后次序关系,则这样的有向图称为顶点表示活动的 网 (Activity On Vertex Network),简称AOV网。
这样,每个活动允许的时间余量就是l(i) - e(i)。而关键活动 就是l(i) - e(i) = 0的那些活动,即可能的最早开始时间e(i)等于 允许的最晚开始时间l(i)的那些活动就是关键活动。
4.寻找关键活动的算法 求AOE网中关键活动的算法步骤为: (1)建立包含n+1个顶点、e条有向边的AOE网。其中,顶
(4)从汇点vn开始,令汇点vn的最晚发生时间vl[n]=ve[n], 按逆拓扑序列求其余各顶点k(k=n-1,n-2,…,2,1,0)的最晚发生 时间vl[k];
(5)计算每个活动的最早开始时间e[k] (k=1,2,3,…,e); (6)计算每个活动的最晚开始时间l[k] (k=1,2,3,…,e); (7)找出所有e[k]= l[k]的活动k,这些活动即为AOE网的 关键活动。
上述算法仅能得到有向图的一个拓扑序列。改进上述 算法,可以得到有向图的所有拓扑序列。
如果一个有向图存在一个拓扑序列,通常表示该有向 图对应的某个施工流程图的一种施工方案切实可行;而 如果一个有向图不存在一个拓扑序列,则说明该有向图 对应的某个施工流程图存在设计问题,不存在切实可行 的任何一种施工方案。
事件可能的最早开始时间υe(k):对于顶点υk代表的事件, υe(k)是从源点到该顶点的最大路径长度。在一个有n+1个事 件的AOE网中, 源点υ0的最早开始时间υe(0)等于0。事件υk (k=1,2,3,…,n)可能的最早开始时间υe(k)可用递推公式表 示为:

拓扑排序求最长路径

拓扑排序求最长路径

拓扑排序求最长路径1. 什么是拓扑排序?拓扑排序是对有向无环图(DAG)进行排序的一种算法。

在有向图中,如果存在一条从节点A到节点B的有向边,那么节点A就必须在节点B之前进行排序。

拓扑排序通过将图中的节点按照一定的顺序进行排列,使得任意两个节点之间不存在环。

拓扑排序可以应用于许多问题,比如任务调度、依赖关系分析等。

2. 拓扑排序算法2.1. 算法原理拓扑排序算法基于深度优先搜索(DFS)或广度优先搜索(BFS)实现。

其基本思想是通过遍历图中的所有节点,并记录每个节点的入度(即指向该节点的边数)。

然后从入度为0的节点开始遍历,并将其加入结果列表中。

然后将与该节点相邻的节点的入度减1,并将新入度为0的节点加入结果列表。

重复此过程直到所有节点都被加入结果列表。

2.2. 算法步骤以下是拓扑排序算法的详细步骤:1.初始化一个空结果列表result和一个空队列queue。

2.遍历图中所有节点,并统计每个节点的入度。

3.将入度为0的节点加入队列queue。

4.当队列queue不为空时,执行以下步骤:–从队列queue中取出一个节点node,并将其加入结果列表result。

–遍历与节点node相邻的所有节点,并将它们的入度减1。

–如果某个节点的入度减为0,则将其加入队列queue。

5.如果结果列表result的长度等于图中的节点数,则说明拓扑排序成功;否则,说明图中存在环。

以下是使用Python语言实现拓扑排序算法的示例代码:from collections import defaultdict, dequedef topological_sort(graph):# 统计每个节点的入度in_degree = defaultdict(int)for node in graph:for neighbor in graph[node]:in_degree[neighbor] += 1# 初始化结果列表和队列result = []queue = deque()# 将入度为0的节点加入队列for node in graph:if in_degree[node] == 0:queue.append(node)# 拓扑排序while queue:node = queue.popleft()result.append(node)for neighbor in graph[node]:in_degree[neighbor] -= 1if in_degree[neighbor] == 0:queue.append(neighbor)if len(result) == len(graph):return resultelse:return None3. 拓扑排序求最长路径在有向无环图中,求最长路径可以通过拓扑排序算法来实现。

计算机领域常用算法列表

计算机领域常用算法列表

计算机领域常用算法列表计算机科学领域是一个不断进步、不断开拓新领域的学科,其中算法是计算机科学中最基本、最核心的学科之一,而在算法学科中,常用算法有很多种,如排序算法、搜索算法、图论算法、数值计算算法等。

在本文中,我们将根据算法的性质和使用范围,介绍一些计算机领域中常用的算法,并说明它们的应用场景和实现原理。

一、排序算法排序算法是计算机科学中非常基本的算法之一。

排序算法可以将待排序的元素按照一定的顺序排列。

目前,常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、堆排序、归并排序等。

它们各自有不同的优点和缺点,应根据实际情况灵活选择。

1. 冒泡排序冒泡排序是一种简单的排序算法,它的基本思想是通过重复遍历要排序的元素,比较相邻元素的大小,如果前面的元素比后面的大,就交换它们的位置。

2. 选择排序选择排序是一种简单的排序算法,它的基本思想是选择最小的元素,并将其放到未排序的开头。

然后从未排序的元素中再选择最小的元素,并将其放到已排序的末尾。

重复此过程,直到所有的元素都被排序。

3. 插入排序插入排序是一种简单的排序算法,它的基本思想是将一个元素插入到已排序序列中的合适位置,从而使序列保持有序。

4. 快速排序快速排序是一种高效的排序算法,它的基本思想是通过一趟排序将待排序的元素分割成独立的两部分,其中一部分元素的值都比另一部分元素的值小,然后将划分出来的两个较小子序列分别递归地进行排序,重复此过程直到整个序列有序。

5. 堆排序堆排序是一种高效的排序算法,它的基本思想是构造大根堆或小根堆,并将待排序的元素依次插入堆中,然后依次取出堆顶元素,保证每次取出的都是当前堆中最大或最小元素,依次放到有序序列的末尾,重复此过程,直到所有元素都被排序。

6. 归并排序归并排序是一种分治算法,它的基本思想是将待排序的序列分成若干个子序列,分别进行递归排序,然后将排好序的子序列合并成一个有序序列。

归并排序也是一种稳定的排序算法。

数据结构-chap7 (4)AOV网与拓扑排序

数据结构-chap7 (4)AOV网与拓扑排序
//若入度减为0,则入栈
}//for }//while if (count<G.vexnum) return ERROR; //该有向图有回路 else return OK; }//TopologicalSort
自测题2 AOV-网的拓扑排序
v2 v1 v3 v4 v5 v6 v1 v2
1
3 0 1 0 3 S.top S.base
5 4
1
2 3
3
2 1 4 0 2
C2
1
0
5 0
1
4
5
C3
C4
C5
C3 0 C4
5 0
C5 0
while(! StackEmpty(S)){ Pop(S, i); printf(i, G. vertices[i].data); ++count; for (p=G.vertices[i].firstarc; p; p=p->nextarc) { k = p->adjvex; if ( !(- -indegree[k]) ) Push(S, k); }//for }//while data firstarc C0 1 3 0 栈S C1 5 0
Status TopologicalSort(ALGraph G) { FindInDegree(G, indegree); //求各顶点入度indegree[0..vexnum-1] InitStack(S); for(i=0; i<G. vexnum; ++i) if (! indegree[i]) Push(S, i); //入度为0顶点的编号进栈 count = 0; //对输出顶点计数 count=6 while(! StackEmpty(S)){ Pop(S, i); //从零入度顶点栈S 栈顶,获得一入度为零的顶点i printf(i, G. vertices[i].data); ++count; //输出i号顶点的数据,并计数 for (p=G. vertices[i]. firstarc; p; p=p->nextarc) { k = p->adjvex; if ( !(- -indegree[k]) ) Push(S, k); //对i号顶点邻接到的 每个顶点入度减1

逆拓扑排序算法

逆拓扑排序算法

逆拓扑排序算法
逆拓扑排序算法是一种常用的图论算法,用于解决有向无环图中的拓扑排序问题。

与传统的拓扑排序算法不同的是,逆拓扑排序算法是从终点开始向起点进行排序,因此也被称为反向拓扑排序算法。

在实际应用中,逆拓扑排序算法常用于任务调度、依赖关系分析等领域。

逆拓扑排序算法的基本思想是,从终点开始遍历有向无环图,将每个节点的入度记录下来,并将入度为0的节点加入到排序结果中。

然后将与该节点相邻的节点的入度减1,如果减1后入度为0,则将该节点加入到排序结果中。

重复以上步骤,直到所有节点都被加入到排序结果中。

逆拓扑排序算法的实现可以使用队列来存储入度为0的节点,以便快速地进行入度减1操作。

具体实现步骤如下:
1. 初始化队列,将终点加入队列中。

2. 当队列不为空时,取出队首节点,并将其加入到排序结果中。

3. 遍历与该节点相邻的节点,将其入度减1。

4. 如果减1后入度为0,则将该节点加入到队列中。

5. 重复以上步骤,直到队列为空。

逆拓扑排序算法的时间复杂度为O(V+E),其中V为节点数,E为边数。

由于逆拓扑排序算法是从终点开始遍历的,因此在处理大规模有向无
环图时,其效率比传统的拓扑排序算法更高。

总之,逆拓扑排序算法是一种常用的图论算法,可用于解决有向无环
图中的拓扑排序问题。

其基本思想是从终点开始遍历图,并将入度为0的节点加入到排序结果中。

逆拓扑排序算法的实现可以使用队列来存
储入度为0的节点,以便快速地进行入度减1操作。

在实际应用中,
逆拓扑排序算法常用于任务调度、依赖关系分析等领域。

十大算法范文范文

十大算法范文范文

十大算法范文范文算法是计算机科学中的重要概念,也是解决问题的有效工具。

在计算机领域,有许多经典的算法被广泛应用于各种问题。

本文将介绍十大算法范文,包括排序算法、算法、图算法等等。

1.冒泡排序算法:冒泡排序是最简单的排序算法之一,它通过比较相邻两个元素的值并交换位置来进行排序。

具体实现步骤为:依次比较相邻的两个元素,若顺序不对则交换位置,重复该过程直至所有元素都处于正确的位置。

2.快速排序算法:快速排序是一种高效的排序算法,它通过将数组分成较小的子数组并对子数组进行排序,然后再将子数组合并起来。

具体实现步骤为:选择一个基准元素,将小于基准的元素放在左边,大于基准的元素放在右边,然后递归地对左右子数组进行排序。

3.二分查找算法:二分查找是一种高效的算法,它通过将有序数组分成两部分并比较中间元素的值来进行查找。

具体实现步骤为:首先确定数组的中间元素,如果中间元素等于目标值,则返回查找成功;如果中间元素大于目标值,则在左半部分继续查找;如果中间元素小于目标值,则在右半部分继续查找,重复该过程直至找到目标元素或查找范围为空。

4.KMP算法:KMP算法是一种高效的字符串匹配算法,它通过利用匹配失败时的信息,避免对已经比较过的字符进行重复比较。

具体实现步骤为:首先根据模式串构建一个部分匹配表,然后在目标串中逐个比较字符,如果匹配失败则根据部分匹配表确定模式串的下一个比较位置。

5. Dijkstra算法:Dijkstra算法是一种用于寻找有向图中最短路径的算法,它通过逐步扩展路径来找到从起点到终点的最短路径。

具体实现步骤为:首先初始化起点到各个顶点的距离,并选择起点作为当前节点,然后依次选择未访问过的距离最小的节点,更新其邻居节点的最短路径,重复该过程直至找到终点或所有节点都被访问。

6. Floyd算法:Floyd算法是一种用于寻找有向图中任意两个节点之间最短路径的算法,它通过动态规划的思想逐步计算最短路径。

具体实现步骤为:初始化节点之间的距离矩阵,然后依次考虑中转节点,更新距离矩阵中的值,最后得到所有节点之间的最短路径。

数据结构-拓扑排序介绍

数据结构-拓扑排序介绍

成绩14信计 2015-2016(一)数据结构课程设计设计题目拓扑排序设计时间——学生姓名冯佳君学生学号20140401105所在班级14信计 1指导教师刘风华徐州工程学院数学与物理科学学院一、需求剖析1.问题描绘本次课程设计题目是:用毗邻表结构图而后进行拓扑排序,输出拓扑排序序列。

拓扑排序的基本思想为:1)从有向图中选一个无前驱的极点输出;2)将此极点和以它为起点的弧删除;3)重复 1) 、 2) 直到不存在无前驱的极点;4)若此时输出的极点数小于有向图中的极点数,则说明有向图中存在回路,不然输出的极点的次序即为一个拓扑序列。

2.拓扑排序有向图拓朴排序算法的基本步骤以下:1 )从图中选择一个入度为0 的极点,输出该极点;2 )从图中删除该极点及其有关系的弧,调整被删弧的弧头结点的入度(入度-1 );3)重复履行 1)、 2)直到全部极点均被输出,拓朴排序达成或许图中再也没有入度为 0 的极点(此种状况说明原有向图含有环)。

3.基本要求(1)输入的形式和输入值的范围;第一是输入要排序的极点数和弧数,都为整型,中间用分开符分开;再输入各极点的值,为正型,中间用分开符分开;而后输入各条弧的两个极点值,先输入弧头,再输入弧尾,中间用分开符分开,输入的值只好是开始输入的极点值不然系统会提示输入的值的极点值不正确,请从头输入,只需持续输入正确的值就行。

(2)输出的形式;第一输出成立的毗邻表,而后是最后各极点的出度数,再是拓扑排序的序列,而且每输出一个极点,就会输出一次各极点的入度数。

(3)程序所能达到的功能;因为该程序是求拓扑排序,所以算法的功能就是要输出拓扑排序的序列,在一个有向图中,若用极点表示活动,有向边就表示活动间先后次序,那么输出的拓扑序列就表示各极点间的关系为反应出各点的储存结构,以毗邻表储存并输出各极点的入度。

二、纲要设计1.算法顶用到的全部各样数据种类的定义在该程序顶用毗邻表作为图的储存结构。

aov网和拓扑排序

aov网和拓扑排序

indegree 0
5
4 3 2 1 1 5
0
1 2 3 4 5
0
0 0
0
1 0
3∧
栈S 0
p
5∧ 1 5∧
i=1 1, C1 count=5
k=5
0
5 C5 ∧
p=NULL
while(! StackEmpty(S)){ Pop(S, i); printf(i, G. vertices[i].data); ++count; for (p=G.vertices[i].firstarc; p; p=p->nextarc) { k = p->adjvex; if ( !(- -indegree[k]) ) Push(S, k); }//for }//while data firstarc 0 C0 1 1 C1 5 ∧ 2 C2 1 3 C3 ∧ 4 C4 5 C5 ∧
有向无环图
有向图(有环)
一、AOV-网(Activity On Vertices)
表示工程的有向图中,用顶点表示活动,用有向边<Vi, Vj>表示活动Vi 必须先于活动Vj 进行。这种有向图叫做顶点表示活动的AOV网络。 (用顶点表示活动,弧表示活动间的优先关系的有向图)
在AOV网络中不能出现有向回路(即有向环)。

拓扑排序过程中涉及的数据和操作: 数据:有向图、顶点的入度; 操作: (1) 选择一入度为0顶点v,输出; (2) 将v邻接到的顶点 u 的入度减1。

为算法的有关数据选择设计存储结构(图用邻接表表示)
C0
C1
C2
C3
C4
C5
data firstarc C0 1 C1 5 0 C2 1 C3 C4 C5 0 0 0

详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)

详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)

详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)1.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树1.1 问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。

这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。

在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。

n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢?1.2 分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。

对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。

即无向连通图的生成树不是唯一的。

连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。

图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n 个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1 条边。

1.3最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。

最小生成树的性质:假设N=(V,{ E}) 是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。

1.4 解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。

他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。

时间复杂度O(N^2)假设G=(V,E)为连通图,其中V 为网图中所有顶点的集合,E 为网图中所有带权边的集合。

图的基本概念及拓扑排序

图的基本概念及拓扑排序
生成树: 是一个极小连通子图,它含有图中全部顶点,但只
有n-1条边。 如果在生成树上添加1条边,必定构成一个环。 若图中有n个顶点,却少于n-1条边,必为非连通 图。
最小生成树:若无向连通带权图G=<V,E,W>,T是G的一棵生成树,T的各边权之
和称为T的权,记做W(T),G的所有生成树中权值最小的生成树 称为最小生成树。
带权图: 即边上带权的图。其中权是指每条边可以标上 具有某种含义的数值(即与边相关的数)。
网 络: =带权图
路径: 在图 G=(V, E) 中, 若从顶点 vi 出发, 沿一些边经过一
些顶点 vp1, vp2, …, vpm,到达顶点vj。则称顶点序列 ( vi vp1 vp2 ... vpm vj ) 为从顶点vi 到顶点 vj 的路径。它经过的边(vi, vp1)、(vp1, vp2)、...、(vpm, vj)应当是属于E的边。
最小生成树算法: Prim算法和kruskal算法
简单路径:路径上各顶点 v1,v2,...,vm 均不互相重复。
回 路: 若路径上第一个顶点 v1 与最后一个顶点vm 重合,
则称这样的路径为回路或环。
例:
图的数学表示
点: 用整数0, 1, 2, …, V-1表示 边: 用无序数对(u, v)表示, 或者表示成u-v
4. 你认为,对于给定的两个位置A,B,聪明的机器人从A位置到B位置至少需要判断几次?
5. input
6. 第一行:M 表示以下有M组测试数据(0<M<=8)
7. 接下来每组有两行数据
8.
头一行:N A B(1<=N<=50,1<=A,B<=N)
9.
下一行:K1 K2···Kn(0<=Ki<=N)

有向无环图的拓扑排序

有向无环图的拓扑排序

有向无环图的拓扑排序
有向无环图的拓扑排序是一种特殊的排列,它涉及在一组元素的拓扑结构中,将各元素按照一定的次序排列起来。

它有两个基本的要求:一是有向无环图,即不能存在任何环路;二是任何一条边必须从一个先序节点指向后序节点,以此来确定对应的拓扑排序结果。

在进行拓扑排序时,首先需要先把图中的环路找出来,把有向无环图分成多个相互独立的阶段,并分别按照阶段求解各阶段的拓扑排序,然后将各阶段的拓扑排序按照图中指定节点先后顺序排列起来,就可以得到这张有向无环图的拓扑排序。

拓扑排序在许多领域都有着重要的应用,例如安排任务时,我们可以借助拓扑排序来找出关联之间的正确的顺序;编译器在编译程序时,也会借助拓扑排序来指定并实现不同类型的操作次序;MRP(Materials Requirements Planning,物料需求计划)系统可以采用拓扑排序帮助企业采购计划统一管理生材料及半成品库存清单等等。

从上述可知,有向无环图的拓扑排序是一个非常重要的数学算法,它可以帮助我们解决大量实际的问题,发挥着极其重要的作用。

第七章--拓扑排序

第七章--拓扑排序

3 拓扑排序的定义
拓扑排序
拓扑排序就是将AOV网中的所有顶点排列成一个线性序 列,并且满足条件:在AOV网中,如果从顶点vi到顶点vj存在 一条路径,则在该线性序列中,顶点vi一定出现在vj之前。拓 扑排
在有向图中选一个没有前驱(入度为0)的顶点,并且输出之。 从图中删除该顶点和所有以它为尾的弧。
《数据结构》 课程
拓扑排序
主讲教师:李晓娜
目录 CONTENTS
1 问题的导入 2 AOV网的定义 3 拓扑排序的定义 4 拓扑排序的过程
1 问题的导入
例如:我们非常想学习一门计算机 操作系统的课程,但是在修这门 课程之前,我们必须学习一些基 础课,比如程序设计基础、数据 结构、离散数学等等。那么学生 应按怎样的顺序学习这些课程, 才能无矛盾、顺利地完成呢?
课程编号 C1
课程 名称
高等数学
C2
程序设计基础
C3
离散数学
C4
数据结构
C5
算法语言
C6
编译技术
C7
操作系统
C8
普通物理
C9
计算机原理
先修 课程


C1,C2 C2,C3
C2 C4,C5 C4,C9
C1 C8
1 问题的导入
如何安排学习 计划?
C2
C5
C4 C3
C6
01 AOV网
C1
C8
C7
建立描述课程之间优先关系的有向无环图
重复上述两步,直至全部顶点均已输出;或者当图中不存在无前驱的顶点为止 (此时图中存在环)
V1
V5
拓扑序列:
v0, V1, V2, V3, V4, V5, V6,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图的拓扑排序操作
一、实验内容
题目:实现下图的拓扑排序。

5
二、目的与要求
(一)目的
1、了解拓扑排序的方法及其在工程建设中的实际意义。

2、掌握拓扑排序的算法,了解拓扑排序的有向图的数据结构。

(二)要求
用C语言编写程序,实现图的拓扑排序操作。

三、设计思想
首先对有向图,我们采取邻接表作为数据结构。

且将表头指针改为头结点,其数据域存放该结点的入度,入度设为零的结点即没有前趋。

在建立邻接表输入之前,表头向量的每个结点的初始状态为数据域VEX(入度)为零,指针域NXET为空,每输入一条弧< J, K > 建立链表的一个结点,同时令k 的入度加1,因此在输入结束时,表头的两个域分别表示顶点的入度和指向链表的第一个结点指针。

在拓扑排序的过程之中,输入入度为零(即没有前趋)的顶点,同时将该顶点的直接后继的入度减1。

(1)、查邻接表中入度为零的顶点,并进栈。

(2)、当栈为空时,进行拓扑排序。

(a)、退栈,输出栈顶元素V。

(b)、在邻接表中查找Vj的直接后继Vk,将Vk的入度减一,并令入度减至零的顶点进栈。

(3)、若栈空时输出的顶点数不是N个则说明有向回路,否则拓扑排序结束。

为建立存放入度为零的顶点的栈,不需要另分配存储单元,即可借入入度为零的数据域。

一方面,入度为零的顶点序号即为表头结点的序号,另一方面,借用入度为零的数据域存放带链栈的指针域(下一个入度的顶点号)。

四、具体算法设计
#include<iostream>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<stack>
using namespace std;
#define MAX 9999
stack<int>mystack;
int indegree[MAX];
struct node
{
int adjvex;
node* next;
}adj[MAX];
int Create(node adj[],int n,int m)//邻接表建表函数,n代表定点数,m代表边数{
int i;
node *p;
for(i=0;i<=n-1;i++)
{
adj[i].adjvex=i;
adj[i].next=NULL;
}
for(i=0;i<=m-1;i++)
{
cout<<"请输入第"<<i<<"条边:";
int u,v;
cin>>u>>v;
p=new node;
p->adjvex=v;
p->next=adj[u].next;
adj[u].next=p;
}
return 1;
}
void print(int n)//邻接表打印函数
{
int i;
node *p;
for(i=0;i<=n-1;i++)
{
p=&adj[i];
while(p!=NULL)
{
cout<<p->adjvex<<' ';
p=p->next;
}
cout<<endl;
}
}
void topsort(node adj[],int n)
{
int i;
node *p;
memset(indegree,0,sizeof(indegree));
for(i=0;i<=n-1;i++)
{
p=adj[i].next;
while(p!=NULL)
{
indegree[p->adjvex]++;
p=p->next;
}
}
for(i=0;i<=n-1;i++)
{
if(indegree[i]==0)
mystack.push(i);
}
int count=0;
while(mystack.size()!=0)
{
i=mystack.top();
mystack.pop();
cout<<i<<' ';
count++;
for(p=adj[i].next;p!=NULL;p=p->next)
{
int k=p->adjvex;
indegree[k]--;
if(indegree[k]==0)
mystack.push(k);
}
}
cout<<endl;
if(count<n)cout<<"有回路"<<endl;
}
int main()
{
int n;
int m;
cout<<"请输入顶点数及边数:";
cin>>n>>m;
Create(adj,n,m);
cout<<"输入的邻接表为:"<<endl;
print(n);
cout<<"拓扑排序结果为:"<<endl;
topsort(adj,n);
system("pause");
return 0;
}
五、程序的演示
六、实验总结
通过本次实验掌握拓扑排序的算法,了解拓扑排序的有向图的数据结构。

相关文档
最新文档