《二次根式和它的性质(1)》导学案
二次根式导学案教案
二次根式导学案教案课程名称:二次根式导学案适用年级:高中数学(高一或高二)导学目的:1.理解二次根式的含义与性质;2.掌握二次根式的化简与运算规则;3.运用二次根式解决实际问题。
导学内容:1.二次根式的概念A.二次根式是形如√a(a≥0)的根式,其中a称为被开方数;B.当a为非负实数时,存在唯一的非负实数b,使得b²=a,即√a=b;C.若a为非负实数,而b为正实数,则√a记为±b,其中“±”表示正负号的取值。
2.二次根式的性质A.二次根式的值域为非负实数;B.二次根式满足乘方运算规律:(√a)²=a,√(a²)=,a,(,...,表示取绝对值);C. 二次根式满足四则运算规律:(1)加减运算:√a±√b =√(a±2√ab+b)(2)乘法运算:√a*√b = √(ab)(3)除法运算:√a/√b = √(a/b)。
3.二次根式的化简A.将二次根式化简为最简形式的方法:①提取公因数;②合并同类项;③分解因式。
导学任务:1.计算以下二次根式的值,并判断其是否为整数或无理数:A.√9;B.√16;C.√7;D.√15;2.将下面的二次根式化简为最简形式:A.√12;B.√32;C.√75;D.√98;3.通过合并同类项的方法,将以下二次根式进行化简:A.2√3+3√3;B.√6-3√2+4√2;4.解决以下实际问题:A.一个正方形的面积为128平方单位,求其边长;B.一个长方形的面积为72平方单位,宽是√2个单位,请求其长度。
导学提示:1.在计算二次根式的过程中,应注意,即使在被开方数前有系数,系数的平方根仍需要提取出来;2.化简二次根式时,注意合并同类项的原则,相同根号下的数值项可以进行合并;3.解决实际问题时,可以将问题转化为方程求解,或者利用几何性质进行解答。
导学总结:通过本次导学,我们学习了二次根式的概念与性质,掌握了二次根式的化简与运算规则,并通过实际问题的解决,巩固了所学知识。
第二十二 二次根式导学案 华师
22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,5-,)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。
2)3(________)(2=a 43、当a为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义? ①43-x ②223x + ③ 2、(1)若33a a ---有意义,则a 的值为___________.(2)若 在实数范围内有意义,则x 为( )。
八年级上册二次根式及其性质导学案
二次根式及其性质 (1)主备人: 备课时间: 第一周学习目标: 1.了解二次根式的概念,会计算二次根式的平方。
2.知道二次根式有意义的条件。
3.会把非负数写成一个数的平方的形式。
重点: 了解二次根式的概念,会计算二次根式的平方。
难点: 二次根式有意义的条件。
一、认定目标: (学生读出目标, 1分钟) 二、预习导航:(一) 1.如果一个数的平方等于a ,这个数叫做a 的__________.2.一个正数的平方根有_________,它们____________,其中正的平方根叫做这个数的_________,0的平方根是__________,0的算术平方根是___________,负数_________。
3.求一个数___________的运算,叫开平方。
4.16的平方根是__________,算术平方根是____________。
5.a-1(a≥1)的平方根是_____________,算术平方根是______________。
(二)、阅读课本第4—6页中间的内容,记住二次根式的定义,并会判断二次根式在什么情况下有意义。
并完成下列题目,时间为8分钟。
1. 计算:2= 2= 2=2. a 为什么实数时,下列各式有意义?a3.计算:(1)(2= (2)(2=(3)2⎛-= ⎝ (4)(2=4.下列非负数分别写成一个数的平方的形式: (1)5 (2)2.8 待解决的问题新发现的问题三、自主探究:合作交流:先小组交流,小组内解决不了的问题由组长提交班内交流,班内交流解决不了的由老师点拨精讲。
四、题组训练:(学生独立完成,用时10分钟)1a 满足的条件是------------2.(22________=-=____=3.((22____=-=--=--4.计算22____⎛⎛+-= ⎝⎝ 5.x 满足什么条件时,下列式子有意义?31xx +___________(26.若x-2 ___ 五、精讲点拨;(1) (a ≥0) 是一个______数。
二次根式的概念、性质(第1、2课时 导学案)
第十六章二次根式16.1二次根式第1课时二次根式的概念一、新课导入1.导入课题同学们,你能写出下列问题的结果吗?(1)面积为5的正方形的边长是多少?(2)面积为S的正方形的边长是多少?(3)圆柱的体积为V,高为5,则它的底面半径r是多少?(学生回答结果,老师在黑板上写出)的这些结果有什么共同特点呢?2.学习目标(1)掌握二次根式的基本特征.(2)理解二次根式有意义的条件.3.学习重、难点重点:准确判断一个式子是不是二次根式.难点:求被开方数中所含的字母的取值范围的依据.二、分层学习1.自学指导(1)自学内容:教材P2例1上面的部分.(2)自学时间:3分钟.(3)自学方法:完成思考中的问题,从形式和被开方数分别满足的条件两个方面理解二次根式的意义.(4)自学参考提纲:①教材思考中三个问题的答案依次为②上述四个式子有什么共同特征呢?共同特征:它们表示一些正数的算术平方根.③什么样的式子叫做二次根式?形如a(a≥0)的式子叫做二次根式.④想一想:如果a<0,则a是否是二次根式?不是2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握上述问题结果的式子的特点.②差异指导:引导学生从“形式”和“被开方数取值”两个方面进行分析.(2)生助生:学生相互研讨疑难之处..4.强化(1)下列各式中,哪些是二次根式?哪些不是?为什么?3,16,34,5-,12+x .答案:3,16,12+x 是二次根式;34,5-不是二次根式,34因为不是开平方,5-的被开方数为负数.(2)解答教材P3第1题.令长方形的长、宽分别为3xcm ,2xcm ,则3x·2x=18,得x 2=3,∴x=,3x=3,2x=2.∴长方形的长、宽分别为3cm 和2cm.(3)形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.注意:被开方数a ≥0.1.自学指导(1)自学内容:教材2P 例1及后面的思考部分.(2)自学时间:3分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①确定式子2-x 中字母x 的取值范围的依据是什么?解题步骤是什么?答案:依据是二次根式的概念,x ≥2.②a 取何值时,下列各二次根式有意义?1-a ;32+a ;a -;a -5.答案:a ≥1;a ≥23-;a ≤0;a ≤5.③若a a -+-11有意义,则a 的值为1.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:明了学生对例题不等式的得出的理由是否清楚.②差异指导:指导学生分析使2x 与3x 在实数范围内有意义的条件.(2)生助生:同桌之间相互研讨.4.强化(1)确定二次根式中被开方数所含字母的取值范围的一般步骤是:①根据a 中a ≥0的条件列不等式;②解不等式;③确定字母的取值范围.(2)归纳总结本节所学知识点和数学思想方法.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收获进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时开始时创设情境,给出实例,使学生独立思考并作答,并适当提出疑问,引出这节课的内容,充分发掘了学生的主体性.二次根式是本书学习的第一个知识点,也是本章的第一个知识点,为之后学习二次根式的加减乘除、勾股定理等知识打下基础.教学时,不仅强化了学生独立思考、探究的能力,还提高了学生的合作交流能力.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)已知一个正方形的面积是3,那么它的边长是3.2.(10分)使3+x 有意义的x 的取值范围是x ≥-3.3.(10分)下列各式中一定是二次根式的是(B )A.1+x B.2)1(+x C.12-a D.x14.(10分)二次根式a1中,字母a 的取值范围是(D )A.a <0B.a ≤0C.a ≥0D.a >05.(20分)当a 是怎样的实数时,下列各式在实数范围内有意义?(1)2+a ;(2)a -3;(3)25a ;(4)12-a .解:(1)a ≥-2;(2)a ≤3;(3)a 为任意实数;(4)a ≥21.二、综合运用(20分)6.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)12+x ;(2)2)1(-x ;(3)21--x ;(4)11-+x x .解:(1)x 为任意实数;(2)x 为任意实数;(3)x<2;(4)x ≥-1且x ≠1.三、拓展延伸(共20分)7.求使xx --21在实数范围内有意义的x 的取值范围.解:由题意得⎩⎨⎧≥-,0-2,01>x x ∴1≤x<2.16.1二次根式第2课时二次根式的性质一、新课导入1.导入课题我们知道二次根式a 中a ≥0,那么二次根式a 还有哪些性质呢?今天我们学习“二次根式的性质”(板书课题).2.学习目标(1)知道a ≥0(a ≥0),会用非负数的性质解题.(2)会用公式()2a =a (a ≥0)进行计算.(3)知道形如2a 的化简方法及结果.3.学习重、难点重点:a ≥0(a ≥0),()2a =a (a ≥0).难点:运用公式()2a =a (a ≥0)和2a =a (a ≥0)进行计算化简.二、分层学习1.自学指导(1)自学内容:探究:a (a ≥0)及a (a ≥0)中a 的值的特点.(2)自学时间:5分钟.(3)自学方法:围绕探究提纲进行演算归纳.(4)探究提纲:①当a >0时,a 是什么数?当a =0时,a 是什么数?当a 有意义时,a 是什么数?②从①中我们可以探究得出:当a ≥0时,a 是非负数,即a≥0.③从a (a ≥0)所表示的数值特点,你知道还有哪些式子的值具有这种特性?④已知()0112=++-y x ,求x ,y 的值.(x=1,y=-1)2.自学:学生参照探究提纲进行自学.3.助学(1)师助生:①明了学情:了解学生在探究中存在的认识偏差和困惑.②差异指导:引导学生分析a 表示的数值特点,归纳已学过的非负数及其和为0时所满足的条件.(2)生助生:学生相互交流、帮助.4.强化(1)当a ≥0时,a ≥0,即a 的值为非负数.(2)回顾所学过的三类非负数:①一个数的偶次幂;②一个数的绝对值;③a (a ≥0).(3)非负数的性质:若x +2y +|z|=0,则x=y=z=0.(4)练习:已知01=+++y x x ,求x ,y 的值.答案:x=-1,y=1.1.自学指导(1)自学内容:探究()2a (a ≥0)的结果.(2)自学时间:8分钟.(3)自学方法:通过回顾算术平方根的意义,归纳()2a (a ≥0)的结果.(4)探究提纲:①∵3的算术平方根是3,∴()23=3.②∵32的算术平方根是32,∴232⎪⎪⎭⎫ ⎝⎛=32.③∵非负数a 的算术平方根是a ,∴()2a (a ≥0)=a .④∵()222ba ab =,∴(()2223=⨯=18.⑤计算:答案:3;18;25;21.⑥由①—⑤的探讨,归纳得出:一般地,()2a =a (a ≥0).2.自学:学生可结合探究提纲进行自学.3.助学(1)师助生:①明了学情:关注学生对()2a (a ≥0)的值的理解.②差异指导:指导学生应用()2a (a ≥0)的结果进行计算.(2)生助生:相互交流帮助,矫正错误,归纳正确结论.4.强化(1)强调()2a =a (a ≥0)及其应用.(2)强调公式()2ab =22b a 和2⎪⎭⎫ ⎝⎛b a =22ba在二次根式计算中的运用.(3)展示本节所学知识点和数学思想方法.1.自学指导(1)自学内容:探究:当a ≥0时,2a 等于什么?若a 的值无限定,2a 又等于什么?(2)自学时间:5分钟.(3)自学方法:结合探究提纲动手尝试2a (a ≥0)和2a 的化简,结果有何不同?(4)探究提纲:①==4222;==⎪⎭⎫ ⎝⎛4121221;==36.06.020.6;由此可以看出:当a ≥0时,2a =a 。
最新人教版八年级数学下册第十六章 二次根式导学案(全章)
第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程 (一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
43、根据算术平方根意义计算 :(1) 2)4((2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论:,其中0≥a , 4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
二次根式导学案人教版全章
第十六章 二次根式课题:二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征. 定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , 4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成________)(2=a 42)3(一个数的平方的形式。
人教版八年级数学上导学案教案二次根式1
课题 二次根式1 【学】【学习目标】1a ≥0)的意义解答具体题目.2.提出问题,根据问题给出概念,应用概念解决实际问题.【复习引入】 1.知识回顾:(1)4的平方根是____ _;0的平方根是______ ;-16 ____ 平方根.(2)5的平方根是 ;5的算术平方根是____ .(3)-1有算术平方根吗?(4)0的算术平方根是多少?(5)当a <0有意义吗?2.完成课本p2的思考3. 叫做二次根式.【探究新知】1.对二次根式概念的理解: (1)从形式上看,必须有二次根号;(2)被开方数不能小于0,只能取非负数.探究1下列式子满足什么条件时是二次根式?12+m ,2n -,2a ,2-a ,y x -探究2 (1)当x 是多少时,在实数范围内有意义?(2)当x 11x +在实数范围内有意义?练习:x 取什么实数时,下列各式有意义.(1)x 43-; (2)23-x ; (3)2)3(-x ; (4)x x 3443-+-.(a ≥0)具有双重非负性探究3 (1)已知y ,求x y值.(2),求a 2004+b 2004的值.【巩固练习】1.填空题:(1)25的平方根是 ,4的算术平方根为 ,8的立方根是 ,25-的算术平方根是 ;38的立方根是 .(2)若32+a 有意义,则a 的取值范围是 .(3)若x 21-有意义,则x .若321-x 有意义,则x .(4x 有 个2.下列各式①y ; ②2+a ; ③52+x ; ④a 3;⑤962++y y ; ⑥3其中一定是二次根式的有( ) A .4个 B.3个 C.2个 D.1个3.若式子32--x x 有意义,则x 的取值范围是( )A 、x ≥2B 、x ≠3C 、x >2且x ≠3D 、x ≥2且x ≠34.若2y =+,则x =_______ ,y =___________.5x 的取值范围是 ;x 的取值范围是 ;③要使式子2x -有意义,则x 的取值范围是 .6.7.已知x ,y 2440y y -+=,则xy = .8.x 是怎样的实数时,下列各式在实数范围内有意义?(1)2)1(+x ;(2)11-x ;(3)1+x ; (4)x 211-;(5)2)3(-x ;(6)x --31;(7)12+x ;(8)x9. 已知a 、b =b +4,求a 、b 的值.10.若,013322=--+-y x x 求y x +的值;中午作业1. 若3x -+3x -有意义,则2x -=_______.2.要使1213-+-x x 有意义,则x 应满足 ( ) A .12≤x ≤3 B .x ≤3且x ≠12 C . 12<x <3 D . 12<x ≤3 3.若代数式21--x x 有意义,则x 的取值范围是 ( ) A .x >1且x ≠2 B .x ≥1 C .x ≠2 D .x ≥1且x ≠2 4.若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为 ( )A .2B .0C .-2D .以上都不对5. 若0)3(12=++-+y y x ,则y x -的值为 ( )A .1B .-1C .7D .-76.根式3-x 中x 的取值范围是 ( )A .x ≥ 3B .x ≤ 3C .x < 3D .x > 37.若二次根式12x +有意义,则的取值范围为 ( )A. x ≥12 B. x ≤12 C. x ≥12 D. x ≤128.下列式子中,是二次根式的是 () A .-7 B .37 C .x D .x9. 下列说法中,正确的是 () A .带根号的式子一定是二次根式 B .代数式x 2+1一定是二次根式C .代数式x +y 一定是二次根式D .二次根式的值必是无理数10.使41x -有意义的x 的取值范围是 .11. 要使式子a +2a 有意义,则a 的取值范围为_____________________.12. 若等式1)23(0=-x成立,则x 的取值范围是 .13. ()2120x y -+=,则x +y = ;化简x x -+-22 =_______.14. 要使下列式子有意义,x 的取值范围是什么?(151x + (2210x -(3210x +; (42x -15. 若二次根式26x -+有意义,化简│x -4│-│7-x │.16.已知△ABC 是等边三角形,AB =6,将一块含有30°角的直角三角板DEF 如图所示放置,让等边△ABC 向右平移(BC 只能在EF 上移动).如图1,当点E 与点B 重合时,点A 恰好落在三角板DEF 的斜边DF 上.在等边△ABC 向右平移的过程中,AB ,AC 与三角板斜边的交点分别为G ,H ,连接EH 交AB 于点P ,如图2(1)求证EB =AH ;(2)PG 的长度在等边△ABC 平移的过程中是否会发生变化?如果不变,请求出PG 的长;如果变化,请说明理由.。
新人教版八年级数学二次根式导学案
第十六章 二次根式 16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1(a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习(一)、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:面积为3的正方形的边长为_____ ,面积为S 的正方形的边长为___________..问题2:一个长方形的围栏,长是宽的2 倍,面积为130㎡,则它的宽为_________.问题3; 一个物体从高处自由落下,落到地面所用的时间t (单位:S )与开始下落时离地面的高度h(单位;m)满足关系式h=5t 2..如果用含有h的式子表示t,那么t 为 . (二)学生学习课本知识 (三)、探索新知1、知识: 像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做”称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例1.下列式子,哪些是二次根式,、x>0)、、(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 在实数范围内有意义? 解:由 得: 。
当 时,在实数范围内有意义.1x1x y+(3)注意:1(a ≥0)的式子叫做二次根式的概念;2(a≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x+在实数范围内有意义? 例4(1)已知+5,求的值.(答案:2) (2),求a 2004+b 2004的值.(答案:)三、巩固练习教材练习.四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少? 2=_______. 3.x 有( )个. A .0 B .1 C .2 D .无数4.已知a 、b =b+4,求a 、b 的值.11x +xy251x16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1(a ≥0)是一个非负数;2)2=a(a ≥0).学习目标:1(a ≥0)2=a (a ≥0),并利用它进行计算和化简.2(a ≥0)是一个非负数,用具)2=a (a ≥0);最后运用结论严谨解题.教学过程一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0叫什么?当a<0有意义吗? (二)学生学习课本知识(三)、探究新知1(a ≥0)是一个数。
人教版九年级数学上册全册导学案
人教版九年级数学上册全册导学案第22章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______; 式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?43,16-,34,5-,)0(3≥a a ,12+x2、计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论:,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 :x 取何值时,下列各二次根式有意义?①43-x 223x + ③ 2、(133a a --a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数 B.负数 C.非负数 D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
二次根式导学案(人教版全章)
二次根式导学案 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习回顾:(1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)自主学习(1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。
思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :(1) 2)4( (2) (3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
人教版八年级下册16.1二次根式的性质导学案
数学(学科)导学案
课题16.1 二次根式的性质学案编号01使用时间班级姓名
学习目标
1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;
2.会运用二次根式的两个性质进行化简计算.
重
难
点
重点经历二次根式的性质的发现过程,体验归纳、猜想的思想方法.
难点会运用二次根式的两个性质进行化简计算
一、自主学习
回顾思考:表示,a 的取值范围是.
1. 用基本运算符号(包括加、减、乘、除、乘方和开方)把或连接起来的式子,我们称这样的式子为代数式.
2. 你能列举一些你学过的代数式吗?
练一练:在下列式子中,是代数式的有_个,分别是.
π-3,a≠0
二、合作探究
探究1:用学过的方法完成下列式子的计算.
思考
归纳总结:
的性质:
一般地,=.即一个的算术平方根的平方等于 .................
例题精讲
例
练一练
探究2:
1、计算
2、计算
3、对比发现
归纳总结
的性质:
即任意一个数的平方的算术平方根等于.
概念辨析:如何区分与?
例题精讲
(1)
练习
三、能力提升
1、实数a 在数轴上的对应点如图所示,请你化简:
a
-1 0 1
2、已知,则x 的取值范围是.
五、中考链接
已知a、b、c 是△ABC 的三边长,化简:
老师我不会
老师我想说。
二次根式的性质导学案
7.2二次根式的性质导学案教学目标:(1)使学生理解并掌握=a,以及ab =ab (a ≥ 0 b ≥ 0),并能利用这两个结论进行化简计算。
2、通过对的化简,培养学生分类讨论的思想.。
3、发展学生有条理的思考能力以及语言表达能力。
课前准备:1、绝对值的代数定义:2、2a 与(a )2表示的意义一样吗?为什么?教学过程:一、自学探究: (1)22= ︳2 ︳= (2)2= ︳ 0 ︳=(3)2)7(- = ︳ -7 ︳=(4)2)51(= ︳51︳=议一议:如果用字母a 代替上式中的数,1、观察左边的式子,你能发现2a 与a 的关系吗? (1)2a= (2)2a= (3)2a =二、合作交流 你能将2a的取值分类表示吗?当a ≥0时2a = 当a <0时2a=三、巩固提高: 1.化简:(1) (2)492m (4)24x (x <0(5)2)1(9+x2、算一算 : 94⨯= 49⨯= =64121⨯= 12164⨯= 3、试一试:化简:(1)40 (2)259⨯ (3))6(3)8(-⨯⨯-(4)5220yx (5)32ba+4、、化简 (1)、)9()4(-⨯- (2)、52y x (3)、2242+四、自我评价 (1)、这节课你有什么收获?还有什么疑惑? (2)、当堂检测 (必做)1、判断 正误(1)48a =4a 2( ) (2)3)2(2⨯- =-23( ) (3) 22ba +=a+b( ) 2、化简:(1)23 (2))8)(12(-- (3)322z y x(4)45xx+3、如果)1)(1(+-x x =1+x 1-x ,则x 的取值范围(选做)化简 122+-a a (a <1)教后反思:。
16.1 第2课时 二次根式的性质(导学案)
16.1 第2课时 二次根式的性质(导学案)教材:P3——P4学习目标:1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;2.会运用二次根式的两个性质进行化简计算. 重点:掌握二次根式的两个性质:()20a a a =≥=.难点:会利用二次根式的性质解题. 一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子2有意义的条件是_______________.二、要点1探究 活动1、计算(1) 2)4(= (2)(√0)2= (3)2)5.0( = (4)2)31(=(0≥a )例1(教材P3例2变式题)计算:22(1);(2).⎛ ⎝例2 在实数范围内分解因式:242(1)3;(2)4 4.x y y --+计算:22(1)()(2)(). ;三、要点2探究 活动1、计算:________)(2=a(1)=24 =22.0 =2)54(=220 观察其结果与根号内幂底数的关系,归纳得到:当a ﹥0时,=2a(2) =-2)4( =-2)2.0( =-2)54(=-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当a<0时,=2a (3)=20 归纳得到:当a=0时,=2a活动2.归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的非常重要的性质:性质一:一般地,2a =(a ____0),即一个非负数的算术平方根的平方等于_________.()()()____0____=0____0.a a a a ⎧⎪==⎨⎪⎩>,,<即任意一个数的平方的算术平方根等于它本身的绝对值.例3 (教材P4例3变式题)化简:例4 实数a 、b 在数轴上的对应点如图所示,请你化简-+【变式题】实数a 、b a b +-.方法总结:利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号. 例5 已知a 、b 、c 是△AB C分析:针对训练1.计算:22(1)(-2)(2)(-1.2).;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-四、要点3探究:代数式的定义用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起来的式子,我们称这样的式子为代数式.典例精析例6 (1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为5:3的长方形贺卡,若面积为S,用代数式表示出它的长.方法总结:列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是()A.7B.3>2C.2xD.2223x y+2.如图是一圆形挂钟,正面面积为S,用代数式表示出钟的半径为__________.五、课堂小结利用三角形三三边长均为正数,a+b>c两边之和大于第三边,b+c-a>0,c-b-a<0六、当堂检测1.( )A . ±4B .±2 C . 4 D .-42.当1<x <3)A.3B.-3C.1D.-1 3.下列式子是代数式的有 ( )①a 2+b 2;; ③13; ④x =2; ⑤3×(4-5);⑥x -1≤0; ⑦10x +5y =15 ; .c A .3个 B .4个 C .5个 D .6个 4.化简:(1=_______ ; (2_______; (3______=; (4)2______=.5. 实数a 在数轴上的位置如图所示,化简2a -+_________.。
人教版数学八年级下册16.1《二次根式(1)》导学案
16.1二次根式〔1〕 学案学习目标:1.了解二次根式的意义;2.会判断二次根式,能求简单的二次根式中字母的取值范围。
学习重点:二次根式的概念及意义。
学习难点:二次根式的判断与字母取值范围确实定。
学习过程:一、温故互查1.什么叫平方根?2.什么叫算数平方根?3.〔算数〕平方根的性质平方根式是二、设问导读 感受新知阅读课本,完成以下问题在课本思考框的问题中,结果分别是 ,结果都分别是表示65,S ,2,5h 的 . 我们知道:一个正数有两个平方根,它们 ;0的平方根是 ;在实数范围内, 数没有平方根。
因此,开平方时,被开方数只能是 .【归纳】一般地,我们把形如〔a≥0〕的式子叫做 ,“〞称为 .【注意】二次根式应满足两个条件:1.形式..上必须是a 的形式; .三、自我检测例1.当x 是怎样的实数时,2 x 在实数范围内有意义?例2.当a<0时,a 有意义吗?【归纳】a 的双重非负性:1. a≥0 ; 2.四、稳固训练1.、1x x>0〕、、、1x y+〔x≥0,y ≥0〕.2.当x 是多少时,x 35-在实数范围内有意义?【课本练习】 1、2五、拓展提升1.当x 是怎样的实数时,以下各式在实数范围内有意义?〔1〕48-+x x 〔2〕2x 〔3〕3x2.〔1〕,求x y的值.〔2=0,求a 2021+b 2021的值.六、小结评价1.请你说说对二次根式的认识?〔口述给组长〕2.小组对你这节课表现进展评价:〔较好;好;一般;差;较差〕组长:。
浙教版初中数学八年级下册 1.2《二次根式的性质(1)》导学案
a 2 aa 0 ,
a2
a
a a 0 aa 0
的发现过
程,体验归纳、猜想的思想方法; 2.了解二次根式的上述两个性质;
3.会运用上述两个性质进行有关化简和计算。
〖学习重点与难点〗
重点:二次根式性质:
a 2 aa 0 、
a2
a
a a 0 aa 0
。
难点:
a2
a
a a 0 a a 0
C.化简 (3 )2 的结果是 -3;
D.在直角三角形中,若两条直角边分别是 5 ,2 5 ,那么斜边长为 5。
5.计算 (11)2 +|-11|- 112 ,正确的结果是( )
A.-11
B.11
6.若 a<1,化简 (a 1)2 1=(
C.22 )
D.-22
A.a﹣2
B.2﹣a
C.a
7.化简 3 3(1 3) 的结果是( )
三、例题精讲(和老师一起共同完成) 例 1 计算:
(1) 102 152 .
(2)
2
22
22
2.
例 2 计算
3 5
2 2 3
4 5
2 3
.
四、巩固练习(一起参与讨论,发挥你的解题能力,共同完成) 1.判断下列各式是否成立。
2.1
12 _____,2
2 2 5
______,3
2
的理解。
一、预习导学(把握时间,独立完成)
1.完成以下填空:
2
2
______,
7 2 _____;
1 2
2
_____;
m
2
_____m 0。
2.小结(二次根式的基本性质 1):一般地,二次根式有下面的性质:
九年级数学上册二次根式导学案新人教版
A. 3=
2
( 3)
B 0.5=
(
2
0 .5 )
C . ( 0 .3 ) 2 =0.3
D ( 5 7 ) 2 =35
(一)选择题: 1、下列各式中,正确的是(
B组 )。
A. 9 4 =9 4
B
49
94
C 42
4 D2
25
5
36
6
2、 如果等式 (
2
x)
=x
成立,那么
x 为(
)。
A x ≤ 0; B.x=0 ; C.x<0; D.x
6
(1) 4 × 9 _____ 4 9
(2) 16 × 25 ____ 16 25
(3) 100 × 36 __ 100 36
(二)提出问题 1、二次根式的乘法法则是什么?如何归纳出这一法则的? 2、如何二次根式的乘法法则进行计算? 3、积的算术平方根有什么性质? 4、如何运用积的算术平方根的性质进行二次根式的化简。 (三)自主学习 自学课本第 5—6 页“积的算术平方根”前的内容,完成下面的题目: 1、用计算器填空:
2、计算: (1)3 8 ×( -4 6 )
(2) 12 ab
3
6 ab
3、填空: (1) 9 =________, 9 =_________
16
16
(2) 1 6 =________, 1 6 =________
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,
16
3
,
4,
2、计算 :
(1)
2
( 4)
a
(a 0)
2
5, 3
,x 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1 二次根式和它的性质(1)
一、学习目标
1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a
二、学习重点、难点
重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程
(一)复习引入:
(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2
,用式子表示为 =__________;
正数a 的算术平方根为_______,0的算术平方根为_______;
式子)0(0≥≥a a 的意义是 。
(二)提出问题
1、式子a 表示什么意义?
2、什么叫做二次根式?
3、式子)0(0≥≥a a 的意义是什么?
4、)0()(2≥=a a a 的意义是什么?
5、如何确定一个二次根式有无意义?
(三)自主学习
自学课本第112页例前的内容,完成下面的问题:
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16-,34)0(3≥a a ,12+x
2、计算 :
4
(1) 2)4( (2) (3)2)5.0( (4)2)3
1( 根据计算结果,你能得出结论: ,其中0≥a ,
)0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负
数 ,只有非负数a 才有算术平方根。
所以,在二次根式
中,字母a 必须满足 ,
才有意义。
(三)合作探究 1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义?
①43-x 223
x + ③ 2、(133a a --有意义,则a 的值为___________.
(2 在实数范围内有意义,则x 为( ).
A.正数
B.负数
C.非负数
D.非正数
(四)展示反馈 (学生归纳总结)
1、非负数a 的算术平方根a (a≥0)叫做二次根式.
二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
2、式子)0(≥a a 的取值是非负数。
(五)精讲点拨
1、二次根式的基本性质(a )2=a 成立的条件是a≥0,利用这个性质可以求二次根式的平方,如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2.
2、讨论二次根式的被开方数中字母的取值,实际上是解所含字母的不等式。
(六)拓展延伸
2
)3(________)(2=a x --21x -
1、(1)在式子x
x +-121中,x 的取值范围是____________. (2)已知42-x +y x +2=0,则x-y = _____________.
(3)已知y =x -3+23--x ,则x y = _____________。
2、由公式)0()(2≥=a a a ,我们可以得到公式a=2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
(1)把下列非负数写成一个数的平方的形式:
5 0.35
(2)在实数范围内因式分解.
72-x 4a 2-11。