冷源群控逻辑

合集下载

冷机群控控制逻辑说明

冷机群控控制逻辑说明

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1冷却水泵有故障;1.2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>(12+0.6)即12.6 o C时条件满足b. 运行冷水机组的温度降低速率小于1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

空调主机和暖通系统群控(含冷机群控)的知识分享

空调主机和暖通系统群控(含冷机群控)的知识分享

制冷季节
制冷季节
参数设定
冷冻水出水温度设定为8℃,1#、2#、3#、4#冷机 冷冻水出水温度设定为6℃,1#、2#、3#、4#冷机纳
纳入群控。
入群控。
闭店延时模式
开机
开机时间到,首先开启第一台大冷机;
开机时间到,首先开启第1~2台大冷机;
加载 减载
(1)第一台离心机组开启后50分钟后,冷冻水总 管供水温度大于8℃且第一名离心冷机负荷大于95%,(1)当冷冻水总管供水温度大于t℃且2台冷机离心 持续10分钟,开启第二名冷机;当冷冻水总管供水 冷机负荷均大于95%,持续10分钟,开启第三台冷机。 温度大于8℃且2台冷机离心冷机负荷均大于95%, 持续10分钟,开启第三台冷机。
机组根据回风温度与设定值偏差自动调节送风机转速,机组回风温度比设定值高2度时, 自动提高风机转速;机组回风温度比设定值低2度时,自动降低风机转速;
二、空调末端调控的逻辑
二、新风机组
a) 新风机组根据送风温度与设定值偏差自动调节空调水阀开度。 ● 夏季工况下,当送风温度高于设定值2℃时,自动加大水阀开度;当送风温度 低于设定值2℃时,自动减小水阀开度。 ● 冬季工况下,当送风温度高于设定值2℃时,自动减小水阀开度;当送风温度 低于设定值2℃时,自动加大水阀开度。 ● 过渡季通风工况下,水阀关闭。
钟后,关闭第三名离心冷机。
关闭第三名离心冷机。
一、冷机群控的逻辑
一、冷机加减载
拓展问题: 1、为什么过渡季节优先开启大冷机而不是小冷机? 2、冷机的负荷系数小于55%时为什么就要减载?
一、冷机群控的逻辑
二、冷冻水泵变频
2) 冷冻水泵的自动控制逻辑 根据供回水总管的压差或温差自动调整冷冻水泵的运行转速(偏差值可设定): ● 压差低于设定值-偏差或温差高于设定值+偏差时,增加水泵频率 ● 压差高于设定值+偏差或温差低于设定值-偏差时,降低水泵频率。频率不应低 于35Hz。 ● 单台水泵运行且水泵频率降至下限,压差仍高于设定值+偏差或温差仍低于设 定值-偏差时,水泵频率不变,开启压差旁通阀调节开度。

冷源群控策略

冷源群控策略

—、系统介绍:本项目冷源由3台离心式冷水机组及1台螺杆式冷水机组供冷。

本冷源控制系统主要控制以下设备:1.3台离心式冷水机组,;2.1台螺杆式冷水机组;3.4台冷冻水一次泵(三用一备),配套离心式冷水机组;4.2台冷冻水一次泵(一用一备),配套螺杆式冷水机组;5.6台冷供水二次泵(两组,分别服务裙房及办公塔楼);6.1台过渡季自然冷源利用板换;7.7台冷却塔。

二、控制系统概述:由于冷源系统内的冷水机组、冷冻泵、冷却泵和冷却塔等设备的能耗占整个中央空调系统能耗的60%或以上,因此对多台冷水机组实施群控是至关重要的。

在冷水机组群控系统内,多台冷水机、冷却泵、冷冻泵和冷却塔可以按先后次序有序地运行,通过执行最新的负荷优化、匹配程序和预定时间程序,整个冷冻机房可达到最大限度的节能(15%左右)。

控制节能的最终目标是机房所有设备的总能效最高,而不能只是片面的看某一个设备的节能,因此要综合考虑以下几个方面:□冷水机组□—次冷冻水泵□二次冷冻水泵□冷却水泵□冷却塔三、控制逻辑(1)开关机顺序开机:冷却塔〜冷却水泵〜冷冻水一次泵〜冷冻水二次泵〜冷水机组。

关机过程与开机过程相反。

详细说明:(2)开机条件系统内的所有设备包括冷水机组、冷冻泵、冷却泵、冷却塔和电动蝶阀都有手动/自动两种模式,在群控状态下,要确定所有设备都处于自动状态。

(3)系统启动参数群控图形界面上有一个程序设定按钮。

当该按钮为0*程序处于群控状态,在群控状态下,至少一组冷冻设备处于可启动设备队列;当该按钮为OFF,程序处于点动状态,在点动状态下,只有符合点动启动的条件,点动才被允许(例如要开冷冻泵,冷冻蝶阀必须已经开到位,否则点动无效)。

在实际运行过程中经常会出现某台设备不能进入使用的状态(例如在维修状态)。

对此,我们为每台设备定义一个软件点。

当该软件点位0N时,程序就会将该设备排除在可投入设备队列之外。

另外,报故障的设备自动排除在可投入设备队列之外。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:冷却水泵有故障;冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率. 温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:冷却塔风机有故障;冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求 Additional Cooling Required – ACR 加载的流程a.当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值= o C,平均温度>(12+)即 o C时条件满足b.运行冷水机组的温度降低速率小于 /分钟c.有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d.新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求 Reduce Cooling Required – RCR 卸载的流程a.目前运行的机组台数多于一台(均运行于CCN模式)b.运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c.当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的倍相加后的所得值。

冷源群控系统控制原理

冷源群控系统控制原理

冷源群控系统控制原理嘿,前几天我去一个大商场玩,一进去就觉得特别凉快。

我就好奇呀,这商场里的冷气是怎么来的呢?后来我发现商场里有个控制室,里面有很多电脑和仪器,听工作人员说这是冷源群控系统。

这就让我想到了冷源群控系统控制原理。

咱就说说这冷源群控系统是咋控制的吧。

你想啊,这冷源群控系统就像一个聪明的大管家。

它能把商场里的冷气管理得井井有条。

冷源群控系统主要是通过监测和控制各种设备来实现冷气的供应。

那它是怎么做到的呢?这就好比一个乐队指挥。

冷源群控系统会监测商场里的温度、湿度等参数,就像乐队指挥听着各个乐器的声音。

如果温度太高了,它就会命令制冷设备加大功率,就像指挥让某个乐器声音更大一些。

如果温度太低了,它就会让制冷设备减小功率,或者关闭一些设备,就像指挥让某个乐器声音小一点或者停下来。

为啥要有冷源群控系统呢?这是有原因的。

首先啊,如果没有冷源群控系统,商场里的冷气可能会不均匀。

有的地方冷得要命,有的地方还很热。

有了冷源群控系统,就能保证商场里的温度都比较舒适。

其次呢,冷源群控系统可以节约能源。

它会根据实际需要来调整制冷设备的运行,不会浪费电。

最后啊,冷源群控系统还可以提高设备的可靠性。

它会监测设备的运行状态,如果有设备出故障了,它会及时发现并采取措施,不会影响商场的冷气供应。

比如说,我在商场里玩的时候,感觉温度一直都很舒服。

这就是冷源群控系统的功劳。

咱要是想了解更多关于冷源群控系统的知识,就得知道这些原理。

不能光看个热闹,要明白它是怎么工作的。

总之啊,冷源群控系统就像一个神奇的魔法,能让我们在商场里享受舒适的冷气。

嘿,现在想想,那个商场还真挺厉害呢。

冷机群控控制逻辑说明

冷机群控控制逻辑说明
冷机群控逻辑说明
一 正常供冷
正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机 会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出 水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷 冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机 的两倍,如果冷却塔冷却后的温度还高于设定值 1 度以上含 1 度,并维持 5 分钟以上,则加一组 冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下: (1)冷冻水侧逻辑
以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启 的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换 时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.
2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID 调节冷却水泵频率. 温度越高,频率越高;冷冻水泵最小频率目前设定 40Hz.
始运行; 3. 一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.
三 蓄冷罐放冷
(1) 放冷条件 在放冷总开关处于启用状态下: 1. 没有一台冷水机组开启; 2. 冷冻水总管平均供水温度高于设定值并维持一定时间; 3. 所有机组都处于失电报警状态下.
当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷 罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就 会放冷.
2. 放冷结速后至少要两个小时后才能充冷; 以上两个条件必须要同时满足才能充冷.
(2) 充冷模式 在满足上述两个充冷条件下,充冷有两种模式.
1. 一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况. 2. 另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开

冷源群控逻辑

冷源群控逻辑

冷却塔出水温度>32℃
加一组冷却塔风机(5台)
延时5秒,打开对应冷却塔风 扇
冷却塔出水温度>35℃
加两组冷却塔风机(10台)

延时30分钟, 关闭冷冻泵
分水器蝶阀是 否打开

延时10秒, 关闭冷冻泵
延时40秒,打开对应冷冻泵
冷冻/却泵是否 运行
延迟20秒,打开主机
运行时出现故障延时40秒
参数自动调节
冷却塔出水温度设定=室外湿球温度+5
注:如果主机已运行,冷源的模式自动锁定不可更改
五、大商业指令
慧云关机指令
是否 打到一键模式
主机及配套设 备是否投入
延时10秒,关闭主机 延时10秒,关闭冷却塔风扇
主机是否关闭
水泵、冷却塔 主机是否自动 并且无故障

去现场检查; 自动切换下一组
冷却塔出水温度 >设定值+偏差
调大冷却泵频 率,反之调小
调大冷却塔频 率,反之调小
冷冻泵单台运行且 频率低于35HZ
否 旁通阀0%
冷冻总管压差 >设定值+偏差
调大旁通阀, 反之调小
主机是否定供水温 度控制
减机设定>主机负载率 ,并保持20分钟
减开一组
注:如果故障修复后不投入使用,需把该主机及配套设备 勾选不投入,否则修复后会自动投入群控!

延时30分钟, 关闭冷冻泵
分水器蝶阀是 否打开

延时10秒, 关闭冷冻泵
手动开主机
延时40秒,打开对应冷冻泵
冷冻/却泵是否 运行
延迟20秒,打开主机
运行时出现故障延时40秒
手动关主机 手动关冷却塔风扇
主机已关 手动关冷却泵 手动关冷冻泵

冷机群控节能分析

冷机群控节能分析

冷机群控节能分析
由于在控制系统中包含了经过优化的加卸载逻辑,使得整个系统在运行时能起到明显的节能效果。

以酒店系统为例,酒店系统采用了2台650RT离心机及2台250RT螺杆机,并配备了75KW,30KW水泵若干。

系统在没有采用群控系统的情况下,系统运行不能根据负荷的变化,自动启停冷水机组,机组一直处于运行状态。

冷源系统的整体运行状态大致如下:
在冷水机组运行时,相关的冷冻泵冷却泵以及冷却水塔均需处于运行状态,这些设备的运行无疑增加了系统能耗。

不同季度每日负荷变化参照下表所列参数:
夏季--冷源系统各部分能耗
假设夏季为90天,根据以上运行参数可得到夏季总耗电量为2942280KWH.
同样可算出冬季总耗电量为1061820KWH,春秋季总耗电量为2345760KWH,则年耗电量为6349860KWH。

系统在采用群控系统之后,群控系统能根据冷水主机的额定制冷量及系统负荷的变化,智能选择开启的机器台数,保证系统的高效运行。

此时冷源系统的整体运行状态大致如下:
在冷水机组运行时,相关的冷冻泵冷却泵以及冷却水塔均需处于运行状态,这些设备的运行无疑增加了系统能耗。

夏季--冷源系统各部分能耗
1.冷水主机-冷水主机输入功率根据不同负荷下效率曲线可得出
2.水泵组
3.冷却水塔
假设夏季为90天,根据以上运行参数可得到夏季总耗电量为2781945KWH.
同样可算出冬季总耗电量为812205KWH,春秋季总耗电量为1969110KWH,则年耗电量为556320KWH,初步估算年节省耗电量至少达到10%。

冷源群控策略

冷源群控策略

世茂滨江项目冷源群控策略一、系统介绍:本项目冷源由3台离心式冷水机组及1台螺杆式冷水机组供冷。

本冷源控制系统主要控制以下设备:1.3台离心式冷水机组,;2.1台螺杆式冷水机组;3.4台冷冻水一次泵(三用一备),配套离心式冷水机组;4.2台冷冻水一次泵(一用一备),配套螺杆式冷水机组;5.6台冷供水二次泵(两组,分别服务裙房及办公塔楼);6.1台过渡季自然冷源利用板换;7.7台冷却塔。

二、控制系统概述:由于冷源系统内的冷水机组、冷冻泵、冷却泵和冷却塔等设备的能耗占整个中央空调系统能耗的60%或以上,因此对多台冷水机组实施群控是至关重要的。

在冷水机组群控系统内,多台冷水机、冷却泵、冷冻泵和冷却塔可以按先后次序有序地运行,通过执行最新的负荷优化、匹配程序和预定时间程序,整个冷冻机房可达到最大限度的节能(15%左右)。

控制节能的最终目标是机房所有设备的总能效最高,而不能只是片面的看某一个设备的节能,因此要综合考虑以下几个方面:冷水机组一次冷冻水泵二次冷冻水泵冷却水泵冷却塔三、控制逻辑(1)开关机顺序开机:冷却塔→冷却水泵→冷冻水一次泵→冷冻水二次泵→冷水机组。

关机过程与开机过程相反。

详细说明:(2)开机条件系统内的所有设备包括冷水机组、冷冻泵、冷却泵、冷却塔和电动蝶阀都有手动/自动两种模式,在群控状态下,要确定所有设备都处于自动状态。

(3)系统启动参数群控图形界面上有一个程序设定按钮。

当该按钮为ON,程序处于群控状态,在群控状态下,至少一组冷冻设备处于可启动设备队列;当该按钮为OFF,程序处于点动状态,在点动状态下,只有符合点动启动的条件,点动才被允许(例如要开冷冻泵,冷冻蝶阀必须已经开到位,否则点动无效)。

在实际运行过程中经常会出现某台设备不能进入使用的状态(例如在维修状态)。

对此,我们为每台设备定义一个软件点。

当该软件点位ON时,程序就会将该设备排除在可投入设备队列之外。

另外,报故障的设备自动排除在可投入设备队列之外。

冷热源群控系统

冷热源群控系统

冷源控制系统(YC)采用目前比较科学的控制方案,通过采集运行机组的负荷及供水温度参数来选择机组的开启台数。

该控制方案为“模糊控制”模式,可以任意选取运行时间较短的机组运行,也可以根据发生的故障自动切换到另一制冷组运行,达到节能和自动控制的最优化。

案例分析原理图大 机组板换大机组板换大机组板换小机 组板换小机组板换冷却水冰水蓄冷罐一次泵一次泵一次泵一次泵一次泵五台二次泵供水总管源控冷热源系统智能控制原理说明: (一)YC监控系统定义和说明✧控制模式:该系统分为三种控制模式,分别是手动模式,单机模式(一键启停),群控模式(一键启停)。

(1)手动模式:根据控制要求,BA在控制界面做了控制模式的选择,可以选择群控模式或者单组模式,当在单组模式情况下,点击每一个制冷组切换到单组手动,就能分别对冷冻水蝶阀,冷却水蝶阀,旁通蝶阀,二次泵、冷却塔等进行单点启停控制。

(2) 单机模式:该控制按键分别在每个冷水机组里面可以进行选择模式,在单机模式情况下,您可以通过一键启停键为该机组一套的设备进行联动控制(对应该冷水机组的蝶阀,水泵,冷却塔等)(3) 群控模式:控制逻辑是利用每台机组的负荷和冷冻水供水温度来控制加减机的。

✧制冷组启动顺序:所有制冷组均以制冷模式启动运行,制冷组控制器将发送顺序启动命令,启动依次:开启冷却水电动阀、冷冻水电动阀——冷却塔——冷却水一次泵——冷冻水一次泵——开启冷水机组。

✧制冷组关机顺序:与启动顺序刚好相反。

✧一旦主管理器(冷冻站内设置)失效,操作员应能够通过就地安装在制冷组控制器上的H-A-O(手动-自动转换)开关操作。

(二)冷水机组控制要求:✧制冷组故障转换:制冷组中任何一个设备故障报警需要按序停止制冷组,然后启用备用制冷组启动加入系统制冷运行。

✧制冷组的加减载:1)加载条件:制冷组运行时,冷冻站管理器将监测冷冻机压缩机的运行效能,当运行效能达到加载条件,(如:额定容量的95%以上持续时间5分钟(时间可调),且冷冻水供水温度大于10℃时),冷冻站管理器将增加开启下一组制冷组。

机房群控系统控制逻辑说明

机房群控系统控制逻辑说明

瑞虹新城三期群控系统方案说明麦克维尔中央空调有限公司系统控制部日期Date:2016-06-161.工程及系统概况 (3)1.1系统概况 (3)1.2控制点表 (3)1.3群控设计 (4)2.群控系统主要控制功能 (5)2.1冷水机组与辅设的联动控制 (5)2.2依据温度的机组台数控制 (7)2.3冷却塔风机控制 (9)2.4冷冻水泵的频率控制 (10)3.节能策略 (12)3.1机组台数&顺序启停控制 (13)3.2冷冻水温度重置(基于总供回水温差) (13)3.3供回水管流量控制 (14)3.4机组启动/停机时间优化 (15)3.5CSM ECO™其它控制策略 (15)4.集中控制管理站 (16)4.1M C Q UAY W EB用户界面 (16)4.2与第三方集成 (17)5.相关案例 (17)1.工程及系统概况本项目共1个冷冻机房系统,系统配置为一套群控系统及一套管理软件。

群控系统对系统内的相关设备实现分散控制集中管理,可以实现联动控制、台数控制、轮换控制、故障切换等自动功能;系统管理工作站可以直观动态的浏览和控制机房内的相关设备,实现高效管理、节能运行。

1.1系统概况1)机房冷源系统设备概况4台离心式水冷冷水机组1台热交换器4台冷水机冷冻侧电动阀4台冷水机冷却侧电动阀5台变频冷冻泵5台定频冷却泵1个冷冻水压差旁通阀8个冷却塔共8个高低速风机8个冷却塔进出水电动阀相关温度、压力、流量、液位、室外温湿度监测加药装置、补水装置监测1.2控制点表控制点表1.3群控设计1)冷却塔3组冷却塔和对应的机组统筹考虑轮换启停及台数对应,原则上是依据室外湿球温度和出水温度值保证尽量低冷却水出水温度(不能低于最低设定温度)以提高水冷冷水机组的效率;2)冷却泵5台冷却泵与水冷冷水机组做联动控制,冷却泵轮换启停,每次启动选择运行时间最短的水泵运行。

当选定的或运行的某台冷却水泵出现故障时自动切入待运行的备用泵,同时发出报警提醒。

冷机群控系统控制策略

冷机群控系统控制策略

冷机群控系统控制策略摘要:我国能源紧缺、能耗高,尤其空调能耗巨大,为了提高中央空调(冷机)的运行效率,方便操作、使用,提高空调能耗比,冷机群控系统越来越得到用户的重视和应用,不同的空调冷水系统对应有不同的群控策略,冷机群控作为独立的控制系统我们非常有必要做仔细的研究,从制冷原理和冷机工作原理以及围绕冷机运行的各个机电设备工作原理出发,从而实现对整个暖通空调系统冷源的全面自动控制、能源管理及分析系统,控制对象包括冷水机组、冷却塔、冷冻水泵、冷却水泵、过渡季板换、补水系统和各种相应的阀门等设备。

本文介绍了一次泵变流量空调水系统冷机群控系统设计方案,从中可以了解到建筑物中空调冷水系统配置了哪些机电设备,水路系统是怎么构建工作的。

论文介绍了冷机群控的定义、作用、特点、功能和控制对象。

详细分析了各类受控对象启动顺序,得出了针对不同受控设备科学的控制策略从而分析受控对象最佳的的节能手段。

并且对冷机群控系统调试做出基本分析,使冷机群控系统达到最佳运行效果。

关键词:冷机群控,能耗比,节能引言随着经济的快速发展与人民生活水平的不断提高,城市建设中现代化建筑的不断增多与新型建筑的蓬勃发展,使国家对能源有巨大的需求。

但我国目前能源储存有限、能源利用率较低,这就迫使我们要把节能问题提到一个重要的位置上来。

空调系统的出现为人们创造了舒适的空调环境,空调应用日益广泛,节能降耗成为空调系统设计的关键。

另外,目前我国大多数建筑的空调系统仍采用人工操作、维护、记录的方式进行监测、控制和管理。

随着计算机技术、信息技术和自控技术的高速发展,以及它们在暖通空调领域的广泛应用,利用自动化控制系统代替传统的仪器、仪表能够更有效的对空调系统进行科学、精确控制,在保证舒适性的同时提高空调系统的运行性能,节省运行能耗,以及降低运行管理费用和降低管理人员的劳动强度。

冷机群控系统的研究与设计对空调系统节能具有重要意义。

1.冷机群控系统的概念1、冷机群控系统定义依据建筑物的空调负荷需求,自动调节优化控制多台冷水机组及相关外围设备的运行[1]。

冷源群控策略

冷源群控策略

世茂滨江项目冷源群控策略、系统介绍:本项目冷源由 3 台离心式冷水机组及 1 台螺杆式冷水机组供冷。

本冷源控制系统主要控制以下设备:1. 3 台离心式冷水机组,;2. 1 台螺杆式冷水机组;3. 4 台冷冻水一次泵(三用一备),配套离心式冷水机组;4. 2 台冷冻水一次泵(一用一备),配套螺杆式冷水机组;5. 6 台冷供水二次泵(两组,分别服务裙房及办公塔楼)6. 1 台过渡季自然冷源利用板换;7. 7 台冷却塔。

、控制系统概述:由于冷源系统内的冷水机组、冷冻泵、冷却泵和冷却塔等设备的能耗占整个中央空调系统能耗的60%或以上,因此对多台冷水机组实施群控是至关重要的。

在冷水机组群控系统内,多台冷水机、冷却泵、冷冻泵和冷却塔可以按先后次序有序地运行,通过执行最新的负荷优化、匹配程序和预定时间程序,整个冷冻机房可达到最大限度的节能(15%左右)。

控制节能的最终目标是机房所有设备的总能效最高,而不能只是片面的看某一个设备的节能,因此要综合考虑以下几个方面:冷水机组一次冷冻水泵二次冷冻水泵冷却水泵冷却塔三、控制逻辑1)开关机顺序开机:冷却塔T冷却水泵-冷冻水一次泵-冷冻水二次泵-冷水机组。

关机过程与开机过程相反。

详细说明:2)开机条件系统内的所有设备包括冷水机组、冷冻泵、冷却泵、冷却塔和电动蝶阀都有手动/自动两种模式,在群控状态下,要确定所有设备都处于自动状态。

(3)系统启动参数群控图形界面上有一个程序设定按钮。

当该按钮为ON程序处于群控状态,在群控状态下,至少一组冷冻设备处于可启动设备队列;当该按钮为OFF程序处于点动状态,在点动状态下,只有符合点动启动的条件,点动才被允许(例如要开冷冻泵,冷冻蝶阀必须已经开到位,否则点动无效)。

在实际运行过程中经常会出现某台设备不能进入使用的状态(例如在维修状态)。

对此,我们为每台设备定义一个软件点。

当该软件点位ON时,程序就会将该设备排除在可投入设备队列之外。

另外,报故障的设备自动排除在可投入设备队列之外。

冷水机组群控系统方案

冷水机组群控系统方案

冷水机组群控系统方案随着现代化程度的不断提高,人们对于工厂、医院、大型商场等场所的空调需求越来越高。

为了满足这些需求,冷水机组已经成为空调系统的重要组成部分,在空调领域中得到了广泛应用。

冷水机组南北配合,实现热源与冷源的互换,调节室内的温度、湿度、洁净度及新鲜度,满足人们各种各样的需求。

在此背景下,群控系统方案的出现也变得日益重要。

1.工作原理群控系统方案是指将多台冷水机组打造成一个整体,通过集中控制的方式,实现对多个冷水机组的远程监测和控制。

具体来说,群控系统方案由一个中央控制器和多个从控制器组成,中央控制器作为群控系统的核心,负责群控系统的整体管理,从控制器则负责与各个冷水机组进行通信,实现对冷水机组的远程控制。

通过该群控系统,用户可以随时随地对多个冷水机组进行远程控制,大大提高了工作的效率和便利性。

2.系统组成群控系统方案主要由如下组成部分:(1)中央控制器:中央控制器是群控系统的核心,可以实现对所有从控制器进行管理和控制。

中央控制器可以通过局域网、互联网等方式接入到计算机或其他设备中,提供各种查询、监测和控制服务的功能。

(2)从控制器:从控制器是连接冷水机组和中央控制器之间的桥梁,可以实现对单个或多个冷水机组的远程监测和控制。

从控制器通过自己的独立网络与中央控制器进行通信。

(3)冷水机组:冷水机组是群控系统的最终执行对象,是实现空调需求的核心设备。

冷水机组包括冷却水泵、制冷机组、冷却塔、阀组等零部件,是将室外的冷热源与室内的风机盘管结合在一起的关键设备。

(4)传感器:传感器可以实现对空调系统的各种参数进行监测和反馈,例如温度、湿度、压力等。

传感器将这些参数的变化转化为电信号,传输到中央控制器中,帮助用户更精准地了解冷水机组的工作状态。

3.方案优点(1)集中管理:群控系统方案可以将多个冷水机组集中在一个中央控制器下管理,实现对冷水机组的一次性配置和控制,确保系统运行的标准化和统一性。

(2)远程控制:群控系统方案可以实现对冷水机组的远程监测和控制,用户不必亲自前往现场进行操作,大大提高了操作的便利性和效率。

冷机群控控制逻辑说明讲课教案

冷机群控控制逻辑说明讲课教案

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持 5 分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1 冷冻水泵有故障;1.2 冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3 当冷冻水泵接到了开泵指令后,延时8 秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率.供回水压力差值越小,频率越高;冷冻水泵最小频率目前设定38Hz.3. 根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID 调节冷冻水旁通阀.压差越高,旁通阀开度越大.2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1 冷却水泵有故障;1.2 冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3 当冷却水泵接到了开泵指令后,延时8 秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3. 根据各自冷却水回水温度与设定值比较PID 调节冷却水旁通阀.温度越高,旁通阀开度越小3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1 冷却塔风机有故障;1.2 冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3 当发出了开冷却塔风机指令后,延时8 秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5 分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持 5 分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷1)充冷条件1. 至少要有一台冷水机组开启2. 放冷结速后至少要两个小时后才能充冷 以上两个条件必须要同时满足才能充冷 .2) 充冷模式 在满足上述两个充冷条件下 ,充冷有两种模式 .1. 一种是手动模式 ,在手动模式下 ,用户可以自行开启 ,关闭各个蓄冷罐的充冷工况 .2. 另一种是自动模式 ,在自动模式下 ,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行 ;3. 一次只能有一个蓄冷罐充冷 ,无论在手动还是自动模式 .三 蓄冷罐放冷(1) 放冷条件在放冷总开关处于启用状态下 : 1. 没有一台冷水机组开启 ;2. 冷冻水总管平均供水温度高于设定值并维持一定时间3. 所有机组都处于失电报警状态下 .当放冷总开关处于启用状态时 ,以上三个条件只要任何一个 ,同时相应充许放冷的蓄冷 罐平均温度不高于设定值 ,以及单个蓄冷罐的放冷开关打到 ” ON 寸,此时相应的蓄冷罐就会放冷 .2) 放冷时 ,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的 冷时的轮换与故障切泵 .四 系统加减机功能增加制冷需求 Additional Cooling Requireda. 当ACR 温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值 IDC :,同时也会执行与正常供-ACR 加载的流程冷冻水供水温度设定点=12 °C,温度偏差值=0.6 °C,b. 运行冷水机组的温度降低速率小于 1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal (未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC :延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载增机条件=YES 延时计时器倒计时开始系统处于预备 否 使用时间内是是否符合下列增机条件? 1 2 有可加载机组3冷冻水供水温度 > (冷冻水设定温度+温度偏差值) 冷冻水温下降速率 < 每分钟1.5 °C 开始是CSM 系统处于备用 状态延时计时器=0 启用待命机组增机条件=NO减少制冷需求Reduce Cooli ng Required -RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

《2024年超大型数据中心冷源群控系统设计与应用》范文

《2024年超大型数据中心冷源群控系统设计与应用》范文

《超大型数据中心冷源群控系统设计与应用》篇一一、引言随着信息技术和网络应用的迅猛发展,超大型数据中心已经成为存储和传输海量数据的核心设施。

冷源系统作为数据中心的重要组成部分,其群控系统的设计与应用直接关系到数据中心的能效、安全与稳定运行。

本文将探讨超大型数据中心冷源群控系统的设计原理、关键技术及其在实际应用中的效果。

二、超大型数据中心冷源群控系统设计原理1. 系统架构设计超大型数据中心的冷源群控系统通常采用分布式架构,通过中央控制器对多个冷源设备进行集中监控与控制。

系统架构包括传感器网络、数据采集与传输模块、中央控制单元以及执行机构等部分。

2. 传感器网络布置传感器网络是冷源群控系统的基础,通过布置在机房、制冷机组、冷却水系统等关键节点的传感器,实时监测温度、湿度、压力、流量等关键参数,为控制策略的制定提供数据支持。

3. 数据采集与传输数据采集模块负责收集传感器网络传回的数据,并进行初步处理。

传输模块将处理后的数据发送至中央控制单元,实现数据的实时共享和远程监控。

4. 中央控制单元中央控制单元是冷源群控系统的核心,它接收数据采集模块发送的数据,根据预设的算法和控制策略,对执行机构发出控制指令,实现冷源设备的智能调控。

三、关键技术及实现方法1. 智能控制算法采用先进的控制算法,如模糊控制、神经网络控制等,根据实时监测的数据,自动调整制冷机组的运行状态,实现能效优化。

2. 故障诊断与预警通过数据分析与模式识别技术,对冷源系统的运行状态进行实时诊断,及时发现潜在故障并发出预警,确保系统安全稳定运行。

3. 能效管理策略制定能效管理策略,根据数据中心的实际负载情况、外部环境温度等因素,动态调整制冷设备的运行模式,降低能耗。

四、应用实践与效果分析1. 应用实践某超大型数据中心采用冷源群控系统后,实现了对制冷机组的智能调控和能效管理。

通过实时监测和数据分析,系统能够自动调整制冷设备的运行参数,确保机房温度的稳定性和能效的最优化。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器与蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机、冷冻水泵以及冷却水泵的数量与主机开启的数量就是一致的,冷却塔风机最少开启的数量就是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止、具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵、1、冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵、相应的,水泵能开启的条件就就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败、水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵、2.冷冻水泵的频率调节就是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率、供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz、3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀、压差越高,旁通阀开度越大、(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵、1、冷却水泵切换条件如下:1、1冷却水泵有故障;1、2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期、1、3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵、相应的,水泵能开启的条件就就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败、水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵、2、冷却水泵的频率调节就是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率、温度越高,频率越高;冷冻水泵最小频率目前设定40Hz、3、根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀、温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量就是一致的、同时会开启相应的电动蝶阀、1、冷却塔风机切换条件如下:1、1冷却塔风机有故障;1、2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期、1、3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个,就会造成风机锁定不能开启、能开启的条件就就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败、当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组、2、冷却塔风机的频率调节就是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率、温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz、3、如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量、二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷、(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式、1.一种就是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况、2.另一种就是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还就是自动模式、三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1、没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下、当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷、(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量就是一样的,同时也会执行与正常供冷时的轮换与故障切泵、四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0、6 o C,平均温度>(12+0、6)即12、6 o C时条件满足b. 运行冷水机组的温度降低速率小于1、5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警) *以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0、6与延时15分钟为了在满足正常使用情况下,系统更稳定加载。

中央空调冷热源群控系统PLC逻辑控制说明

中央空调冷热源群控系统PLC逻辑控制说明

一、冷机启停逻辑(DDC内控制程序)1、冷机启动→平台选择了冷机模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→冷机模式对应的1个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵,冷冻水泵频率>(设定启动频率-5)→开启冷机,系统运行状态返回(计时清零,正常启动完成,如果超过3分钟没有状态返回,启动故障处理程序)→冷机启动完成2、冷机关闭→平台选择了冷机模式,并且发送了关机命令(开始计时)→给冷机发送关机指令,冷机停机,冷机运行状态为OFF,开始计时→计时时间=300S(5分钟),关闭冷冻水循环泵→计时时间=360S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→冷机关闭完成3、板换启动→平台选择了板换模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→板换模式对应的4个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵→板换启动完成4、板换关闭→平台选择了板换模式,并且发送了关机命令(开始计时)→计时时间=30S(半分钟),关闭冷冻水循环泵→计时时间=60S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→板换关闭完成二、冷机故障切换逻辑1、故障条件➢大前提:制冷单元发送了开机命令或者在运行中➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)切换到本地模式➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)故障➢冷机断电(延时10S(可设置)时间没有恢复)。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

枯藤老树昏鸦,小桥流水人家,古道西风瘦马。

夕阳西下,断肠人在天涯。

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:冷冻水泵有故障;冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1冷却水泵有故障;1.2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>(12+0.6)即12.6 o C时条件满足b. 运行冷水机组的温度降低速率小于1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冷却塔出水温度 >设定值+偏差
调大冷却泵频 率,反之调小
调大冷却塔频 率,反之调小
冷冻泵单台运行且 频率低于35HZ
否 旁通阀0%
冷冻总管压差 >设定值+偏差
调大旁通阀, 反之调小
主机是否定供水温 度控制
减机设定>主机负载率 ,并保持20分钟
减开一组
注:如果故障修复后不投入使用,需把该主机及配套设备 勾选不投入,否则修复后会自动投入群控!

延时30分钟, 关闭冷冻泵
分水器蝶阀是 否打开

延时10秒, 关闭冷冻泵
手动开主机
延时40秒,打开对应冷冻泵
冷冻/却泵是否 运行
延迟20秒,打开主机
运行时出现故障延时40秒
手动关主机 手动关冷却塔风扇
主机已关 手动关冷却泵 手动关冷冻泵
注:如果故障修复后不投入使用,需把该主机及配套设备 勾选不投入,否则修复后会自动投入群控!
加机设定<主机负载率 ,并保持20分钟
冷冻总管供水温度>(3台主机
冷冻水出水温度设定值/3+4℃) 保持20分钟
已开主机 <最大台数
加开一组
联锁控制
自动修正
冷却塔出水温度<设定值偏差,且频率<=30HZ,并 保持200秒,或者冷却塔
出水温度<25℃
过渡季 是
否 冷却塔出水温度设定=室外湿球温度+3
关闭冷却塔 发出报警
ÿ 五、大商业群控控制逻辑 1、一键模式
一键开机指令
一键关机指令
是否 打到一键模式
主机及配套设 备是否投入
延时10秒,关闭主机 延时10秒,关闭冷却塔风扇
主机是否关闭
水泵、冷却塔 主机是否自动
并且无故障

去现场检查; 自动切换下一组
延时90秒,关闭冷却泵
可运行的时长最小主机
是否一键关机
延时5秒,打开对应冷却泵
冷却塔出水温度>32℃
加一组冷却塔风机(5台)
延时5秒,打开对应冷却塔风 扇
冷却塔出水温度>35℃
加两组冷却塔风机(10台)

延时30分钟, 关闭冷冻泵
分水器蝶阀是 否打开

延时10秒, 关闭冷冻泵
延时40秒,打开对应冷冻泵
冷冻/却泵是否 运行
延迟20秒,打开主机
运行时出现故障延时40秒
参数自动调节
冷却塔出水温度设定=室外湿球温度+5
注:如果主机已运行,冷源的模式自动锁定不可更改
五、大商业群控控制逻辑
2、慧云模式
3、手动模式
慧云开机指令
慧云关机指令
是否 打到一键模式
主机及配套设 备是否投入
延时10秒,关闭主机 延时10秒,关闭冷却塔风扇
主机是否关闭
水泵、冷却塔 主机是否自动 并且无故障

去现场检查; 自动切换下一组
延时90秒,关闭冷却泵
手动开冷却泵,限 35-50Hz
手动开冷却塔风扇, 限30-50Hz
手动开分水器蝶阀
蝶阀已开
手动开冷冻泵,限 35-50HZ
冷冻、却泵 已开
可运行的时长最小主机
是否一键关机
延时5秒,打开对应冷却泵
延时5秒,打开对应冷却塔风 扇
冷却塔出水温度>32℃ 加一组冷却塔风机(5台)
冷却塔出水温度>35℃ 加两组冷却塔风机(10台)
设置参数:1、冷冻总管温差;2、冷冻总管压差;3、冷 却总管温差;4、加/减机设定;5、最大主机台数;6、 冷冻出水温度;7、冷却塔出水温度 注:冷冻水出水温度改变会自动同步到主机出水温度。
冷冻总管温差 >设定值+偏差
冷冻总管压差 <设定值-偏差
取两者需求的最大 值,调节冷冻泵频率
冷却总管温差 >设定值+偏差
相关文档
最新文档