高频电路实验指导书
高频电路实验指导书
高频电路实验指导书新疆农业大学计算机与信息工程学院电子实验室2009 年3 月目录第一部分高频电路实验系统介绍一、实验系统概述 (2)二、实验箱箱体结构说明 (2)三、高频实验模块介绍及实验说明 (4)第二部分高频电路实验部分实验一单调谐回路谐振放大器及通频带展宽实验 (5)实验二丙类功率放大器实验 (7)实验三(1)电容反馈三点式振荡器实验....................... •. (9)实验三(2)石英晶体振荡器实验.................. ... ................ .. (11)实验四幅度调制器实验 (13)实验五调幅波信号的解调实验 (15)实验六变容二极管频率调制电路实验 (17)实验七频率解调电路实验 (19)实验八相位调制器实验 (20)实验九集成混频器电路实验 (21)高频电路实验系统介绍一、高频电路实验系统概述本系统由实验箱和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。
实验箱带有一个0Hz~120KHz的低频信号源、一个20KHz~10MHz的高频信号源、一个音频接口单兀。
此外高频W型实验系统还带有一个频率计单兀(高频川型无此单元)。
实验箱可使用自带电源,也可通过右上角的4针电源接口从外部引入。
高频电路单元采用模块式设计,将有关联的单元电路放在一个模块内。
高频模块可插在实验箱的4个固定孔上,配合高、低频信号源和频率计即可进行高频电路实验。
二、实验箱箱体结构说明箱体结构如图一所示:图一1、电源接口实验箱提供-8V、+5V、-5V、-12V、+12V五组电源输出。
当电源正常时,各组电源对应的指示灯均被点亮。
2、低频信号源本实验箱采用集成函数发生器ICL8038产生正弦波、方波和三角波,频率为OHz —120KHZ连续可调。
使用时先选择波形,然后将“频率选择”开关打到合适的档位,再通过“频率调节”旋钮调出所需要的频率。
高频电路实验指导书(图).docx
实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主耍用于高频小信号或微弱信号的线性放大。
在本实验中,通过对谐振回路的调试,対放大器处于谐振时各项技术指标的测试(电压放大倍数, 通频带,矩形系数),进一步掌握高频小信号调谐放人器的工作原理。
学会小信号调谐放人器的设计方法。
二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHzo2、测量谐振放大器的电压增益。
三、实验仪器1、20MHz模拟示波器一台2、数字万用表一块图1-4单级调谐放大器五、实验步骤参考所附电路原理图G2。
先调静态工作点,然后再调谐振回路。
1、在主箱上正确插好接收模块,按照所附电路原理图G2,对照接收模块中的高频小信号调谐放人器部分,连接好跳线JA1,正确连接电路电源线,+12V孔接+12V, +5V孔接+ 5V, GND接GND (从电源部分+12V和+5V插孔用连接线接入),接上电源通电(若正确连接了,扩展板上的电源指示灯将会亮)。
2、K1向右拨;3、调整品体管的静态工作点:在不加输入信号(即UF O),将测试点1NA1接地,用力用表直流电压档(20V档)测量三极管QA1 射极的电压(即测R4靠近QA1端的电压),调整可调电阻WA1,使〃说二2.25V (即使/E=l. 5mA),根据电路计算此时的U BQ,〃说及/陀值。
4、调谐放大器的谐振回路使它谐振在10. 7MHz方法是用BT-3频率特性测试仪的扫频电压输岀端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y轴,放人器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节屮心频率刻度盘,使荧光屏上显示出放人器的“幅频谐振特性曲线”,根据频标指示用绝缘起了慢慢旋动变压器的磁芯,使中心频率九二10. 7MHz所对应的幅值最大。
用示波器來观察调谐过程,方法是:在INA1处山高频信号源提供频率为10.7MHz的载波(参考高频信号源的使用),人小为Vp-p-=20〜lOOmV的信号,川示波器探头在TTA2处测试(在示波器上看到的是正弦波),调节变压器磁芯使示波器波形最人(即调好后,磁芯不论往上或往下旋转,波形幅度都减小)。
高频电路(仿真)实验指导书.docx
高频电路(仿真)实验指导书光电学院电子科学与技术系2014年2月实验一.共射级单级交流放大器性能分析一、实验目的1、学习单级共射电压放大器静态工作点的设置少调试方法。
2、学习放大器的放大倍数(凡)、输入电阻(尺)、输出电阻(他)的测试方法。
3、观察基本放人电路参数对放人器的静态工作点、电压放人倍数及输出波形的影响。
4、熟悉函数信号发生器、示波器、数字力•用表和宜流稳压电源等常用仪器的使用方法。
二、实验原理如图所示的电路是一个分压式单级放大电路。
该电路设计时需保证5>5〜IOU BE,1]口2>5〜101B,则该电路能够稳定静态工作点,即当温度变化时或三级管的参数变化时,电路的静态工作点不会发生变化。
Rl _ UB-UBEU B=R1+R2V CC心人- 一——rtl上式可知,静态工作时,U B是由R1和R2共同决定的,而U BE一般是恒定的,在0.6 到0.7之间,所以Ic、I E只和有关。
当温度变化时或管子的参数改变时(深究来看,三极管的特性并非是完全线性的,在很多的情况下,必须计入考虑),例如,管子的受到激发而Ic欲要变大吋,由于R E的反馈作用,使得U BE节压降减小,从而1B减小,Ic减小,电路自动回到原來的静态工作点附近。
所以该电路不仅有较好的温度稳定性,还可以适应一定非线性的三极管,只要电路设计得当。
调整电阻&、R2,可以调节静态工作点高低。
若工作点过高,使三极管进入饱和区,则会引起饱和火真;反Z,三极管进入截止区,引起截止失真。
如图1-1, C h C2为耦合电容,将使电路只将交流信号传输到负载端,而略去不必要的直流信号。
发射极旁路电容C E-般选用较大的电容,以保证对于交流信号完全是短路的,即相当于交流接地。
也是防止交流反馈対电路的放大性能造成影响。
电路的放大倍数Au=—需,输入电阻Ri=Ri〃R2〃%,输出电阻R O=R L',空载时Ro=Rc。
当发射极电容断开时,在发射极电容上产生交流负反馈,电压的放大倍数为Au—而黔竈,输入电阻Ri=Ri〃R2〃[M"a+4£3]。
高频实验指导书
高频电路原理与分析实验指导书闽江学院物理学与电子信息工程系2013年10月实验一单调谐回路谐振放大器实验一、实验目的1.掌握单调谐回路谐振放大器的组成及电路中各元件的作用;2.通过对谐振回路的调试,对放大器处于谐振时的技术指标进行测试,包括电压放大倍数,通频带,矩形系数等;3.进一步掌握高频小信号调谐放大器的工作原理。
二、实验原理实验电路如图1-1所示。
电路采用共发射极接法,晶体管的集电极负载为LC并联谐振回路,该电路同时完成放大高频信号和选频作用。
晶体管的静态工作点由电阻WA1、RA2,RA3及RA6决定,其计算方法与低频单管放大器相同。
图1-1 单调谐回路谐振放大器三、调谐放大器的性能指标及测量方法高频小信号调谐放大器的主要性能指标有谐振频率f,谐振电压放大倍数0v A ,放大器的通频带BW 和选择性。
指标的测量方法如下:1、谐振频率0f放大器的调谐回路谐振时所对应的频率0f 称为放大器的谐振频率,其值为LC f π210=式中,L 为调谐回路电感线圈的电感量;C 为调谐回路的总电容,即ie oe C P C P C C 22211++=式中, Coe 为晶体管的输出电容;Cie 为晶体管的输入电容。
测量方法:采用函数信号发生器输出不同频率的等幅正弦波信号,测量输出端电压,找出输出幅值最大的频率点既为谐振频率点0f 。
2、电压放大倍数0v A放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。
A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量电路输出电压0u 和输入电压u i 的大小,然后通过下面的公式计算得到A V0。
iv u u A 00=(或dB u u A i v )lg(2000=) 3、通频带当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带B W ,其表达式为BW = 2△f 0.7 = fo/Q L其中,Q L 为谐振回路的有载品质因数。
高频电子线路试验指导书
实验须知1.实验不得无故缺席,否那么取消期未考试资格;2.实验前认真做好预习,明确实验目的和原理,了解实验内容和步骤,以及考前须知;3.实验过程中必须服从指导教师的指导,严格遵守平安及设备操作规章制度;4.损坏设备、仪器根据情节轻重按学校规定进展全部或局部赔偿;5.在实验过程中认真记录好实验数据,实验完毕后,实验数据及结果经指导教师认可并签字前方能离开实验室;6.实验报告格式在本指导书后;目录实验一单调谐回路谐振放大器及通频带展宽1 实验二高频功率放大器3实验三LC电容反应三点式振荡器4实验四振幅调制器〔集成模拟乘法器〕7实验五调幅波信号的解调9实验六变容二极管频率调制电路实验11图〔1━1〕单调谐放大器电路 实验一单调谐回路谐振放大器及通频带展宽一、实验目的1. 熟悉高频电路实验箱的组成及其电路中各电子元器件的作用。
2. 熟悉并联谐振回路的幅频特性分析、频带与选择性。
3. 熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4. 熟悉和了解单谐振回路谐振放大器的性能指标及其测试方法。
二、预习要求1.复习选频网络的特性分析方法; 2.复习谐振回路的工作原理;3.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。
三、实验原理小信号调谐放大器是接收机和各种电子设备中广泛应用的一种电压放大器。
它的主要特点是晶体管的集电极〔共发射极电路〕负载不是纯电阻,而是由L 、C 组成的并联谐振回路。
调谐放大器具有较高的电压增益,良好的选择性,当元件器件性能适宜和构造布局合理时,其工作频段可以做得很高。
小信号调谐放大器的类型很多,按调谐回路区分:由单调谐回路,双调谐回路和参差调谐回路放大器。
按晶体管连接方法区分,有共基极、共发射极和共集电极放大器。
实用上,构成形式根据设计要求而不同。
典型的单调谐放大器电路如图〔1━1〕所示。
图中W 、R1,R2和Re1、Re2是直流偏置电阻,调节W 可改变直流工作点。
高频电子线路实验指导书
实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。
2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
4)、比较LC 与晶体振荡器的频率稳定度。
二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。
三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。
1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。
2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。
L1L1(a)、考毕兹振荡器(b)、交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。
C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。
(a )、克拉泼振荡器 (b )、交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。
高频电子线路实验指导书(八个实验)
目录实验一调谐放大器(实验板1) (1)实验二丙类高频功率放大器(实验板2) (4)实验三 LR电容反馈式三点式振荡器(实验板1) (6)实验四石英晶体振荡器(实验板1) (8)实验五振幅调制器(实验板3) (10)实验六调幅波信号的解调(实验板3) (13)实验七变容二极管调频管振荡器(实验板4) (16)实验八相位鉴频器(实验板4) (18)实验九集成电路(压控振荡器)构成的频率调制器(实验板5) (20)实验十集成电路(锁相环)构成的频率解调器(实验板5) (23)实验十一利用二极管函数电路实现波形转换(主机版面) (25)实验一调谐放大器(实验板1)一、预习要求1、明确本实验的目的。
2、复习谐振回路的工作原理。
3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。
4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。
二、实验目的1、熟悉电子元器件和高频电路实验箱。
2、熟悉谐振回路的幅频特性分析—通频带预选择性。
3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4、熟悉和了解放大器的动态范围及其测试方法。
三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图 1-1 单调谐回路谐振放大器原理图四、实验内容(一)单调谐回路谐振放大器1、实验电路图见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。
(2)接线后,仔细检查,确认无误后接通电源。
2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1*V E ,V B 是三极管的基极和发射极对地电压。
3.动态研究(1)测放大器的动态范围V i ~V 0(在谐振点)选R = 10K ,R 0 = 1K 。
把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压V i ,调节频率f 使其为10.7MHZ ,调节C T 使回路谐振,使输出电压幅度为最大。
高频电子线路实验指导书
高频电子线路实验指导书(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高频电子线路实验指导书钓鱼岛及其附属岛屿自古以来就是中国的固有领土。
主权不容侵犯,领土不容抢夺。
上图为美丽的钓鱼岛。
实验地点:航海西楼 308 室实验要求1.实验前必须充分预习,完指定的预习任务,预习要求如下:1)。
认真阅读实验指导书,分析,掌握实验电路的工作原理,并进行必要的估算。
2)。
完成各实验“预习要求”中指定的内容。
3)。
熟悉实验任务。
4)。
复习实验中使用各仪器的使用方法及注意事项。
2.使用仪器和实验仪前必须了解其性能,操作方法和注意事项。
3.实验时接线要认真,相互仔细检查,确定无误后才能接通电源,初学或没有把握应经指导老师审查同意后再接通电源。
4.高频电路实验注意事项:1)。
卡式高频电路实验仪将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。
2)。
由于高频电路频率较高,分布参数及相会感应的影响较大,所以在接线时连接线要尽可能短,接地点必须接触良好,以减少干扰。
3)。
做放大器实验时如发现波形失真甚至变成方波,应检查工作设置是否正确,或输入信号是否过大。
5.实验中有焊接电路时注意事项:1)。
应先提前给电烙铁通电预热,电烙铁要远离仪器设备和各种测量线,以防烧坏仪器和测量线,导线等,做完实验要拔掉电烙铁,关断电源,防止火灾。
2)。
老师分发的元器件,根据元件列表进行清点,缺少的应让老师补齐。
3)。
有运算放大器电路,运算放大器不能直接焊在电路板上,应先焊上插座,等电路都焊接完成后,再插上运算放大器,电路检查无误后,才能接通电源。
4)。
焊接电路时要合理布局,地线和电源线要用不同颜色的导线,一般电源线要用红线,这样一来电源就不会接错。
5)。
尽量节约使用导线,焊锡,勤俭节约,注意环境卫生。
6)。
实验中故意损坏仪器设备,要按原价赔偿。
6.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟,发烫或有异味)应立即关断电源,保持现场,报告指导老师。
高频电子线路实验指导书
图 5-2 1496构成的调幅器 1.直流调制特性 (1)调RP2电位器使载波输入端平衡:在调制信号输入端IN2加峰值为 100mv, 频率为1kHz的正弦信号,调节RP2电位器使输出端信号最小, 然后去掉输入信号。 (2)在载波输入端IN1加峰值VC为10mv,频率100kHz的正弦信号,用万 用表测量A,B之间的电压VAB,用示波器观察OUT输出端的波形,以 VAB=0.1V为步长,记录RP1由一端跳到另一端的输出波形及其峰值电 压,注意观察相位的变化,根据公式 计算出系数K值,并填入下表: 表5-1 VAB VO(P-P) K 2.实现全载波调幅(AM) (1) 调节RP1使VAB=0.1V,载波信号仍为VC(t)=10sin2π×10^5t(mV),将低 频信号Vs(t)= Vssin2π×10^3t(mV)加至调制器输入端IN2,画出 VS=30mA 和100mA时的调幅波形(标明峰峰值和谷谷值),并测出 其调制度m。 (2) 加大示波器的扫描速率,观察并记录m=100%,和m>100%两种调制度 在过0点附近的波形情况。 (3)载波信号VC(t)不变,将调制信号改为Vs(t)=100sin2π×10^3t(mV), 调 节RP1观察输出波形VAM(t)的变化情况,记录m=30%和m=100%的调幅 波所对应的VAB值. (4) 载波信号不变,将调制信号改为方波,幅值为100mV,观察并记录 VAB=0V,0.1V,0.15V时的已调波. 3. 实现抑制载波调幅(DSB) (1)调RP1使调制端平衡,并在载波信号输入端IN1加VC(t)=10sin2π×10^ 5t(mV) 信号调制信号端IN2不变,观察并记录波形. (2)载波输入端不变,调制信号输入端IN2加Vs(t)=100sin2π×10^ 3t(mV)的信号,观察记录波形,并标明峰峰值电压. (3)加大示波器的扫描速率,观察并记录已调波在零点附近波形,比较 它与m=100%调幅波的区别. (4)所加载波信号和调制信号均不变,微调RP2为某一个值,观察及记
高频电路实验一 操作指导书
实验1 高频小信号调谐放大器实验—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性●双调谐回路●电容耦合双调谐回路谐振放大器●放大器动态范围2.做本实验时所用到的仪器:●单、双调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。
6.熟悉耦合电容对双调谐回路放大器幅频特性的影响;7.了解放大器动态范围的概念和测量方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。
5.采用点测法测量双调谐放大器的幅频特性;7.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;8.用示波器观察放大器动态范围。
四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。
单调谐回路谐振放大器原理电路如图1-1所示。
图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。
C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。
为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。
图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。
高频实验指导书正文
选用LSW251扫频仪调试,实验初调:
①电源取12V正端接下板P3+12V负端接GND地,
表4-2放大器的动态范围Vi-Vo(画出曲线)
Vi(V)
0.02
0.3
Vo(V)
Re=2kΩ
Re=1kΩ
Re=500Ω
S2-2=2KΩ,S2-3=1KΩ,S2-4=500Ω
当Re分别为500Ω、1KΩ、2K时,将结果填入表4-2。在同一坐标纸上画出Ic不同时的动态范围曲线,并进行比较和分析(此时也可在J4两端测Ic值)。
a.连接扫频仪与示波器,示波器DTME/DIV置“XY”
方式。
b.ATTENUATIO置0dB, 0dB衰减键全弹出.
c.调整示波器CH1、CH2的幅度,使CH1=500mV,CH2=5mV。
d.将“SWEEP OUT”线与“FROM T.P”检波头短接,出现双平行线,调节Y增益旋钮微调,并读0dB校正线高度:F=______格。
④扫频仪零dB校正,连接扫频仪与示波器,示波器DTME/DIV置“XY”
方式。ATTENUATIO置0dB, 0dB衰减键全弹出.调整示波器CH1、CH2的幅度,使CH1=500mV,CH2=5mV。将“SWEEP OUT”线与“FROM T.P”检波头短接,出现双平行线,调节Y增益旋钮微调,并读0dB校正线高度:F=___5___格。
被测电路断开电源,频率特性仪频标方式选择外标,调节频标幅度旋钮至最右,MARKER(面板或背板标注)与YM8177A输出端相连,YM8177输出电平99dBμV ,调频率从9MHz到8MHz,适当调节扫频宽度旋钮使波峰频宽适中,频标移动小格数T=______小格,则每小格的频宽Δf=1000KHz/T=_______KHz/T,中心频率f0=______MHz.完成该步骤之后, 扫频宽度旋钮在以后的实验步骤里不要再调动. 接通被测电路电源,频率特性仪波峰高度H=___5___大格, 中心频率9MHz.
高频电子线路实验指导书
高频电子线路实验箱简介THCGP-1型仪器介绍●信号源:本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1)高频信号源输出频率范围:0.4MHz~45MHz(连续可调);频率稳定度:10E–4;输出波形:正弦波;输出幅度:1Vp-p 输出阻抗:75Ω。
2)低频信号源:输出频率范围:0.2kHz~20 kHz(连续可调);频率稳定度:10E–4;输出波形:正弦波、方波、三角波;输出幅度:5Vp-p;输出阻抗:100Ω。
信号源面板如图所示使用时,首先按下“POWER”按钮,电源指示灯亮。
高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档。
按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED亮,当三灯齐亮时,即为1MHz档。
旋转高频频率调节旋钮可以改变输出高频信号的频率。
另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。
音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。
按频率档位选择可在两个档位间切换,并且相应的指示灯亮。
调节音频信号频率调节旋钮可以改变信号的频率。
分别改变三种波形的幅度调节旋钮可以调节输出的幅度。
本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率。
调频波的音频信号为正弦波,载波为信号源内的高频信号。
改变“FM频偏”旋钮调节输出的调频信号的调制指数。
按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。
调节“AM调幅度”可以改变调幅波的幅度。
面板下方为5个射频线插座。
“RF1”和“RF2”插孔为400kHz ——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。
高频电路实验指导书
高频电路实验济南大学信息科学与工程学院电子信息实验中心实验要求1、如果条件许可,实验前将实验内容进行EWB仿真。
2、必须充分预习,完成指定的任务。
预习要求如下:1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。
2)预习各实验内容及步骤。
3)熟悉实验所用仪器的使用方法及注意事项。
3、使用仪器和学习机前必须了解其性能、操作方法和注意事项,在使用时应严格遵守操作规程,并根据实验指导书中的常见问题自查,以保证实验顺利进行。
4、实验时接线要认真,相互仔细检查,确定无误后才能接通电源,初学或没有把握者应经指导老师审查同意后再接通电源。
5、高频电路实验注意:1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。
2)由于高频电路频率较高,分布参数感应的影响较大。
所以在接线时连接线应尽可能短。
接地点必须接触良好,以减少干扰。
3)做放大器实验时,如发现削顶失真甚至变成方波,应检查工作点设置是否准确,输入信号是否过大。
6、实验时应注意观察,如发现有破坏异常性现象应立即关断电源,保护现场,报告指导老师。
找出原因、排除故障,经指导老师同意后再继续实验。
7、实验过程中需要改接线时,应关断电源后才能拆、接线。
8、实验过程中应仔细观察实验现象,认真记录实验结果。
所记录的实验数据经指导老师审阅签字后再拆除实验线路。
9、实验结束后必须关断仪器电源、并将仪器、工具、导线等按附录七的要求归类整理好,检查完毕方可离开,否则扣实验操作分。
10、实验前每个同学必须写预习报告,实验中记录数据,老师签字后才可以带走,实验后写实验报告(实际实验操作报告)。
实验报告写法见最后一页。
11、实验前必须详细阅读本实验指导书!目录目录 (III)实验一熟悉实验仪器 (3)实验二利用二极管函数电路实现波形转换 (7)实验三调谐放大器 (9)实验四高频功率放大器(丙类) (13)实验五 LC电容反馈式三点式振荡器 (19)实验六石英晶体振荡 (22)实验七振幅调制器与解调器(利用乘法器) (24)实验八集成电路构成的频率调制器与解调器 (27)附录一BT3-D型频率特性测试仪 (36)附录二 LSG-17型宽频带信号发生器 (38)附录三 XD-22C型低频信号发生器技术说明书 (39)附录四 DA22A型超高频毫伏表 (40)附录五示波器的原理及使用 (41)附录六 NFC-1000C-1多功能计数器的使用 (43)附录七实验台仪器线缆整理图 (44)实验一熟悉实验仪器一、实验目的熟悉BT3-D型频率特性测试仪、LSG-17型宽频带信号发生器、XD-22C型低频信号发生器、DA22A型超高频毫伏表、NFC-1000C-1型多功能计数器、XJ4339型双踪示波器、MY-65型万用表的,TPE-GP2高频电路实验学习机功能及具体使用方法。
高频电子线路实验指导书(八个实验)(精)
目录实验一调谐放大器(实验板1 (1实验二丙类高频功率放大器(实验板2 (4实验三LR电容反馈式三点式振荡器(实验板1 (6实验四石英晶体振荡器(实验板1 (9实验五振幅调制器(实验板3 (11实验六调幅波信号的解调(实验板3 (14实验七变容二极管调频管振荡器(实验板4.............................. 错误!未定义书签。
实验八相位鉴频器(实验板4...................................................... 错误!未定义书签。
实验九集成电路(压控振荡器构成的频率调制器(实验板5 (17实验十集成电路(锁相环构成的频率解调器(实验板5 (20实验十一利用二极管函数电路实现波形转换(主机版面 ....... 错误!未定义书签。
实验一调谐放大器(实验板1一、预习要求1、明确本实验的目的。
2、复习谐振回路的工作原理。
3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。
4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内,计算回路中心频率f0。
二、实验目的1、熟悉电子元器件和高频电路实验箱。
2、熟悉谐振回路的幅频特性分析—通频带预选择性。
3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4、熟悉和了解放大器的动态范围及其测试方法。
三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图1-1 单调谐回路谐振放大器原理图四、实验内容(一单调谐回路谐振放大器1、实验电路图见图1-1(1按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线。
(2接线后,仔细检查,确认无误后接通电源。
2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1表 1-1E B 3.动态研究(1测放大器的动态范围V i ~V 0(在谐振点选R = 10K ,R 0 = 1K 。
高频电子电路实验指导书
实验一模拟乘法混频一、实验目的1.了解集成混频器的工作原理2.了解混频器中的寄生干扰二、实验内容1.研究平衡混频器的频率变换过程2.研究平衡混频器输出中频电压V i与输入本振电压的关系3.研究平衡混频器输出中频电压V i与输入信号电压的关系4.研究镜象干扰。
三、实验原理及实验电路说明在高频电子电路中,常常需要将信号自某一频率变成另一个频率。
这样不仅能满足各种无线电设备的需要,而且有利于提高设备的性能。
对信号进行变频,是将信号的各分量移至新的频域,各分量的频率间隔和相对幅度保持不变。
进行这种频率变换时,新频率等于信号原来的频率与某一参考频率之和或差。
该参考频率通常称为本机振荡频率。
本机振荡频率可以是由单独的信号源供给,也可以由频率变换电路内部产生。
当本机振荡由单独的信号源供给时,这样的频率变换电路称为混频器。
混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号V L,并与输入信号V S经混频器后所产生的差频信号经带通滤波器滤出。
本实验采用集成模拟相乘器作混频电路实验。
因为模拟相乘器的输出频率包含有两个输入频率之差或和,故模拟相乘器加滤波器,滤波器滤除不需要的分量,取和频或者差频二者之一,即构成混频器。
图4-1所示为相乘混频器的方框图。
设滤波器滤除和频,则输出差频f 信号。
图4-2为信号经混频前后的频谱图。
我们设信号是:载波频率为S的普通调幅波。
本机振荡频率为L f 。
设输入信号为t V v S S S ωcos =,本机振荡信号为t V v L L L ωcos = 由相乘混频的框图可得输出电压tV tV V K K v S L S L S L M F )cos()cos(2100ωωωω-=-=式中 S L M F V V K K v 210=定义混频增益M A 为中频电压幅度0V 与高频电压S V 之比,就有L M F S M V K K V V A 210==图4-3为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。
高频电子线路实验指导书通信技术专业适用
高频电子线路实验指导书通信技术专业适用高频电子线路实验是通信技术专业学生在学习通信电子技术时必须掌握的一项基础实验,本文将介绍一份适用于通信技术专业的高频电子线路实验指导书。
第一章实验介绍本章介绍实验目的和基本内容,包括实验原理、实验器材和实验要求。
在实验原理中,我们要强调实验的目的是让学生了解高频电路的基本原理和设计方法,提高学生的实际操作能力。
在实验器材中,要详细列出所需的仪器和设备,并说明各器材的功能和特点。
在实验要求中,要求学生严格按照实验流程操作,保证实验的准确性和安全性。
第二章实验内容本章介绍实验的详细内容,包括实验前准备、实验步骤、实验数据处理和实验结果分析。
在实验前准备中,要求学生掌握实验原理、理解实验要求、熟悉实验器材。
在实验步骤中,要求学生按照实验流程逐步操作,注意实验器材的调整和使用。
在实验数据处理中,要求学生根据实验数据进行计算和分析,得出结论。
在实验结果分析中,要求学生对实验结果进行总结和分析,发现其中的问题和改进方案。
第三章经验总结本章介绍学生在实验中遇到的问题和解决方案,以及实验过程中需要注意的事项。
在遇到问题时,要求学生及时向老师和同学请教,寻求解决方案,在实验中要注意安全问题,确保自身安全和实验器材的安全。
第四章实验报告本章介绍实验报告的要求和格式,包括实验报告的基本结构、实验数据分析、结论和建议。
在实验报告中,要求学生清晰明了地描述实验过程和结果,注重数据分析和实验过程中遇到的问题和解决方案,发表自己的见解和建议。
结语通过可靠的实验指导和系统的实践操作,学生能够更好地掌握实际操作技能,从而提高综合素质,为今后的学习和工作打下基础。
本文所介绍的高频电子线路实验指导可以成为通信技术专业学生实践操作的重要参考资料,让学生能够更好地理解实验原理和方法,提高实际操作能力。
高频电子线路实验指导书
实验一高频小信号调谐放大器实验一、实验目的1、掌握谐振放大器静态工作点、电压增益、通频带及选择性的测试、计算;2、掌握高频小信号放大器动态范围的测试方法;3、熟悉高频实验箱、示波器、信号源及万用表的使用方法。
二、实验仪器高频实验箱1台;双踪示波器1台;数字万用表1块;高频信号发生器1台;G1实验板一块。
三、实验内容及步骤(一)、单调谐回路谐振放大器1、电路连线根据电路原理图弄清实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件,电路原理图参见图1。
图1单调谐回路谐振放大器电路图2、静态测量选Re = 1K,在不加输入信号时用万用表测量各静态工作点,将测量数据填入表1中。
根据表1测试结果判断三极管(9018)是否工作在放大区并说明原因。
提示:I CQ ≈I EQ;I EQ = V E / Re (Re = 1K)。
3、输入动态范围和Re变化对放大性能影响的测试(1)将谐振回路电阻R(10K)接入谐振回路,选R e = 1k。
将高频信号发生器输出接到电路输入端(IN段),高频信号发生器波形选择正弦波,频率调整到10.7MHz(谐振回路的谐振频率),把示波器探头接到电路的输出端(OUT端)。
(2)从小到大调整高频信号发生器输出信号,观察示波器显示波形,分别记下开始出现正常信号(正弦波)和最后出现失真时的输入信号值,将出现最小信号的输入信号值填入表2输入电压(U i)栏的第一个格里,出现失真时的电压值填入最后一个格里(两者之差即为放大器的输入动态范围),中间的格按等分填入。
(3)用信号源输入表2中输入电压(U i)的值,在Re为1K、500Ω、2K时将示波器显示的输出值(U o)填入表2中。
(4)根据测试结果分析Re变化对放大性能的影响。
4、放大器频率特性测试(1)选回路电阻R=10K,输入电压Ui取表2中的中间值,将高频信号发生器输出端接至电路输入端。
调节频率f使其为10.7MHz,调节C T(微调电容器)使回路谐振(输出电压幅度为最大),此时的回路谐振频率为f0=10.7MHz(为中心频率)。
高频电子线路实验指导书
《高频电子线路》实验指导书湖南工业大学电气与信息工程学院实验一高频单调谐回路放大器一、实验类型验证型实验二、实验目的与任务1、熟悉谐振放大器的幅频特性、通频带和选择性;2、熟悉信号源内阻及负载对谐振回路的影响,了解展宽频带的方法;3、掌握放大器的动态范围及其测试方法。
三、实验基本原理1. 单调谐回路放大器实验电路如图 1-1 所示图1-1单调谐小信号放大器在图 1-1 中 ,L2、C5、C6为π型滤波电路,其作用是为了减少交流高频信号对直流电源的影响。
+12V电源、R1、R2和R6、R7、R8为放大电路提供直流静态工作点,C3为发射极旁路电容。
L1、C2和Ct为选频回路(也称为谐振回路),改变Ct的值,可以改变回路的谐振频率。
三极管T及其输出阻抗相当于谐振回路的信号源和信号源内阻,R3、R4、R5相当于负载,改变R3、R4、R5的阻值,将对谐振回路产生影响。
C4为隔直电容,它能够有效防止不同放大级之间直流信号的相互影响,又可使交流信号顺利通过。
若忽略三极管输出电容和负载电容的影响,谐振频率为:LCf o π21=对于放大电路而言,L1、C2和Ct 回路相当于负载,当发生谐振时,选频回路的阻抗最大,为纯电阻性,这时放大电路的电压放大倍数最大;改变信号源频率,选频回路就会失谐,其阻抗值迅速减小,电压放大倍数也迅速减小,通常小信号调谐放大器就工作在谐振频率处,它允许与其频率一致的信号通过并进行放大,对于与其谐振频率不一致的频率信号,则不进行放大而被禁止通过,这就是“选频”的含义。
改变电容Ct ,可以改变选频回路的谐振频率,从而使得不同频率的信号通过。
调谐放大器的谐振频率,一般有两种测量方法,一是扫频法 ;一种是逐点法。
所谓扫频法,一般采用频率特性测试仪,先将频率特性测试仪提供的扫频信号接到单级放大器的输入端,单级放大器的输出端接到频率特性测试仪的输入端,然后调节中心频率旋钮,屏幕上就可显示出放大器的谐振曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电路实验指导书古丽米拉、张婧婧新疆农业大学计算机与信息工程学院电子实验室2009年3月目录第一部分高频电路实验系统介绍一、实验系统概述 (2)二、实验箱箱体结构说明 (2)三、高频实验模块介绍及实验说明 (4)第二部分高频电路实验部分实验一单调谐回路谐振放大器及通频带展宽实验 (5)实验二丙类功率放大器实验 (7)实验三(1)电容反馈三点式振荡器实验 (9)实验三(2)石英晶体振荡器实验...................................................... (11)实验四幅度调制器实验 (13)实验五调幅波信号的解调实验 (15)实验六变容二极管频率调制电路实验 (17)实验七频率解调电路实验 (19)实验八相位调制器实验 (20)实验九集成混频器电路实验 (21)高频电路实验系统介绍一、高频电路实验系统概述本系统由实验箱和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。
实验箱带有一个0Hz~120KHz的低频信号源、一个20KHz~10MHz的高频信号源、一个音频接口单元。
此外高频Ⅳ型实验系统还带有一个频率计单元(高频Ⅲ型无此单元)。
实验箱可使用自带电源,也可通过右上角的4针电源接口从外部引入。
高频电路单元采用模块式设计,将有关联的单元电路放在一个模块内。
高频模块可插在实验箱的4个固定孔上,配合高、低频信号源和频率计即可进行高频电路实验。
二、实验箱箱体结构说明箱体结构如图一所示:图一1、电源接口实验箱提供-8V、+5V、-5V、-12V、+12V五组电源输出。
当电源正常时,各组电源对应的指示灯均被点亮。
2、低频信号源本实验箱采用集成函数发生器ICL8038产生正弦波、方波和三角波,频率为0Hz —120KHz连续可调。
使用时先选择波形,然后将“频率选择”开关打到合适的档位,再通过“频率调节”旋钮调出所需要的频率。
“幅度调节”旋钮使输出信号的幅度从0V到5V连续可调。
“占空比调节”旋钮可调节输出信号的占空比,“失真度调节”旋钮可调整正弦波的失真度。
3、高频信号源高频信号源采用MAX038作为信号发生器,本实验箱只能输出正弦波,频率为20KHz—10MHz连续可调,幅度从0V到5V连续可调。
使用时先将“频率选择”开关打到合适的档位,再通过“频率调节”和“幅度调节”旋钮调出所需要的频率和幅值的信号。
4、频率计***(仅高频Ⅳ型有)频率计的参数为:显示:5位,红LED显示、量程:50Hz—12MHz精度:1%±1字、灵敏度:150mVrms、最大输入电平:10Vp-p输入阻抗:1M欧姆SELECT按钮为通道选择。
SELECT弹起选择通道1输入,SELECT按下选择通道2输入。
数码管左侧有红、绿两个指示灯作为单位显示,红灯亮时单位为“KHz”,绿灯亮时单位为“Hz”。
5、音频接口单元:音频接口单元电路如下图所示:图二麦克风电路采用LM741放大器,其输入、输出均为耳机接口。
扬声器电路采用LM386音频功率放大器,输入为耳机接口,输出有耳机接口,也有二号孔接口。
如将AOUT插孔和SPIN插孔连接,输入的语音信号经功放直接进入扬声器。
如AOUT插孔和SPIN插孔断开,则可从其它电路输入音频信号至SPIN。
6、外接实验模块区外接模块采用插拔式结构设计,通过卡钉与实验箱连接,便于安装和拆卸。
注意:插拔模块要在断电的状态下进行。
三、高频模块介绍及实验说明本系统配有十个高频模块,分别为:1、单、双调谐放大模块2、丙类功率放大模块3、LC振荡、石英晶体振荡模块4、幅度调制、解调模块5、频率调制、解调模块6、小功率调频发射模块7、小功率调频接收和音频放大模块8、小功率调频接收和相位调制模块9、集成混频器模块10、集成锁相环和频率合成模块各模块的的表面均覆有该实验电路的原理图。
各模块的电源均用导线从实验箱上引入,模块上设有电源指示灯。
高频电路实验要求:1、实验之前必须充分预习,认真阅读实验指导书,掌握好实验所必需的有关原理和理论知识;2、对实验中所用到的仪器使用之前必须了解其性能、使用方法和注意事项,并在实验时严格遵守;3、动手实验之前应仔细检查电路,确保无误后方能接通电源;4、由于高频电路的特点,要求每次实验时连线要尽可能地短且整齐,不要有多余的线;5、调节可变电容或可变电阻时应使用无感改锥;6、需要改接连线时,应先关断电源,再改接线;7、实验中应细心操作,仔细观察实验现象;8、实验中如发现异常现象,应立即关断电源,并报告指导老师;9、实验结束后,必须关断电源,整理好仪器、设备、工具和实验导线。
高频电路实验部分实验一、单调谐回路谐振放大器及通频带展宽实验一、实验目的:1、熟悉高频电路实验箱的组成及其电路中各元件的作用;2、熟悉并联谐振回路的通频带与选择性等相关知识;3、熟悉负载对谐振回路的影响,从而了解频带扩展;4、熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。
二、预习要求:1、复习选频网络的特性分析方法;2、复习谐振回路的工作原理;3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。
三、实验电路说明:本实验电路如图1-1所示。
图1-1W、R1、R2和Re1(Re2)为直流偏置电路,调节W可改变直流工作点。
C2、C3、L1构成谐振回路,R3为回路电阻,RL为负载电阻。
四、实验仪器:1、双踪示波器2、万用表3、数字频率计4、实验箱及单、双调谐放大模块五、实验内容和步骤:1、测量谐振放大器的谐振频率:1)拨动开关K3至“RL”档;2)拨动开关K1至“OFF”档,断开R3 ;3)拨动开关K2,选中Re2;4)检查无误后接通电源;5)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;6)使高频信号发生器的正弦信号输出幅度为300mV左右,调节其频率在2—11MHz 之间变化,找到谐振放大器输出电压幅度最大且波形不失真的频率并记录下来;(注意:如找不到不失真的波形,应同时调节W来配合)2、测量放大器在谐振点的动态范围:1)拨动开关K1,接通R3;2)拨动开关K2,选中Re1;3)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;4)调节高频信号发生器的正弦信号输出频率为4MHz,调节C2使谐振放大器输出电压幅度u0 最大且波形不失真。
此时调节高频信号发生器的信号输出幅度由300mV变化到1V,使谐振放大器的输出经历由不失真到失真的过程,记录下最大不失真的u0值(如找不到不失真的波形,可同时微调一下W和C2来配合),填入表1-1:表1-15)再选Re2=500Ω,重复第4)步的过程;6)在相同的坐标上画出不同Ic(由不同的Re决定)时的动态范围曲线,并进行分析和比较。
3、测量放大器的通频带:1)拨动开关K1,接通R3;2)拨动开关K2,选中Re2;3)拨动开关K3至“RL”档;4)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;5)调节高频信号发生器的正弦信号输出频率为4MHz,信号输出幅度为300mV左右,调节C2使输出电压幅度u0最大且波形不失真(注意检查一下此时谐振放大器如无放大倍数可调节W)。
以此时回路的谐振频率4MHz为中心频率,保持高频信号发生器的信号输出幅度不变,改变频率由中心频率向两边偏离,测得在不同频率时对应的输出电压uo,频率偏离的范围根据实际情况确定。
将测量的结果记录下来,并计算回路的谐振频率为4MHz时电路的电压放大倍数和回路的通频带;6)拨动开关K1,断开R3,重复第5)步。
比较通频带的情况。
六、实验报告要求:1、画出实验电路的交流等效电路;2、整理各实验步骤所得的数据和图形,绘制出单谐振回路接与不接回路电阻时的幅频特性和通频带,分析原因;3、分析Ic的大小不同对放大器的动态范围所造成的影响。
4、谈谈实验的心得体会。
实验二、丙类功率放大器实验一、实验目的:1、了解谐振功率放大器的基本工作原理,初步掌握高频功率放大电路的计算和设计过程;2、了解电源电压与集电极负载对功率放大器功率和效率的影响。
二、预习要求:1、复习谐振功率放大器的原理及特点;2、分析图2-2所示的实验电路,说明各元件的作用。
三、实验电路说明:本实验电路如图2-1所示。
图2-1本电路由两级组成:Q1等构成前级推动放大,Q2为负偏压丙类功率放大器,R4、R5提供基极偏压(自给偏压电路),L1为输入耦合电路,主要作用是使谐振功放的晶体三极管的输入阻抗与前级电路的输出阻抗相匹配。
L2为输出耦合回路,使晶体三极管集电极的最佳负载电阻与实际负载电阻相匹配。
R14为负载电阻。
四、实验仪器:1、双踪示波器2、万用表3、实验箱及丙类功率放大模块五、实验内容及步骤;1、将P2、P3用导线短接,将开关拨到接通R14的位置,用万用表测量3DG12的发射极电压。
通过原理图上的参数,可计算发射极电流。
2、检查无误后打开电源开关,调整W使万用表电压的指示最小(时刻注意监控电流不要过大,否则损坏晶体三极管);3、将示波器接在TP1和地之间,在输入端P1接入8MHz幅度约为500mV的高频正弦信号,缓慢增大高频信号的幅度,直到示波器出现波形。
这时调节L1、L2,使集电极回路谐振,即示波器的波形为最大值且不失真,电压表的指示为最小值。
4、根据实际情况选两个合适的输入信号幅值,分别测量各工作电压和峰值电压及电流,并根据测得的数据分别计算:1)电源给出的总功率;2)放大电路的输出功率;3)三极管的损耗功率;4)放大器的效率。
六、实验报告要求:1、根据实验测量的数值,写出下列各项的计算结果:1)电源给出的总功率;2)放大电路的输出功率;3)三极管的损耗功率;4)放大器的效率。
2、说明电源电压、输出电压、输出功率的关系。
实验三(1)、电容反馈三点式振荡器实验一、实验目的:1、通过实验深入理解电容反馈三点式振荡器的工作原理,熟悉电容反馈三点式振荡器的构成和电路各元件的作用:2、研究不同静态工作点对振荡器起振、振荡幅度和振荡波形的影响;3、学习使用示波器和频率计测量高频振荡器振荡频率的方法;4、观察电源电压和负载变化对振荡幅度和振荡频率及频率稳定性的影响。
二、预习要求:1、复习LC振荡器的工作原理,了解影响振荡器起振、波形和频率的各种因素;2、了解实验电路中各元件作用.三、实验电路说明:图3-1C2、C3、C4、C5和L1组成振荡回路。
Q1的集电极直流负载为R3,偏置电路由R1、R2、W和R4构成,改变W可改变Q1的静态工作点。
静态电流的选择既要保证振荡器处于截止平衡状态也要兼顾开始建立振荡时有足够大的电压增益。
Q2与R6、R8组成射随器,起隔离作用。
振荡器的交流负载实验电阻为R5。
R7的作用是为了用频率计(一般输入阻抗为几十Ω)测量振荡器工作频率时不影响电路的正常工作。