实验四 UART串口通信实验报告

合集下载

串口通信实验报告

串口通信实验报告

试验三双机通讯试验【1 】一、试验目标UART 串行通讯接口技巧运用二、试验实现的功效用两片焦点板之间实现串行通讯,将按键信息互发到对方数码管显示.三、体系硬件设计(1)单片机的最小体系部分(2)电源部分(3)人机界面部分数码管部分按键部分(4)串口通讯部分四、体系软件设计#include <STC.H>#define uchar unsigned char#define uint unsigned intvoid send();uchar code0[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//0-9的数码管显示sbit H1=P3^6;sbit H2=P3^7;sbit L1=P0^5;sbit L2=P0^6;sbit L3=P0^7;uint m=0,i=0,j;uchar temp,prt;/***y延时函数***/void delay(uint k){uint i,j; //界说局部变量ijfor(i=0;i<k;i++) //外层轮回{for(j=0;j<121;j++); //内层轮回}}/***键盘扫描***/char scan_key(){ H1=0;H2=0;L1=1;L2=1;L3=1;if(L1==0){ delay(5);if (L1==0){ L1=0;H1=1;H2=1;if(H1==0){ m=1; //KEY1键按下return(m);}if(H2==0){ m=4; //KEY4键按下return(m);}}}if(L2==0){ delay(5);if (L2==0){ L2=0;H1=1;H2=1;if(H1==0){ m=2; //KEY2键按下return(m);}if(H2==0){ m=5; //KEY5键按下return(m);}}}if(L3==0){ delay(5);if (L3==0){ L3=0;H1=1;H2=1;if(H1==0){ m=3; //KEY3键按下return(m);}if(H2==0){ m=6; // KEY6键按下return(m);}}}return(0);}/***主函数***/main(){P1M1=0x00;P1M0=0xff;SCON=0x50;//设定串行口工作方法1TMOD=0x20;//准时器1,主动重载,产生数据传输速度 TH1=0xfd;//数据传输率为9600TR1=1;//启动准时器1P0&=0xf0;while(1){if(scan_key()) //假如有按键按下{SBUF=scan_key(); //发送数据while(!TI); // 等待数据传送TI=0; // 消除数据传送标记}if(RI) //是否稀有据到来{RI=0; // 消除数据传送标记temp=SBUF; // 将吸收到的数据暂消失temp中}P1=code0[temp]; // 数据传送到P1口输出delay(500); //延时500ms}}五、试验中碰到的问题及解决办法(1)串行口和准时器的工作方法设定是症结,本次是按需传输的是两位十六进制数,串行口为工作方法1,准时器为8位主动重载;(2)采取P0&=0xf0语句使4个数码管静态点亮;(3)在发送和接收进程中,用标识位TI和RI来检测发送和接收是否完成;(4)在用电脑和单片机进行串口通讯测试时,电脑的传世速度必定要和单片机的传输速度相等,不然显示会消失错误.指点先生签字:日期:。

uart实验报告

uart实验报告

uart实验报告
《UART实验报告》
实验目的:通过实验学习串行通信的基本原理,掌握UART通信协议的工作原理和使用方法。

实验设备:单片机开发板、串口调试助手、电脑。

实验原理:UART(Universal Asynchronous Receiver/Transmitter)是一种通用的异步串行通信协议,用于在计算机和外部设备之间进行数据传输。

UART通信协议包括数据位、停止位、奇偶校验位等参数,通过这些参数的设置可以实现不同的通信速率和数据传输方式。

实验步骤:
1. 连接单片机开发板和电脑,打开串口调试助手。

2. 在单片机开发板上编写UART通信程序,设置通信参数。

3. 将单片机开发板通过串口连接到电脑,打开串口调试助手。

4. 在串口调试助手上发送数据,观察单片机开发板接收到的数据。

5. 在单片机开发板上发送数据,观察串口调试助手接收到的数据。

实验结果:
经过实验,我们成功地实现了通过UART通信协议在单片机开发板和电脑之间进行数据传输。

在串口调试助手上发送的数据能够被单片机开发板正确接收,并且在单片机开发板上发送的数据也能够被串口调试助手正确接收。

通过调整通信参数,我们还验证了不同通信速率和数据传输方式对通信效果的影响。

实验总结:
通过本次实验,我们深入了解了UART通信协议的工作原理和使用方法,掌握
了串行通信的基本原理。

在今后的学习和工作中,我们将能够更加熟练地应用UART通信协议进行数据传输,为实际工程应用打下了坚实的基础。

串口通信实验报告

串口通信实验报告

串口通信实验报告串口通信实验报告一、引言串口通信是一种常用的数据传输方式,广泛应用于计算机与外部设备之间的数据交互。

本实验旨在通过对串口通信的实际操作,掌握串口通信的基本原理和实现方法。

二、实验目的1. 理解串口通信的基本原理;2. 学会使用串口通信的相关指令和函数;3. 掌握串口通信的实际应用。

三、实验器材与软件1. 单片机开发板;2. 电脑;3. 串口线;4. 串口调试助手软件。

四、实验步骤1. 连接单片机开发板和电脑,使用串口线将它们连接起来;2. 打开串口调试助手软件,设置串口参数(波特率、数据位、停止位等);3. 在单片机开发板上编写相应的程序,实现串口通信功能;4. 将程序下载到单片机开发板上,并启动程序;5. 在串口调试助手软件中发送数据,并观察单片机开发板上的反应;6. 分析实验结果,总结串口通信的特点和应用。

五、实验结果与分析经过实验,我们成功地实现了串口通信功能。

在串口调试助手软件中发送数据时,单片机开发板能够正确接收并处理数据,并作出相应的反馈。

通过实验结果的分析,我们可以得出以下结论:1. 串口通信具有较高的可靠性和稳定性,适用于长距离数据传输;2. 串口通信的速度较慢,适用于对数据传输速度要求不高的场景;3. 串口通信可以实现双向数据传输,方便实现设备之间的数据交互。

六、实验心得本次实验让我对串口通信有了更深入的了解。

通过实际操作,我掌握了串口通信的基本原理和实现方法,并学会了使用串口调试助手软件进行串口通信调试。

在实验过程中,我遇到了一些问题,例如串口参数设置不正确导致通信失败等。

但通过不断调试和排查,最终成功解决了这些问题。

这让我更加明白了实验的重要性,只有亲自动手去实践,才能真正掌握知识。

通过这次实验,我还意识到串口通信在现实生活中的广泛应用。

无论是计算机与外部设备的数据交互,还是嵌入式系统的开发,串口通信都扮演着重要的角色。

因此,掌握串口通信技术对于我们的学习和工作都具有重要意义。

实验4 UART实验

实验4 UART实验

实验四uart实验1.实验类型:设计性实验2.实验目的:了解和熟悉实验箱硬件、UART通信程序设计及烧写等3.实验内容:(1) 根据硬件结构写出S3C2410与PC机的串口通信程序;(2) 根据接收命令控制LED灯的显示;4.关键实验步骤:1.把并口线插到pc机的并口,并把并口与JTAG相连,JTAG与开发板的14针JTAT口相连,打开2410-S.2.把整个GIVEIO目录拷贝到C:\WINDOWS下,并把该目录下的giveio.sys文件拷贝到c:/windows/system32/drivers下。

3.在控制面板里,选添加硬件>下一步>选-是我已经连接了此硬件>下一步>选中-添加新的硬件设备>下一步>选中安装我手动从列表选择的硬件>下一步>选择-显示所有设备>选择-从磁盘安装-浏览,指定驱动为C:\WINDOWS\GIVEIO\giveio.inf文件,点击确定,安装好驱动.4.根据硬件连接图编写控制程序,并生成bin文件.5.在d盘新建一目录ARM,把sjf2410.exe和要烧写的bin文件拷贝到该目录下,在程序-附件-msdos下,进入该目录,运行sjf2410 命令如下:sjf2410 /f:bin 文件.在此后出现的三次要求输入参数,第一次是让选择Flash,选0;第二次是选择jtag对flash的两种功能,也选0;第三次是让选择起始地址,选0此后就等待大约3-5分钟的烧写时间,当VIVI 烧写完毕后选择参数2,退出烧写。

烧录后重新启动2410-S,观察不同控制程序的实验现象。

#define ULCON0 (*(volatile unsigned long *)0x50000000)#define UCON0 (*(volatile unsigned long *)0x50000004)#define UTRSTA T0 (*(volatile unsigned long *)0x50000010)#define UTXH0 (*(volatile unsigned long *)0x50000020)#define URXH0 (*(volatile unsigned long *)0x50000024)#define UBRDIV0 (*(volatile unsigned long *)0x50000028)#define GPHCON (*(volatile unsigned long *)0x56000070)//#define GPHDAT (*(volatile unsigned long *)0x56000074) #define GPHUP (*(volatile unsigned long *)0x56000078)void Delay(unsigned long x);int Main(){unsigned long uartrecdata=0x09;ULCON0=0x03;UCON0=0x45;UBRDIV0=0x13;GPHCON=0x000000A0;GPHUP=0x00000000;while(1){while(!(UTRSTAT0&0x2)); //等待知道THR变空//改动延时时间1--10 Delay(100);UTXH0 =uartrecdata;Delay(100);while(!(UTRSTAT0&0x1)); //等待直到接受到一个数据uartrecdata=URXH0;Delay(100);}return 0;}void Delay(unsigned long x){unsigned long i,l=0;for(i=0;i<=x;i++);}IMPORT MainAREA Init,CODE,READONLYENTRYLDR R0,=0x53000000mov r1,#0STR R1,[R0]BL MainEND#define IOPMOD (*(volatile unsigned long *)0x56000020)#define IOPDATA (*(volatile unsigned long *)0x56000024)void Delay(unsigned long x);int Main(){unsigned long LED;IOPMOD=0x00005400; LED=0x00000001;while(1){IOPDATA=LED;LED=(LED<<1);if(LED==0x00000100)LED=0x00000001;Delay(200000);}return 0;}void Delay(unsigned long x){ unsigned long i;for(i=0;i<=x;i++) ;}。

串行通讯实验报告

串行通讯实验报告

串行通讯实验报告实验目的:1.了解串行通讯的基本概念和原理。

2.学习串行通讯的常用协议和流程。

3.实现串行通讯的发送和接收功能。

4.掌握使用串行通讯进行数据传输的方法。

实验器材:1.PC机一台。

2.串行通讯扩展板一块。

3.经典串行通讯工具软件。

实验原理:串行通讯是指信息逐位地按顺序进行传输的通讯方式。

串行通讯需要通过物理通道将数据逐位地传输给接收方。

常用的串行通讯协议有UART (通用异步收发传输)协议、SPI(串行外设接口)协议和I2C(串行外设接口)协议等。

实验步骤:1.将串行通讯扩展板连接到PC机上的串行通讯端口。

2.在PC机上安装串行通讯工具软件,并打开软件。

3.配置串行通讯参数,包括波特率、数据位、停止位和校验位等。

4.在串行通讯工具软件中编写发送数据的程序,并发送数据。

5.在串行通讯工具软件中接收数据,并验证接收的数据是否正确。

实验结果与分析:在实验中,我们使用串行通讯扩展板和串行通讯工具软件实现了串行通讯的发送和接收功能。

我们先配置了串行通讯的参数,在发送数据之前,我们选择了合适的波特率、数据位、停止位和校验位等。

然后,在发送数据之后,我们使用串行通讯工具软件接收数据,并验证接收的数据是否正确。

实验中我们可以观察到发送和接收的数据都是逐位地传输的,并且发送和接收的数据需要保持一致。

如果发送和接收的数据不一致,可能是由于串行通讯参数配置错误或者数据传输过程中产生了错误。

实验总结:通过本次实验,我们了解了串行通讯的基本概念和原理,学习了串行通讯的常用协议和流程,掌握了使用串行通讯进行数据传输的方法。

在实验中,我们成功完成了串行通讯的发送和接收功能,并验证了接收的数据是否正确。

实验中还存在一些问题,比如串行通讯的参数配置可能会影响数据的传输效果,我们需要根据具体情况选择合适的参数。

另外,数据传输中可能会产生噪声和错误,我们需要采取一些纠错措施来提高数据的传输可靠性。

总的来说,本次实验对我们了解串行通讯的原理和应用有很大帮助,为今后的学习和实践打下了良好的基础。

uart串口通信实验报告

uart串口通信实验报告

串口通信实验报告基本实验:16位的乘法器设计思想:乘法器根据以往学过数电的设计经验,应该是移位相加的方法,设被乘数为[15:0]a,乘数为[15:0]b,则从b的最高位开始算起,c初值为0,为b最高位为1,则c就等于c+a;接下来,若b的次高位为1,则c左移一位加a,若为0则c左移一位就可以了,这样的步骤做到b的最低位那么c的值就是a*b,当然最好c是中间寄存器,这样结果才不会出现中间值。

实验的源码:module muti(clk,rst,ready,a,b,c);input clk;input rst;input [15:0]a;input [15:0]b;output [31:0]c;output ready;reg [31:0]c;reg ready;reg [31:0]temp;reg [5:0]n;always @(posedge clk or posedge rst)beginif(rst)beginc<=0;ready<=1;temp<=0;n<=32;endelseif(ready)begintemp<=0;n<=32;ready<=0;endelseif(n)beginif(b[n-1])begintemp<=(temp<<1)+a;n<=n-1;endbegintemp<=temp<<1;n<=n-1;endendelsebeginc<=temp;n<=32;ready<=1;endendendmodul测试代码:`timescale 1ns/1ns module tb;reg clk;reg [15:0]a;reg [15:0]b;reg rst;wire ready;wire [31:0]c;always #10 clk=~clk; initialbeginrst<=1;clk<=0;a=0;b=0;#10 rst=0;#21 a=21;b=32;#650 a=3;b=4;#700 $stop;endmuti muti_unit(.a(a),.b(b),.rst(rst),.clk(clk),.ready(ready),.c(c));endmodule这边a被乘数,b是乘数,当rst为高时,则将c置0,ready置一,ready信号为高表示此时空闲可以计算,rst为低时则开始计算,21*32为672,3*4为12,在乘法操作时,ready信号为低电平表示在工作中不能再输入进行计算,当计算结束则变为高电平。

串口通讯实验报告

串口通讯实验报告

串口通讯实验报告串口通讯实验报告一、引言串口通讯是计算机与外部设备进行数据交互的一种重要方式。

在本次实验中,我们通过使用串口通讯实现了计算机与单片机之间的数据传输,探索了串口通讯的原理和应用。

二、实验目的本次实验的目的是通过串口通讯实现计算机与单片机之间的数据传输,并观察数据的传输过程和结果。

通过这个实验,我们可以更好地理解串口通讯的工作原理,并掌握串口通讯的基本操作方法。

三、实验原理串口通讯是通过串行传输方式实现数据传输的。

在计算机和外部设备之间,数据通过串行的方式进行传输,即逐位地进行传送。

串口通讯的原理主要包括波特率、数据位、停止位和校验位等参数的设置。

四、实验步骤1. 准备工作:连接计算机和单片机,确保串口线连接正确。

2. 设置串口参数:打开计算机的串口设置工具,设置波特率、数据位、停止位和校验位等参数。

3. 单片机编程:编写单片机程序,设置串口通讯的相关参数,并实现数据的接收和发送功能。

4. 计算机编程:编写计算机程序,通过串口通讯接收单片机发送的数据,并进行相应的处理和显示。

5. 实验验证:运行单片机程序和计算机程序,观察数据的传输过程和结果,验证串口通讯的正确性。

五、实验结果与分析经过实验,我们成功地实现了计算机与单片机之间的数据传输。

通过串口通讯,我们可以将计算机上的数据发送到单片机上,并从单片机上接收到数据,实现了双向的数据交互。

我们还观察到,在不同的串口参数设置下,数据传输的速度和稳定性会有所差异。

六、实验应用串口通讯在现实生活中有着广泛的应用。

例如,我们可以通过串口通讯将计算机连接到打印机或扫描仪上,实现打印和扫描功能。

此外,串口通讯还可以应用于工业自动化控制、仪器仪表通讯等领域。

七、实验总结通过本次实验,我们深入了解了串口通讯的原理和应用,并成功地实现了计算机与单片机之间的数据传输。

通过实验,我们掌握了串口通讯的基本操作方法,并对串口通讯的参数设置和数据传输过程有了更深入的理解。

嵌入式体系结构实验4-UART实验

嵌入式体系结构实验4-UART实验

实验四UART通信实验1、实验目的•掌握S3c2410UART串口通信的工作原理•掌握s3c2419串口初始化的方法•掌握使用串口进行数据收、发的程序结构。

•了解通过串口通信进行设备控制的方法。

2、实验设备•硬件:PC 机,嵌入式系统实验箱•软件:ADS1.2或者KEIL MDK3、实验内容3.1 s3c2410的UART模块S3c2410处理器内部集成了3个独立的UART通信接口,UART0、UART1和UART2,具有以下特征:•所有的UART接口都可以选择采用查询、中断或者DMA控制方式。

•各UART波特率的时钟源可以选择PCLK或者UCLK,通过配置波特率分频系数,通信采用的波特率可调,最高可达230.4KPS。

•每个UART通信模块都拥有16字节大小的收/发数据队列各一个。

•内置红外(IrDA)编码器和解码器,支持红外工作模式。

•UART0和UART1配有nRTS和nCTS信号,支持握手传输方式。

•内部可检测多种接收错误,包括帧覆盖错误、奇偶校验错、帧格式错、间断状态等,并支持错误中断请求。

•可通过编程配置帧格式、工作模式(AFC、回环模式、红外模式)、FIFO、控制方式选择等等。

UART应用编程,包括两个部分,即UART初始化配置和UART通信控制。

涉及的底层特殊功能寄存器包括各种控制寄存器、状态寄存器和数据寄存器。

UART初始化过程就是针对各种控制寄存器的初始化配置。

利用查询方式进行通信控制方式,主要通过查询状态寄存器,读写数据寄存器实现的。

3.2 S3c2410的UART 模块相关SFR通过查询UTRSTAT 寄存器的Transmitter empty 位和Receive buffer data ready 位,确定是否能够向UTXHn 写入数据和从URXHn 读取数据。

图1 查询方式进行发送 图2 查询方式进行接收4、实验要求对给定的工程文件进行修改,逐步完成以下要求。

4.1 阅读、理解、测试给定代码重新编译UART的ADS工程文件,将生成的目标二进制文件system.bin, 通过vivi 的下载命令:load flash ucos x 下载到实验台的flash存储器ucos 分区,然后执行命令boot smc ucos ,执行刚刚下载的二进制文件。

串口传输实验总结

串口传输实验总结

串口传输实验总结引言串口通信是一种常见的数据传输方式,特别适用于嵌入式系统和电子设备之间的通信。

在本次实验中,我们通过使用串口通信来实现数据的传输和接收。

本文档将总结我们在这个实验中的经验和教训,并提供一些关于串口传输的相关知识。

实验背景串口,也被称为通用异步收发传输器(UART),是一种用于在电子设备之间传输数据的常见接口。

串口通信使用两根线来传输数据,一根用于发送数据(Tx)而另一根用于接收数据(Rx)。

串口通信的一个重要特点是它是异步的,即发送端和接收端可以根据各自的节奏进行数据传输。

实验过程我们在本次实验中使用了一块嵌入式开发板和计算机之间的串口通信来实现数据传输。

以下是我们完成实验的步骤:1.配置串口通信参数:我们首先需要确定串口通信的参数,例如波特率、数据位、停止位和校验位等。

这些参数需要在发送端和接收端进行一致配置,以确保正常的数据传输。

2.编写发送端代码:我们使用编程语言编写了一个简单的程序,通过串口发送数据给接收端。

在这个程序中,我们首先初始化串口,然后将要发送的数据写入串口缓冲区,最后启动数据传输。

3.编写接收端代码:我们同样使用编程语言编写了一个程序,用于接收来自发送端的数据。

在这个程序中,我们首先初始化串口,然后开启中断监听串口接收事件,当接收到数据时,触发相应的中断处理函数来处理接收到的数据。

4.运行程序并进行测试:我们将发送端和接收端的代码分别烧录到嵌入式开发板和计算机上,并运行程序进行测试。

我们发送了不同类型的数据,例如字节、字符串和数字等,并检查接收端是否成功接收到并正确处理这些数据。

实验结果在我们的实验中,我们成功地实现了串口数据的传输和接收。

我们发送的各种类型的数据都能够被接收端正确地接收到并进行处理。

通过对输出结果的检查,我们确认了数据的准确性和完整性。

实验总结通过这个实验,我们深入了解了串口通信的原理和应用。

以下是我们在实验中的一些总结和教训:1.注意配置参数的一致性:在串口通信中,发送端和接收端的串口配置参数必须一致,包括波特率、数据位、停止位和校验位。

实验四 串行通信实验

实验四  串行通信实验

实验四 串行通信实验一、实验目的1.了解51单片机串行口的结构、串行通讯的原理。

2.掌握51单片机与PC 机之间通讯的方法。

3. 学习系统应用程序的设计和调试二、实验设备PC 机一台 、 实验教学板一块。

三、实验原理51单片机的串行接口是全双工的,它能做异步接收器/发送器(UART ),也能做同步移位寄存器使用。

在做UART 使用时,相关的寄存器有SBUF 、SCON 、和PCON 中的波特率倍增位SMOD 。

SBUF 是数据发送缓冲器和接收缓冲器,逻辑上用同一个地址,物理上是分开的,用读写操作来选择。

SCON 是串行口控制寄存器,用于设定串行口的工作方式;保存方式2和方式3的第9位数据;存放发送、接收的中断标志。

在串行通讯的方式1和方式3中,通信的波特率是可以设置的,满足下式:2/132SMOD=⨯波特率(定时器计数器的溢出率)PC 机的串行通讯口是借助通用异步接收发送器8250(或16C550等)实现的,可使用comdebug.exe 等提供了有关串行口的收、发操作窗口的软件实现通讯。

PC 机的串行通讯采用RS232电平,因此要求单片机的实验板也要配置RS232接口,解决逻辑电平的配接。

如果通讯距离较远,则要配接调制解调器。

四、实验内容1, 自发自收用一根短路线,将实验板中RS232插口的RXD 和TXD 两个插孔短路。

然后编程设定串行口为工作方式1,传送55H 和0AAH 两个数据。

实验要求:程序采用查询方式。

每传送、接收一个数据,做一次检查,看是否正确,若两次都正确,则在显示器上显示“GOOD”,若不正确,则不显示,并要重新传送。

2, 单片机与PC 机的通信先使用通讯电缆将单片机的RS232接口与PC 机的COM1口连接,PC 机起动并运行comdebug.exe 软件,窗口上设置波特率为1200,8位数据、一个停止位。

单片机端也采用工作方式1,波特率为1200,完成单片机与PC 机的通信。

UARTO通信实验

UARTO通信实验
while ((U0LSR & 0x20) == 0);//等待数据发送完毕
}
*******************************************************************************
**函数名称:UART0_Init()
**函数功能:串口初始化,设置工作模式和波特率。
实验报告
班级学号姓名同组人
实验日期室温大气压成绩
实验题目:UARTO通信实验
一、实验目的
1,了解串行口UART0的特性和用法。
2,熟悉EasyARM2131软件的参数设置及其发送、接收操作。
3,锻炼学生自己的设计、创造和综合性。
二、实验仪器
微型电子计算机(含软件H-JTAG V0.3.1和ADSv1_2)、Easy ARM2131开发板、UART0接口线、USB接口电源线和JTAG接口线以及部分跳线。
{
rcv_new =0;
UART0_SendBuf();
if((U0LSR & 0x20) == 0x20) //判断是否数据发送完毕
{IO1CLR = LED1;// LED1点亮
DelayNS (20);}
}
else IO1SET = LED1;// LED1熄灭
}
return 0;
}
本次实验程序中可以把用于参数过滤的部分程序删除,把一系列用于设置字长,停止位,奇偶校验的程序直接用U0LCR = 0x03就行,效果一个样,都是设置成字长为8、停止位为1、无奇偶校验位。实验中要把发送接收14个字符长度,只要把中断触发点的字符长度改为13个字节即可,如U0FCR = 0x0c1;。当改为13字节长度时,相信的循环数,数组容量也要改。本实验还附加了显示成功接收发送数据时的标志,即LED1灯会亮。

串口通信实验报告

串口通信实验报告

串口通信实验报告摘要本实验旨在通过串口通信实现两个设备之间的数据传输。

通过使用串口通信协议,我们能够在不同设备之间进行双向数据传输,实现设备之间的数据交互。

本文将介绍串口通信的基本原理、实验设备和步骤、实验结果以及讨论与总结。

一、引言串口通信是一种常用的通信方式,它被广泛应用于计算机、嵌入式系统、智能设备等领域。

串口通信通过连接计算机或其他设备的串口接口,实现设备之间的数据交换。

串口通信具有传输速度快、稳定可靠、易于实现等优点,因此在实际应用中得到了广泛的应用。

二、实验设备和步骤1. 实验设备本实验使用以下设备进行串口通信实验:- 一台计算机- 一块开发板或者单片机- 两根串口线- 软件串口调试助手2. 实验步骤(1)连接串口线首先,将一根串口线的一个端口连接到计算机的串口接口,另一个端口连接到开发板或者单片机的串口接口。

然后,将另一根串口线的一个端口连接到计算机的另一个串口接口,另一个端口连接到开发板或者单片机的另一个串口接口。

(2)设置串口参数打开软件串口调试助手,在设置界面中选择正确的串口号和波特率,并设置其他参数,如数据位、停止位、奇偶校验等。

(3)发送和接收数据在软件串口调试助手的发送界面中输入要发送的数据,并点击发送按钮。

然后,在接收界面中即可看到接收到的数据。

三、实验结果本实验通过串口通信成功地实现了数据的发送和接收。

在软件串口调试助手的发送界面中,我们输入了一段文本,并成功发送到开发板或者单片机。

在接收界面中,我们成功接收到了从开发板或者单片机发送过来的数据,并正确显示在接收界面上。

四、讨论与总结通过本次实验,我们深入了解了串口通信的基本原理和实验步骤。

串口通信具有不同的参数设置,需要根据实际情况进行调整。

同时,在实际应用中,应注意串口接口的连接问题,确保连接正确、稳定。

另外,在数据传输过程中,也需要注意数据的格式和校验问题,以保证数据的准确性。

在今后的学习和实践中,我们可以进一步探索串口通信的应用领域。

串口通信实验报告

串口通信实验报告

一、实验目的1. 了解串口通信的基本原理和作用。

2. 掌握单片机串口通信的编程方法。

3. 通过实验验证串口通信的可靠性和稳定性。

二、实验原理串口通信是指通过串行通信接口进行的数据传输方式。

串口通信具有传输速率较低、通信距离较近等特点,但具有简单、可靠、易于实现等优点。

在单片机应用中,串口通信广泛应用于数据采集、设备控制、远程通信等领域。

单片机串口通信的基本原理是:通过单片机的串行通信接口(如UART、USART等)发送和接收数据。

串口通信的数据格式通常包括起始位、数据位、奇偶校验位和停止位。

三、实验设备1. 单片机开发板(如STC89C52、STM32等)2. 串口调试助手(如PuTTY、串口调试助手等)3. 仿真软件(如Proteus、Keil等)四、实验内容1. 串口通信硬件连接2. 串口通信软件编程3. 串口通信调试与验证五、实验步骤1. 硬件连接(1)将单片机的TXD、RXD、GND等引脚与计算机的串口通信线相连。

(2)将计算机的串口通信线与串口调试助手相连。

2. 软件编程(1)在仿真软件中编写单片机程序,实现数据的发送和接收。

(2)在串口调试助手中编写程序,实现数据的发送和接收。

3. 调试与验证(1)在仿真软件中运行单片机程序,观察串口调试助手中的数据是否正确接收。

(2)修改单片机程序,改变发送和接收的数据,验证串口通信的可靠性。

六、实验结果与分析1. 实验结果通过实验,成功实现了单片机与计算机之间的串口通信。

在串口调试助手中,可以观察到单片机发送的数据被正确接收,同时也可以向单片机发送数据。

2. 实验分析(1)实验验证了单片机串口通信的可靠性和稳定性。

(2)实验过程中,需要注意波特率、数据位、停止位等参数的设置,以保证通信的准确性。

(3)实验过程中,可以尝试不同的通信协议,如ASCII码、十六进制等,以适应不同的应用场景。

七、实验心得1. 串口通信是一种简单、可靠的数据传输方式,在单片机应用中具有广泛的应用前景。

单片机原理与应用A实验报告_UART串口通信

单片机原理与应用A实验报告_UART串口通信

UART串口通信一、实验目的1、学习实验系统的基本操作,了解在实验系统中进行程序设计、仿真和调试的操作方法和步骤;2、熟悉Proteus的虚拟仪器的使用;3、熟悉并灵活运用单片机的UART通信功能;4、熟悉虚拟串口在仿真中的应用;5、实现单片机点对点串口通信,即单片机与单片机间的相互通信;6、实现单片机与计算机串口通信。

二、实验原理1、如图(1),有甲、乙两个单片机,甲单片机外接一个3×3矩阵键盘和8个LED;乙单片机外接一个独立按键和一个数码管;甲乙两个单片机通过串口进行通信(即TXD和RXD引脚)。

图(1)单片机点对点串口通信电路仿真图按下甲单片机矩阵键盘的任意一个按键,将该键编号(编号自己设定)通过串口发送给乙单片机,乙单片机在数码管上显示出对应的按键号;按下乙单片机的外接独立按键控制甲单片机的8个LED(按键之前8个LED灯均点亮),具体关系为:(1)第1次按键,乙单片机向甲单片机通过串口发送命令字符A,甲收到该命令,使前4个LED灯亮,后4个不亮;(2)第2次按键,乙单片机向甲单片机通过串口发送命令字符B,甲收到该命令,使前4个LED不亮,后4个亮;(3)第3次按键,乙单片机向甲单片机通过串口发送命令字符C,甲收到该命令,使奇数个灯亮,偶数个灯不亮;(4)第4次按键,乙单片机向甲单片机通过串口发送命令字符D,甲收到该命令,使偶数个灯亮,奇数个灯不亮;(5)第5次按键,乙单片机向甲单片机通过串口发送命令字符E,甲收到该命令,使所有灯都不亮。

2、单片机与计算机串口通信,如图(2),需要一个单片机和一个COMPIM器件,连接电路时,将单片机的RXD和COMPIM的RXD相连,单片机的TXD与COMPIM的TXD 相连,即同名引脚相连,其它的引脚悬空。

图(2)单片机与与计算机串口通信电路仿真图实验内容:设置单片机的串口为工作方式1,波特率设置为9600。

计算机通过串口调试助手向单片机依次发送字符1、2、3、4,单片机收到每个字符后向计算机回复相应的内容,具体要求如表1所示:表1 单片机与计算机通信内容三、实验步骤1、硬件仿真。

uart实验报告

uart实验报告

uart实验报告
1. 实验目的
本次实验的目的是验证串口通信协议UART的功能,通过USB-UART转换器控制开发板的板载LED的状态,以及通过调试软件UART通信观察调试台的信息输出。

2. 实验内容
本次实验环境是Espruino开发板,首先通过USB线将开发板连接至PC,使用一款USB-UART转换器将开发板连接至调试软件 PuTTY上,去UART连接口设置为9200,然后打开Espruino IDE软件,在终端上编写代码,不断编译及执行代码,以实现LED灯的转换状态。

具体实现步骤如下:
(1)安装Espruino IDE软件,建立编程环境,编写具体编程代码。

(3)将编写好的代码上传到Espruino,在调试软件 PuTTY 上可以看到板载 LED有明暗转换的视觉效果,从而验证Uart功能正常。

UART串口通信实验报告

UART串口通信实验报告

实验四UART串口通信学院:研究生院学号:1400030034姓名:张秋明一、实验目得及要求设计一个UART串口通信协议,实现“串<-->并”转换功能得电路,也就就是“通用异步收发器”。

二、实验原理UART就是一种通用串行数据总线,用于异步通信。

该总线双向通信,可以实现全双工传输与接收。

在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间得通信,与PC机通信包括与监控调试器与其它器件,如EEPROM通信。

UART作为异步串口通信协议得一种,工作原理就是将传输数据得每个字符一位接一位地传输。

其中各位得意义如下:起始位:先发出一个逻辑”0”得信号,表示传输字符得开始。

资料位:紧接着起始位之后。

资料位得个数可以就是4.5.6.7、8等,构成一个字符。

通常采用ASCII码。

从最低位开始传送,靠时钟定位。

奇偶校验位:资料位加上这一位后,使得“1”得位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送得正确性。

停止位:它就是一个字符数据得结束标志。

可以就是1位、1.5位、2位得高电平。

由于数据就是在传输线上定时得,并且每一个设备有其自己得时钟,很可能在通信中两台设备间出现了小小得不同步。

因此停止位不仅仅就是表示传输得结束,并且提供计算机校正时钟同步得机会。

适用于停止位得位数越多,不同时钟同步得容忍程度越大,但就是数据传输率同时也越慢。

空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。

波特率:就是衡量资料传送速率得指标。

表示每秒钟传送得符号数(symbol)。

一个符号代表得信息量(比特数)与符号得阶数有关。

例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就就是120baud,比特率就是120*8=960bit/s。

这两者得概念很容易搞错。

三、实现程序library ieee;use ieee、std_logic_1164.all;use ieee、std_logic_arith、all;use ieee、std_logic_unsigned、all;entity uart isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号;rs232_tx: out std_logic --RS232发送数据信号;); end uart;architecture behav of uart isponent uart_rx port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps得高电平为接收数据得采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: out std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: out std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送);end ponent;ponent speed_select port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号clk_bps: out std_logic; --此时clk_bps 得高电平为接收或者发送数据位得中间采样点bps_start:in std_logic --接收数据后,波特率时钟启动信号置位);end ponent;ponent uart_tx port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_tx: out std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps 得高电平为接收数据得采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: in std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: in std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据得时候,发送模块不工作,避免了一个完整得数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确得数据传输出去);end ponent;signal bps_start_1:std_logic;signal bps_start_2:std_logic;signal clk_bps_1:std_logic;signal clk_bps_2:std_logic;signal rx_data:std_logic_vector(7 downto 0);signal rx_int:std_logic;beginRX_TOP: uart_rx port map(clk=>clk,rst_n=>rst_n,rs232_rx=>rs232_rx,clk_bps=>clk_bps_1,bps_start=>bps_start_1,rx_data=>rx_data,rx_int=>rx_int);SPEED_TOP_RX: speed_select port map(clk=>clk,rst_n=>rst_n,clk_bps=>clk_bps_1,bps_start=>bps_start_1);TX_TOP:uart_tx port map(clk=>clk, --系统时钟rst_n=>rst_n, --复位信号rs232_tx=>rs232_tx, --RS232发送数据信号clk_bps=>clk_bps_2, --此时clk_bps 得高电平为发送数据得采样点bps_start=>bps_start_2, --接收到数据后,波特率时钟启动置位rx_data=>rx_data, --接收数据寄存器,保存直至下一个数据来到rx_int=>rx_int --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据得时候,发送模块不工作,避免了一个完整得数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确得数据传输出去);SPEED_TOP_TX: speed_select port map(clk=>clk,rst_n=>rst_n,clk_bps=>clk_bps_2,bps_start=>bps_start_2);end behav;-----------------------------------------------------------------------------------------------------------------------3个子模块------------------------------------------------------------------------------异步接收模块-------------------------------------------library ieee;use ieee、std_logic_1164.all;use ieee、std_logic_unsigned、all;entity uart_rx isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps得高电平为接收数据得采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: out std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: out std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据得时候,发送模块不工作,避免了一个完整得数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确得数据传输出去);end uart_rx;architecture behav of uart_rx issignal rs232_rx0: std_logic;signal rs232_rx1: std_logic;signal rs232_rx2: std_logic;signal rs232_rx3: std_logic;signal neg_rs232_rx:std_logic;signal bps_start_r:std_logic;signal num:integer;signal rx_data_r:std_logic_vector(7 downto 0); --串口接收数据寄存器,保存直至下一个数据到来beginprocess(clk,rst_n)beginif (rst_n='0')thenrs232_rx0<='0';rs232_rx1<='0';rs232_rx2<='0';rs232_rx3<='0';elseif (rising_edge(clk)) thenrs232_rx0<=rs232_rx;rs232_rx1<=rs232_rx0;rs232_rx2<=rs232_rx1;rs232_rx3<=rs232_rx2;end if;end if;neg_rs232_rx <=rs232_rx3 and rs232_rx2 and not(rs232_rx1)and not(rs232_rx0);end process;process(clk,rst_n)beginif (rst_n='0')thenbps_start_r<='0';rx_int<='0';elseif (rising_edge(clk)) thenif(neg_rs232_rx='1') then --接收到串口数据线rs232_rx 得下降沿标志信号bps_start_r<='1'; --启动串口准备数据接收rx_int<='1'; --接收数据中断信号使能else if((num= 15) and (clk_bps='1')) then --接收完有用数据信息bps_start_r<='0'; --数据接收完毕,释放波特率启动信号rx_int<='0'; --接收数据中断信号关闭end if;end if;end if;end if;bps_start<=bps_start_r;end process;process(clk,rst_n)beginif (rst_n='0')thenrx_data_r<="00000000";rx_data<="00000000";num<=0;elseif (rising_edge(clk)) thenif(clk_bps='1')thennum<=num+1;case num iswhen 1=>rx_data_r(0)<=rs232_rx;--锁存第0bitwhen 2=>rx_data_r(1)<=rs232_rx;--锁存第0bitwhen 3=>rx_data_r(2)<=rs232_rx;--锁存第0bitwhen 4=>rx_data_r(3)<=rs232_rx;--锁存第0bitwhen 5=>rx_data_r(4)<=rs232_rx;--锁存第0bitwhen 6=>rx_data_r(5)<=rs232_rx;--锁存第0bitwhen 7=>rx_data_r(6)<=rs232_rx;--锁存第0bitwhen 8=>rx_data_r(7)<=rs232_rx;--锁存第0bitwhen 10=>rx_data<=rx_data_r;when 11=>num<=15;when others=>null;end case;if(num=15) thennum<=0;end if;end if;end if;end if;end process;end behav;---------------------------------波特率控制模块-----------------------------------------library ieee;use ieee、std_logic_1164.all;use ieee、std_logic_arith、all;use ieee、std_logic_unsigned、all;entity speed_select isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号clk_bps: out std_logic; --此时clk_bps得高电平为接收或者发送数据位得中间采样点bps_start:in std_logic --接收数据后,波特率时钟启动信号置位或者开始发送数据时,波特率时钟启动信号置位);end speed_select;architecture behav of speed_select issignal cnt:std_logic_vector(12 downto 0);signal clk_bps_r:std_logic;constant BPS_PARA:integer:=5207;constant BPS_PARA_2:integer:=2603;beginprocess(clk,rst_n)beginif (rst_n='0')thencnt<="00";elseif (rising_edge(clk)) thenif((cnt=BPS_PARA)or(bps_start='0')) thencnt<="00"; --波特率计数器清零elsecnt<=cnt+'1'; --波特率时钟计数启动end if;end if;end if;end process;process(clk,rst_n)beginif (rst_n='0')thenclk_bps_r<='0';elseif (rising_edge(clk)) thenif(cnt=BPS_PARA_2) thenclk_bps_r<='1'; --clk_bps_r高电平为接收数据位得中间采样点,同时也作为发送数据得数据改变点elseclk_bps_r<='0'; --波特率计数器清零end if;end if;end if;clk_bps<=clk_bps_r;end process;end behav;---------------------------------异步发送模块------------------------------------------- library ieee;use ieee、std_logic_1164.all;use ieee、std_logic_unsigned、all;entity uart_tx isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_tx: out std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps得高电平为接收数据得采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: in std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: in std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据得时候,发送模块不工作,避免了一个完整得数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确得数据传输出去);end uart_tx;architecture behav of uart_tx issignal rx_int0: std_logic;signal rx_int1: std_logic;signal rx_int2: std_logic;signal neg_rx_int:std_logic;signal bps_start_r:std_logic;signal num:integer;signal tx_data:std_logic_vector(7 downto 0); --串口接收数据寄存器,保存直至下一个数据到来beginprocess(clk,rst_n)beginif (rst_n='0')thenrx_int0<='0';rx_int1<='0';rx_int2<='0';elseif (rising_edge(clk)) thenrx_int0<=rx_int;rx_int1<=rx_int0;rx_int2<=rx_int1;end if;end if;neg_rx_int <=not(rx_int1)and (rx_int2);end process;process(clk,rst_n)beginif (rst_n='0')thenbps_start_r<='0';tx_data<="00000000";elseif (rising_edge(clk)) thenif(neg_rx_int='1') then --接收到串口数据线rs232_rx得下降沿标志信号bps_start_r<='1'; --启动串口准备数据接收tx_data<=rx_data; --接收数据中断信号使能else if((num= 15) and (clk_bps='1')) then --接收完有用数据信息bps_start_r<='0'; --数据接收完毕,释放波特率启动信号end if;end if;end if;end if;bps_start<=bps_start_r;end process;process(clk,rst_n)beginif (rst_n='0')thenrs232_tx<='1';num<=0;elseif (rising_edge(clk)) thenif(clk_bps='1')thennum<=num+1;case num iswhen 1=>rs232_tx<='0';when 2=>rs232_tx<=tx_data(0);--发送第1bitwhen 3=>rs232_tx<=tx_data(1);--发送第2bitwhen 4=>rs232_tx<=tx_data(2);--发送第3bitwhen 5=>rs232_tx<=tx_data(3);--发送第4bitwhen 6=>rs232_tx<=tx_data(4);--发送第5bitwhen 7=>rs232_tx<=tx_data(5);--发送第6bitwhen 8=>rs232_tx<=tx_data(6);--发送第7bitwhen 9=>rs232_tx<=tx_data(7);--发送第8bitwhen 10=>rs232_tx<='1';when 11=>num<=15;when others=>null;end case;if(num=15) thennum<=0;end if;end if;end if;end if;end process;end behav;四、实验步骤1.建立新工程UART,选择芯片,型号为cyclone ii EP2C35F484C8。

串口通信的实验报告

串口通信的实验报告

串口通信的实验报告串口通信的实验报告一、引言串口通信是一种常见的数据传输方式,广泛应用于各种电子设备和计算机系统中。

本实验旨在通过实际操作,探究串口通信的原理和应用。

二、实验目的1.了解串口通信的基本原理;2.学习串口通信的配置和编程方法;3.实现串口通信的数据传输。

三、实验设备和材料1.计算机;2.串口通信模块;3.串口线;4.示波器。

四、实验步骤1.连接串口通信模块和计算机,确保电源供应正常;2.打开计算机的串口通信软件,并进行相应的配置;3.编写串口通信程序,实现数据的发送和接收;4.通过示波器观察串口通信的波形。

五、实验结果经过实验,我们成功实现了串口通信的数据传输。

在发送端,我们通过编程将一段字符串发送到串口通信模块,然后通过串口线将数据传输到接收端。

在接收端,我们通过串口通信模块接收到数据,并将其显示在计算机上。

通过示波器观察,我们可以清晰地看到数据在串口通信线上的传输波形。

六、实验分析串口通信是一种相对简单而稳定的数据传输方式。

与其他通信方式相比,串口通信具有传输速率较低、传输距离较短等特点。

然而,由于其成本低廉、易于实现和广泛应用等优势,串口通信在很多领域仍然得到广泛应用。

在本次实验中,我们通过配置串口通信软件和编写相应的程序,成功地实现了数据的传输。

通过示波器的观察,我们可以看到串口通信的波形,验证了数据的传输过程。

通过实验,我们对串口通信的原理和应用有了更深入的了解。

七、实验总结通过本次实验,我们不仅学习到了串口通信的基本原理和配置方法,还亲自实践了串口通信的数据传输过程。

实验结果表明,串口通信是一种可靠且实用的数据传输方式,广泛应用于各种电子设备和计算机系统中。

在今后的学习和工作中,我们可以进一步探究串口通信的高级应用,如串口通信的协议、错误检测和纠正等。

同时,我们也可以尝试使用不同的串口通信模块和软件,进一步提高串口通信的性能和稳定性。

总之,串口通信作为一种重要的数据传输方式,对于我们的学习和工作具有重要意义。

S3C2410的UART串口通信实验

S3C2410的UART串口通信实验

S3C2410的UART串口通信实验实验7 S3C2410 的UART串口通信实验一、实验目的掌握S3C2410 UART串口的工作原理和编程方法,掌握和UART 串口有关寄存器UCONX、ULCONX、UFCONX、UMCONX、UBRDIVX的格式和使用方法,会用C语言对UART串口进行初始化编程和读写操作,重点理解UART串口通信波特率和波特率除数寄存器初值设置的关系,熟练掌握串口调试助手的用法。

二、实验内容PC机向S3C2410发送数据,S3C2410接到数据后有马上将所接到的数据没有变化的发送给PC,要求用串口调试助手看到调试结果。

三、UART串口相关知识初始化串口的过程为:UFCON0和UMCON0(地址为0x5000000C)置为0,表示不使用FIFO,不使用流控制;ULCON0置为0x03,表示有1位停止位,8位数据位,无校验位;UCON0置为0x05,表示串口工作方式为中断方式或询问方式;UBRDIV0置为0x270,表示波特率为4800 bps(1 bps=1 bit/s,计算方法为:PCLK(48MHz)/16/波特率–1= 0x270;如果设置为0x19,则波特率为115200 bps。

串口读写方式有两种,即轮询方式和中断方式。

轮询方式下,在死循环中进行串口的读写过程,中断方式下,当串口收到数据后或发送数据前将产生中断。

串口0的收发占用了GPH3和GPH2,需要配置这两个管脚为串口通信功能。

四、参考程序(1)UART初始化程序段41 void initUART0()42 {43 UFCON0 = 0x00;44 UMCON0 = 0x00;45 ULCON0 = 0x03; // One Stop, no parity, 8-bit46 UCON0 = 0x05;47 UBRDIV0 = 0x270; // 4800bps48 // PCLK=48MHz, Baudrate:4800bps, 0x270;49 // 115200bps, 0x1950 }(2)查询方式主要程序段29 // After received, Transfer it30 while(UTRSTAT0 & 0x01) // have data31 {32 uart0Ch[0] = URXH0; // Recieve33 while(UTRSTAT0 & 0x02)// Tras ready34 {35 UTXH0 = uart0Ch[0];36 }37 }(3)中断方式主要程序段67 void openUART0(void)68 {69 INTMOD = 0x0;70 INTMSK &= ~((1<<28) | (1<<9));// open dog and UART071 // Priority lower than watchdog72 INTSUBMSK =0x7FE; //&= ~(1<<0);// INT_RXD0 locates at73 PRIORITY = 0x7F;74 }7576 __irq void c_UART0_ISR()77 {7879 int iReg=0;80 if(SRCPND | (1<<28))81 SRCPND |= (1<<28);82 if(INTPND | (1<<28))83 INTPND |= (1<<28);84 if(SUBSRCPND | (1<<0))85 SUBSRCPND |= (1<<0);86 //if(SUBSRCPND | (1<<1))87 // SUBSRCPND |= (1<<1);88 chUart0[0] = URXH0;89 //while(0);90 while(UTRSTAT0 & 0x02) // Tras ready91 {92 UTXH0 = chUart0[0];93 }五、实验结果自己作答六、实验心得体会。

嵌入式系统串口通信实验

嵌入式系统串口通信实验

实验四串口通信实验一.实验目的:1.掌握ARM的串行口工作原理。

2.学习并编程实现AR,的UART通信。

3.掌握S3C2410X寄存器配置方法。

二、实验设备:PC机一台 ADT IDE集成开发环境 JXARM9-2410教学实验箱三、实验内容:实现查询方式串口的收发功能。

接受来自串口(通过超级终端)的字符,并将接收到的字符发送到超级终端。

四、基础知识:1.异步串行通讯(1)异步串行方式是将传输数据的每个字符一位接一位(例如先低位、后高位)地传送。

(2)数据的各不同位可以分时使用同一传输通道,因此串行I/O 可以减少信号连线,最少用一对线即可进行。

接收方对于同一根线上一连串的数字信号,首先要分割成位,再按位组成字符。

为了恢复发送的信息,双方必须协调工作。

(3)在微型计算机中大量使用异步串行I/O 方式,双方使用各自的时钟信号,而且允许时钟频率有一定误差,因此实现较容易。

但是由于每个字符都要独立确定起始和结束(即每个字符都要重新同步),字符和字符间还可能有长度不定的空闲时间,因此效率较低。

2.异步串行通信中的字符传送格式❑开始前,线路处于空闲状态,送出连续“1”。

传送开始时首先发一个“0”作为起始位,然后出现在通信线上的是字符的二进制编码数据。

❑每个字符的数据位长可以约定为5位、6位、7位或8位,一般采用ASCII编码。

后面是奇偶校验位,根据约定,用奇偶校验位将所传字符中为“1”的位数凑成奇数个或偶数个。

也可以约定不要奇偶校验,这样就取消奇偶校验位。

最后是表示停止位的“1”信号,这个停止位可以约定持续1 位、1.5 位或2 位的时间宽度。

❑至此一个字符传送完毕,线路又进入空闲,持续为“1”。

经过一段随机的时间后,下一个字符开始传送才又发出起始位。

3.DB-25 DB-9引脚定义DB-25 DB-9引脚说明:RS-232C接口通信的两种基本连接方式:五、实验步骤:1.新建一个工程UART,将对应的文件添加到工程中去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四UART串口通信一、实验目的及要求设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。

二、实验原理UART是一种通用串行数据总线,用于异步通信。

该总线双向通信,可以实现全双工传输和接收。

在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。

UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。

其中各位的意义如下:起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。

资料位:紧接着起始位之后。

资料位的个数可以是4、5、6、7、8等,构成一个字符。

通常采用ASCII码。

从最低位开始传送,靠时钟定位。

奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。

停止位:它是一个字符数据的结束标志。

可以是1位、1.5位、2位的高电平。

由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。

因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。

适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。

空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。

波特率:是衡量资料传送速率的指标。

表示每秒钟传送的符号数(symbol)。

一个符号代表的信息量(比特数)与符号的阶数有关。

例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。

这两者的概念很容易搞错。

三、实现程序library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity uart isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号;rs232_tx: out std_logic --RS232发送数据信号;);end uart;architecture behav of uart iscomponent uart_rx port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps的高电平为接收数据的采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: out std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: out std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送);end component;component speed_select port(clk : in std_logic;--系统时钟rst_n: in std_logic; --复位信号clk_bps: out std_logic; --此时clk_bps的高电平为接收或者发送数据位的中间采样点bps_start:in std_logic --接收数据后,波特率时钟启动信号置位);end component;component uart_tx port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_tx: out std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps的高电平为接收数据的采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: in std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: in std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据的时候,发送模块不工作,避免了一个完整的数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确的数据传输出去);end component;signal bps_start_1:std_logic;signal bps_start_2:std_logic;signal clk_bps_1:std_logic;signal clk_bps_2:std_logic;signal rx_data:std_logic_vector(7 downto 0);signal rx_int:std_logic;beginRX_TOP: uart_rx port map(clk=>clk,rst_n=>rst_n,rs232_rx=>rs232_rx,clk_bps=>clk_bps_1,bps_start=>bps_start_1,rx_data=>rx_data,rx_int=>rx_int);SPEED_TOP_RX: speed_select port map(clk=>clk,rst_n=>rst_n,clk_bps=>clk_bps_1,bps_start=>bps_start_1);TX_TOP:uart_tx port map(clk=>clk, --系统时钟rst_n=>rst_n, --复位信号rs232_tx=>rs232_tx, --RS232发送数据信号clk_bps=>clk_bps_2, --此时clk_bps的高电平为发送数据的采样点bps_start=>bps_start_2, --接收到数据后,波特率时钟启动置位rx_data=>rx_data, --接收数据寄存器,保存直至下一个数据来到rx_int=>rx_int --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据的时候,发送模块不工作,避免了一个完整的数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确的数据传输出去);SPEED_TOP_TX: speed_select port map(clk=>clk,rst_n=>rst_n,clk_bps=>clk_bps_2,bps_start=>bps_start_2);end behav;-----------------------------------------------------------------------------------------------------------------------3个子模块------------------------------------------------------------------------------异步接收模块-------------------------------------------library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity uart_rx isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_rx: in std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps的高电平为接收数据的采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: out std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: out std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据的时候,发送模块不工作,避免了一个完整的数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确的数据传输出去);end uart_rx;architecture behav of uart_rx issignal rs232_rx0: std_logic;signal rs232_rx1: std_logic;signal rs232_rx2: std_logic;signal rs232_rx3: std_logic;signal neg_rs232_rx:std_logic;signal bps_start_r:std_logic;signal num:integer;signal rx_data_r:std_logic_vector(7 downto 0); --串口接收数据寄存器,保存直至下一个数据到来beginprocess(clk,rst_n)beginif (rst_n='0')thenrs232_rx0<='0';rs232_rx1<='0';rs232_rx2<='0';rs232_rx3<='0';elseif (rising_edge(clk)) thenrs232_rx0<=rs232_rx;rs232_rx1<=rs232_rx0;rs232_rx2<=rs232_rx1;rs232_rx3<=rs232_rx2;end if;end if;neg_rs232_rx <=rs232_rx3 and rs232_rx2 and not(rs232_rx1)and not(rs232_rx0);end process;process(clk,rst_n)beginif (rst_n='0')thenbps_start_r<='0';rx_int<='0';elseif (rising_edge(clk)) thenif(neg_rs232_rx='1') then --接收到串口数据线rs232_rx的下降沿标志信号bps_start_r<='1'; --启动串口准备数据接收rx_int<='1'; --接收数据中断信号使能else if((num= 15) and (clk_bps='1')) then --接收完有用数据信息bps_start_r<='0'; --数据接收完毕,释放波特率启动信号rx_int<='0'; --接收数据中断信号关闭end if;end if;end if;end if;bps_start<=bps_start_r;end process;process(clk,rst_n)beginif (rst_n='0')thenrx_data_r<="00000000";rx_data<="00000000";num<=0;elseif (rising_edge(clk)) thenif(clk_bps='1')thennum<=num+1;case num iswhen 1=>rx_data_r(0)<=rs232_rx;--锁存第0bitwhen 2=>rx_data_r(1)<=rs232_rx;--锁存第0bitwhen 3=>rx_data_r(2)<=rs232_rx;--锁存第0bitwhen 4=>rx_data_r(3)<=rs232_rx;--锁存第0bitwhen 5=>rx_data_r(4)<=rs232_rx;--锁存第0bitwhen 6=>rx_data_r(5)<=rs232_rx;--锁存第0bitwhen 7=>rx_data_r(6)<=rs232_rx;--锁存第0bitwhen 8=>rx_data_r(7)<=rs232_rx;--锁存第0bitwhen 10=>rx_data<=rx_data_r;when 11=>num<=15;when others=>null;end case;if(num=15) thennum<=0;end if;end if;end if;end if;end process;end behav;---------------------------------波特率控制模块-----------------------------------------library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity speed_select isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号clk_bps: out std_logic; --此时clk_bps的高电平为接收或者发送数据位的中间采样点bps_start:in std_logic --接收数据后,波特率时钟启动信号置位或者开始发送数据时,波特率时钟启动信号置位);end speed_select;architecture behav of speed_select issignal cnt:std_logic_vector(12 downto 0);signal clk_bps_r:std_logic;constant BPS_PARA:integer:=5207;constant BPS_PARA_2:integer:=2603;beginprocess(clk,rst_n)beginif (rst_n='0')thencnt<="0000000000000";elseif (rising_edge(clk)) thenif((cnt=BPS_PARA)or(bps_start='0')) thencnt<="0000000000000"; --波特率计数器清零elsecnt<=cnt+'1'; --波特率时钟计数启动end if;end if;end if;end process;process(clk,rst_n)beginif (rst_n='0')thenclk_bps_r<='0';elseif (rising_edge(clk)) thenif(cnt=BPS_PARA_2) thenclk_bps_r<='1'; --clk_bps_r高电平为接收数据位的中间采样点,同时也作为发送数据的数据改变点elseclk_bps_r<='0'; --波特率计数器清零end if;end if;end if;clk_bps<=clk_bps_r;end process;end behav;---------------------------------异步发送模块-------------------------------------------library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity uart_tx isport(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号rs232_tx: out std_logic; --RS232接收数据信号clk_bps: in std_logic; --此时clk_bps的高电平为接收数据的采样点bps_start:out std_logic; --接收到数据后,波特率时钟启动置位rx_data: in std_logic_vector(7 downto 0); --接收数据寄存器,保存直至下一个数据来到rx_int: in std_logic --接收数据中断信号,接收数据期间时钟为高电平,传送给串口发送模块,使得串口正在进行接收数据的时候,发送模块不工作,避免了一个完整的数据(1位起始位、8位数据位、1位停止位)还没有接收完全时,发送模块就已经将不正确的数据传输出去);end uart_tx;architecture behav of uart_tx issignal rx_int0: std_logic;signal rx_int1: std_logic;signal rx_int2: std_logic;signal neg_rx_int:std_logic;signal bps_start_r:std_logic;signal num:integer;signal tx_data:std_logic_vector(7 downto 0); --串口接收数据寄存器,保存直至下一个数据到来beginprocess(clk,rst_n)beginif (rst_n='0')thenrx_int0<='0';rx_int1<='0';rx_int2<='0';elseif (rising_edge(clk)) thenrx_int0<=rx_int;rx_int1<=rx_int0;rx_int2<=rx_int1;end if;end if;neg_rx_int <=not(rx_int1)and (rx_int2);end process;process(clk,rst_n)beginif (rst_n='0')thenbps_start_r<='0';tx_data<="00000000";elseif (rising_edge(clk)) thenif(neg_rx_int='1') then --接收到串口数据线rs232_rx的下降沿标志信号bps_start_r<='1'; --启动串口准备数据接收tx_data<=rx_data; --接收数据中断信号使能else if((num= 15) and (clk_bps='1')) then --接收完有用数据信息bps_start_r<='0'; --数据接收完毕,释放波特率启动信号end if;end if;end if;end if;bps_start<=bps_start_r;end process;process(clk,rst_n)beginif (rst_n='0')thenrs232_tx<='1';num<=0;elseif (rising_edge(clk)) thenif(clk_bps='1')thennum<=num+1;case num iswhen 1=>rs232_tx<='0';when 2=>rs232_tx<=tx_data(0);--发送第1bitwhen 3=>rs232_tx<=tx_data(1);--发送第2bitwhen 4=>rs232_tx<=tx_data(2);--发送第3bitwhen 5=>rs232_tx<=tx_data(3);--发送第4bitwhen 6=>rs232_tx<=tx_data(4);--发送第5bitwhen 7=>rs232_tx<=tx_data(5);--发送第6bitwhen 8=>rs232_tx<=tx_data(6);--发送第7bitwhen 9=>rs232_tx<=tx_data(7);--发送第8bitwhen 10=>rs232_tx<='1';when 11=>num<=15;when others=>null;end case;if(num=15) thennum<=0;end if;end if;end if;end if;end process;end behav;四、实验步骤1、建立新工程UART,选择芯片,型号为cyclone iiEP2C35F484C8。

相关文档
最新文档