中考三角函数应用题(word直接打印)

合集下载

(完整word版)20道利用三角函数图像求解析式习题

(完整word版)20道利用三角函数图像求解析式习题

1是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,2、若函数k x A y ++=)sin(ϕω的最大值为5,最小值为-1,则函数A =____k =_______.3、下列函数中,图像的一部分如右图所示的是( )(A )sin()6y x π=+ (B )cos(2)6y x π=- (C)cos(4)3y x π=- (D )sin(2)6y x π=-4、已知函数()⎪⎭⎫ ⎝⎛<>+=2,0sin πϕωϕωx y 的部分图象如右上图所示,则( )A. 6,1πϕω== B 。

6,1πϕω-==C 。

6,2πϕω== D. 6,2πϕω-==5、将函数sin (0)y x ωω=>的图象向左平移6π个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- 。

6、设函数)(x f = )2sin(ϕ+x (0<<-ϕπ),)(x f 图像的一条对称轴是直线8π=x ,则ϕ 的值为( )A .2π B .π C .2π D .4π7、函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==图所示,则8、函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如函数表达式为)(A ))48sin(4π+π-=x y (B))48sin(4π-π=x y(C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y图, 求y 的解9、函数()ϕω+=x A y sin 的一个周期内的图象如下析式。

(完整word版)三角函数的定义、诱导公式、同角三角函数的关系练习题-

(完整word版)三角函数的定义、诱导公式、同角三角函数的关系练习题-

三角函数的定义、诱导公式、同角三角函数的关系练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边经过点P(4,—3),则的值为( )A. B. C. D.2.已知角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,则cos α-sin α的值为( ) A. B.C. D.3.已知角α的终边与单位圆的交点P,则sinα·tanα=( )A.- B.± C.- D.±4.若tanα〈0,且sinα〉cosα,则α在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.若,且,则角是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角6.若,且为第二象限角,()A. B. C. D.7.已知,则等于A .B .C .D .8.若,且为第二象限角,则( )A .B .C .D .二、填空题9.已知 ,则___________三、解答题10.已知,且是第四象限的角。

(1)求; (2). 11.(1)已知,求的值;(2)已知, ,求的值.12.已知tan α2,= (1)求值: sin cos sin cos αααα+- (2)求值: ()()()()π5πsin cos cos π22cos 7πsin 2πsin παααααα⎛⎫⎛⎫+--+ ⎪ ⎪⎝⎭⎝⎭+-+ 13.已知角α终边上的一点()7,3P m m - ()0m ≠。

(1)求()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭的值; (2)求22sin cos cos ααα+-的值。

14.已知0θπ<<,且1sin cos 5θθ+=,求 (1)sin cos θθ-的值;(2)tan θ的值.15.已知tan 2α=.(1)求3sin 2cos sin cos αααα+-的值; (2)求()()()()3cos cos sin 22sin 3sin cos πππαααπααππα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭+-+的值; 16.已知,计算:(1); (2)。

专题22 锐角三角函数及其应用(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题22 锐角三角函数及其应用(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题22锐角三角函数及其应用(30题)一、单选题1.(2023·江苏南通·统考中考真题)如图,从航拍无人机A 看一栋楼顶部B 的仰角α为30︒,看这栋楼底部C 的俯角β为60︒,无人机与楼的水平距离为120m ,则这栋楼的高度为()A .1403mB .1603mC .1803mD .2003m2.(2023·湖南益阳·统考中考真题)如图,在平面直角坐标系xOy 中,有三点()0,1A ,()4,1B ,()5,6C ,则sin BAC ∠=()A .12B .135C .22D .323.(2023·山东日照·统考中考真题)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B 处测得灯塔最高点A 的仰角45ABD ∠=︒,再沿BD 方向前进至C 处测得最高点A 的仰角60ACD ∠=︒,15.3m BC =,则灯塔的高度AD 大约是()(结果精确到1m ,参考数据:2 1.41≈,3 1.73≈)A .31mB .36mC .42mD .53mA.32sin25二、解答题5.(2023·辽宁盘锦两点时,一架无人机从空中的6.(2023·辽宁鞍山·统考中考真题)某商店窗前计划安装如图面图中,墙面BC垂直于地面CE∠=∠所在墙面BC垂直,即ABC∠线恰好照射在地面点D处,则ADE7.(2023·辽宁阜新·统考中考真题)如图,小颖家所在居民楼高AB 为46m ,从楼顶A 处测得另一座大厦顶部C 的仰角α是45︒,而大厦底部D 的俯角β是37︒.(1)求两楼之间的距离BD .(2)求大厦的高度CD .(结果精确到0.1m .参考数据:sin 370.6︒≈,cos370.8︒≈,tan 370.75︒≈)8.(2023·陕西·统考中考真题)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得2.4m DF =;当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为266︒..已知爸爸的身高 1.8m CD =,小明眼睛到地面的距离 1.6m EF =,点F 、D 、B 在同一条直线上,EF FB ⊥,CD FB ⊥,AB FB ⊥.求该景观灯的高AB .(参考数据:sin 26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50)︒≈10.(2023·山东济南·统考中考真题)图1是某越野车的侧面示意图,BC=,1230.6mAO=.如图2,打开后备箱,车后盖ABC∠=︒,该车的高度 1.7m(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.位于码头A北偏东60︒方向.一艘勘测船从海岛C沿北偏西30︒方向往灯塔B行驶,沿线勘测石油资源,勘测发现位于码头A北偏东15︒方向的D处石油资源丰富.若规划修建从D处到海岸线的输油管道,则输油管道的最短长度是多少千米?(结果保留根号)12.(2023·浙江·统考中考真题)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能OA=,识别的最远水平距被识别),其示意图如图2,摄像头A的仰角、俯角均为15︒,摄像头高度160cm OB=.离150cm(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据︒≈︒≈︒≈︒≈︒≈︒≈)sin150.26,cos150.97,tan150.27,sin200.34,cos200.94,tan200.3613.(2023·江苏宿迁·统考中考真题)【问题背景】由光的反射定律知:反射角等于入射角(如图,即【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图)动至1E处,小军恰好通过镜子看到广告牌顶端到广告牌的底端A,测出2DE告牌AG的高度.【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔①让小军站在斜坡的底端D处不动(小军眼睛离地面距离面上)位置至E处,让小军恰好能看到塔顶(即8tan15ADG∠=).通过他们给出的方案,请你算出信号塔14.(2023·辽宁·统考中考真题)小亮利用所学的知识对大厦的高度大厦底部的俯角是30︒,测得大厦顶部的仰角是37︒,已知他家楼顶B 处距地面的高度BA 为40米(图中点A ,B ,C ,D 均在同一平面内).(1)求两楼之间的距离AC (结果保留根号);(2)求大厦的高度CD (结果取整数).(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,3 1.73≈)15.(2023·江苏泰州·统考中考真题)如图,堤坝AB 长为10m ,坡度i 为1:0.75,底端A 在地面上,堤坝与对面的山之间有一深沟,山顶D 处立有高20m 的铁塔CD .小明欲测量山高DE ,他在A 处看到铁塔顶端C 刚好在视线AB 上,又在坝顶B 处测得塔底D 的仰角α为2635︒'.求堤坝高及山高DE .(sin 26350.45'︒≈,cos 26350.89'︒≈,tan 26350.50'︒≈,小明身高忽略不计,结果精确到1m )16.(2023·湖南娄底·统考中考真题)几位同学在老师的指导下到某景区进行户外实践活动,在登山途中发17.(2023·黑龙江大庆·统考中考真题)某风景区观景缆车路线如图所示,缆车从点AB=米,达山顶P,其中400与水平方向的夹角为30︒,求垂直高度︒≈)tan150.26818.(2023·宁夏·统考中考真题)如图,粮库用传送带传送粮袋,大转动轮的半径为成30︒角.假设传送带与转动轮之间无滑动,当大转动轮转19.(2023·湖北恩施·统考中考真题)小王同学学习了锐角三角函数后,通过观察广场的台阶与信号塔之间的相对位置,他认为利用台阶的可测数据与在点A ,B 处测出点D 的仰角度数,可以求出信号塔DE 的高.如图,AB 的长为5m ,高BC 为3m .他在点A 处测得点D 的仰角为45︒,在点B 处测得点D 的仰角为38.7︒,A B C D E ,,,,在同一平面内.你认为小王同学能求出信号塔DE 的高吗?若能,请求出信号塔DE 的高;若不能,请说明理由.(参考数据:sin 38.70.625︒≈,cos38.70.780︒≈,tan 38.70.80︒≈,结果保留整数)20.(2023·辽宁营口·统考中考真题)为了丰富学生的文化生活,学校利用假期组织学生到素质教育基地A 和科技智能馆B 参观学习,学生从学校出发,走到C 处时,发现A 位于C 的北偏西25︒方向上,B 位于C 的北偏西55︒方向上,老师将学生分成甲乙两组,甲组前往A 地,乙组前往B 地,已知B 在A 的南偏西20︒方向上,且相距1000米,请求出甲组同学比乙组同学大约多走多远的路程(参考数据:2 1.41≈,6 2.45≈)21.(2023·山东·统考中考真题)如图,某育苗基地为了能够最大限度地遮挡夏季炎热的阳光和充分利用冬天的光照,计划在苗圃正上方搭建一个平行于地面的遮阳蓬.已知苗圃的(南北)宽 6.5AB =米,该地区一(1)求登山缆车上升的高度DE ;(2)若步行速度为30m/min ,登山缆车的速度为60m/min ,求从山底A 处到达山顶D 处大约需要多少分钟(结果精确到0.1min )(参考数据:sin 530.80cos530.60tan 53 1.33︒≈︒≈︒≈,,)24.(2023·贵州·统考中考真题)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,A B 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈,2 1.41≈)25.(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家4A 级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G 处挂一条大型竖直条幅到点E 处,挂好后,小明进行实地测(1)求自动扶梯AD的长度;(2)求大型条幅GE的长度.(结果保留根号)甘肃兰州·统考中考真题)如图127.(2023·内蒙古·统考中考真题)为了增强学生体质、图,A点为出发点,途中设置两个检查点,分别为的南偏东25︒方向32km处,C点在A点的北偏东45︒.的度数;(1)求行进路线BC和CA所在直线的夹角BCA(2)求检查点B和C之间的距离(结果保留根号).28.(2023·吉林·统考中考真题)某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告时间:2023年4月20日活动任务:测量古树高度活动过程【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用α=________.AB=.1.54mBD=.10m三、填空题m .(精确到1m .参考数据:tan 50 1.2tan 26.60.5︒≈︒≈,)30.(2023·内蒙古赤峰·统考中考真题)为发展城乡经济,建设美丽乡村,某乡对A 地和B 地之间的一处垃圾填埋场进行改造,把原来A 地去往B 地需要绕行到C 地的路线,改造成可以直线通行的公路AB .如图,经勘测,6AC =千米,60CAB ∠=︒,37CBA ∠=︒,则改造后公路AB 的长是千米(精确到0.1千米;参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,3 1.73≈).。

(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)

(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)

锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt△ABC 中,∠C=900, ∠A、∠B、∠C 的对边分别为a、b、c,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数【特别提醒:1、sinA、∠cosA、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】例1.如图所示,在Rt△ABC 中,∠C=90°.①sin A =(②cos A =()=,对对)=,对对第 1 题图sin B =(cos B =()=;对对)=;对对③tan A =( )=,∠A对对对例2. 锐角三角函数求值:tan B =∠B对对对=.( )在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=,sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.例3.已知:如图,Rt△TNM 中,∠TMN=90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.典型例题:类型一:直角三角形求值5 1. 已知 Rt △ABC 中, ∠C = 90︒, tan A = 3, BC = 12, 4求AC 、AB 和 cos B .2. 已知:如图,⊙O 的半径 OA =16cm ,OC ⊥AB 于 C 点, sin ∠AOC = 3⋅4求:AB 及 OC 的长.3. 已知:⊙O 中,OC ⊥AB 于 C 点,AB =16cm , sin ∠AOC = 3⋅5(1) 求⊙O 的半径 OA 的长及弦心距 OC ; (2) 求 cos ∠AOC 及 tan ∠AOC .4. 已知∠A 是锐角, sin A = 8 17,求cos A , tan A 的值对应训练:(西城北)3.在 Rt △ABC 中,∠ C =90°,若 BC =1,AB = ,则 tan A 的值为A.55B. 2 55C.12D .2(房ft )5.在△ABC 中,∠C =90°,sin A= 3,那么 tan A 的值等于().5A. 3 5B. 4 5C. 3 4D.4 3类型二. 利用角度转化求值:1. 已知:如图,Rt △ABC 中,∠C =90°.D 是 AC 边上一点,DE ⊥AB 于 E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .32.如图,直径为10的⊙A 经过点C(0对5) 和点O(0对0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为()1 3A.B.2 2C.3D.45 5yCAO D xB图 8图图3.(2009·孝感中考)如图,角的顶点为O,它的一边在x 轴的正半轴上,另一边OA 上有一点P(3,4),则sin=.4.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm,DE⊥AB,sin A =,则这个菱形5 的面积= cm2.5.(2009·齐齐哈尔中考)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的3半径为2,AC = 2 ,则sin B 的值是()2 3 3 4A.B.C.D.3 24 3F2 3 6. 如图 4,沿 AE 折叠矩形纸片 ABCD ,使点 D 落在 BC 边的点 F 处.已知 AB = 8 , BC = 10 ,AB=8,则 tan ∠EFC 的值为 ( )ADE 3 4 34 BCA.B.C.D.43557. 如图 6,在等腰直角三角形∆ABC 中, ∠C = 90︒ , AC = 6 , D 为 AC 上一点,若tan ∠DBA = 15,则 AD 的长为()A.B . 2C.1 D . 28. 如图 6,在 Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线 AD = 1633求 ∠B 的度数及边 BC 、AB 的长.ACDB图 6类型三. 化斜三角形为直角三角形例 1 (2012•安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 ,求 AB 的长.例 2.已知:如图,△ABC 中,AC =12cm ,AB =16cm , sin A = 1⋅3(1)求 AB 边上的高 CD ; (2)求△ABC 的面积 S ; (3)求 tan B .23 33例3.已知:如图,在△ABC 中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC 的值.对应训练1.(2012•重庆)如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB=9,BC=6,△ABC 的面积等于9,求sin B.3.ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是A.2 cm2B.4 cm2C.6 cm2D.12 cm2类型四:利用网格构造直角三角形例1 (2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()1 5A.B.2 5C.1010D.2 55对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A = .CA B2.如图,A、B、C 三点在正方形网络线的交点处,若将∆ABC 绕着点A 逆时针旋转得到∆AC' B',则tan B' 的值为1 1 1A. B. C.4 3 2D. 13.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A.52B.51C. D. 22特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(昌平)1).计算:2 cos 30︒+ 2 sin 45︒- tan 60︒.(朝阳)2)计算:tan 60︒+ sin2 45︒- 2 cos 30︒.(2009·黄石中考)计算:3-1+(2π-1)0-3tan30°-tan45°3AO B33(石景ft)4.计算:⎛+ 2 cos 60︒+ sin 45︒-⎝⎫0tan 30︒⎪.2 ⎭tan 45︒+ sin 30︒ (通县)5.计算:;1- cos 60︒例2.求适合下列条件的锐角.(1)cos=12 (2)tan=3(3) s in 2=22(4) 6 cos(- 16 ) = 3(5)已知为锐角,且tan(+300)=,求tan的值(6)在∆ABC 中,若cos A -+(sin B -2)2= 0 ,∠A,∠B 都是锐角,求∠C 的度数.2例3. 三角函数的增减性1.已知∠A 为锐角,且sin A < 1,那么∠A 的取值范围是2A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2.已知A 为锐角,且cos A < sin 300,则()A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE⊥AB 于E,BE=16cm,sin A =12⋅ 13123123求此菱形的周长.2. 已知:如图,Rt △ABC 中,∠C =90°, AC = BC=于 D 点,求:(1) ∠BAD ;(2) sin ∠BAD 、cos ∠BAD 和 tan ∠BAD .,作∠DAC =30°,AD 交 CB3. 已知:如图△ABC 中,D 为 BC 中点,且∠BAD =90°, tan ∠B =CAD 、tan ∠CAD .1 ,求:sin ∠CAD 、cos ∠34. 如图,在 Rt △ABC 中,∠C=90°, sin B = 3,点 D 在 BC 边上,DC= AC = 6,求 tan ∠BAD5的值.ABDC5.(本小题5 分)如图,△ABC 中,∠A=30°, tan B =2C, AC = 4 .求 AB 的长.AB解直角三角形:3 333 1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在 Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系: . ②两锐角之间的关系: .③边与角之间的关系:sin A = cos B =; cos A = sin B = ; tan A =1 =tan B1;tan A= tan B =.④直角三角形中成比例的线段(如图所示). 在 Rt △ABC 中,∠C =90°,CD ⊥AB 于 D . CD 2= ;AC 2= ; BC 2= ;AC ·BC = .类型一例 1.在 Rt △ABC 中,∠C =90°.(1)已知:a =35, c = 35 ,求∠A 、∠B ,b ;(2)已知: a = 2 , b = 2 ,求∠A 、∠B ,c ;(3)已知: sin A =2 , c = 6 ,求 a 、b ;3(4)已知: tan B = 3, b = 9, 2求 a 、c ;(5)已知:∠A =60°,△ABC 的面积 S = 12 3, 求 a 、b 、c 及∠B .2例2.已知:如图,△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.例3.已知:如图,Rt△ABC 中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD 的长.例4.已知:如图,△ABC 中,∠A=30°,∠B=135°,AC=10cm.求AB 及BC 的长.类型二:解直角三角形的实际应用仰角与俯角:例1.(2012•福州)如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100 米,点A、D、B 在同一直线上,则AB 两点的距离是()A.200 米B.200 米C.220 米D.100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45 °.点D 到地面的垂直距离DE 3 2m ,求点 B 到地面的垂直距离BC.例3(昌平)19.如图,一风力发电装置竖立在小ft顶上,小ft的高BD=30m.从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA=60°,测得ft顶B 的仰角∠DCB=30°,求风力发电装置的高AB 的长.ADB E例4 .如图,小聪用一块有一个锐角为30 的直角三角板测量树C高,已知小聪和树都与地面垂直,且相距3AB 为1.7 米,求这棵树的高度.米,小聪身高例5.已知:如图,河旁有一座小ft,从ft顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m.现需从ft顶A 到河对岸点C 拉一条笔直的缆绳AC,求ft的高度及缆绳AC 的长(答案可带根号).例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20 米,到达点C,再次测得点A 的仰角为60°,则物体AB 的高度为()C.20 米D.米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC)为30 米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8 秒,∠BAC=75°.(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到1 米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,≈1.732,60 千米/小时≈16.7 米/秒)3A.10 米B.10 米33 3 3类型四. 坡度与坡角例.(2012•广安)如图,某水库堤坝横断面迎水坡 AB 的坡比是 1: ,堤坝高 BC=50m ,则应水坡面 AB 的长度是( ) A .100mB .100 mC .150mD .50 m类型五. 方位角1. 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测得灯塔 M 在北偏西 45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少?(精确到 0.1 海里,1.732 )2.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012 年 5 月 18 日,某国 3 艘炮艇追袭 5 条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政 310” 船人船未歇立即追往北纬 11 度 22 分、东经 110 度 45 分附近海域护渔,保护 100 多名中国 渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图 1)324解决问题如图 2,已知“中国渔政 310”船(A )接到陆地指挥中心(B )命令时,渔船(C )位于陆地指挥中心正南方向,位于“中国渔政 310”船西南方向,“中国渔政 310”船位于陆地指挥中心南偏东 60°方向,AB=海里,“中国渔政 310”船最大航速 20 海里/时.根据以上信息,请你求出“中国渔政 310”船赶往出事地点需要多少时间.综合题:三角函数与四边形:(西城二模)1.如图,四边形 ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,6tan ∠BDC= 3.(1) 求 BD 的长; (2) 求 AD 的长.(2011 东一)18.如图,在平行四边形 ABCD 中,过点 A 分别作 AE ⊥BC 于点 E ,AF ⊥CD 于点 F .(1) 求证: ∠BAE =∠DAF ;(2) 若 AE =4,AF =,s in ∠BAE = 53 ,求 CF 的长.5三角函数与圆:1. 如图,直径为 10 的⊙A 经过点C (0对5) 和点O (0对0) ,与 x 轴的正半轴交于点 D ,B 是 y轴右侧圆弧上一点,则 cos ∠OBC 的值为()1 3 A.B .22C .3D . 45 5yC AOD xB图 8图图5 DO4(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接 AC 与⊙O 交于点 D, (1) 求证:∠AOD=2∠CC4 (2) 若 AD=8,tanC= ,求⊙O 的半径。

(完整word)1.4三角函数的图像与性质(真题)

(完整word)1.4三角函数的图像与性质(真题)

1.4三角函数的图像与性质(真题)一、选择题(本大题共29小题,共145。

0分)1.已知sin(75°+α)=,则cos(15°—α)的值为()A. -B.C. —D。

2.若α是第三象限角,则y=+的值为()A. 0B. 2 C。

-2 D。

2或-23.角α是第一象限角,且sinα=,那么cosα()A。

B. —C。

D. -4.已知角α的终边经过点P(0,3),则α是()A。

第一象限角B。

终边在x轴的非负半轴上的角C。

第四象限角 D. 终边在y轴的非负半轴上的角5.已知,且,则tanφ=()A. B. C。

D。

6.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( )A。

y=2sin(2x+) B。

y=2sin(2x+)C。

y=2sin(2x—)D。

y=2sin(2x-)7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A. 11B. 9C. 7 D。

58.函数y=A sin(ωx+φ)的部分图象如图所示,则()A。

y=2sin(2x-)B。

y=2sin(2x—)C。

y=2sin(x+)D。

y=2sin(x+)9.若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A。

x=—(k∈Z) B。

x=+(k∈Z)C. x=-(k∈Z)D。

x=+(k∈Z)10.函数f(x)=cos2x+6cos(—x)的最大值为( )A。

4 B. 5 C. 6 D. 711.已知曲线C1:y=cos x,C2:y=sin(2x+),则下面结论正确的是( )A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C212.设函数f(x)=cos(x+),则下列结论错误的是()A。

中考三角函数应用题

中考三角函数应用题

中考三角函数应用题1.甲楼楼高50米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距50米,那么甲楼的影子落在乙楼上有多高?(2)小明住在乙楼16m高(地板距地面的距离)的五层楼上,要是冬至中午12时阳光不被挡住,两楼至少距离多少米(结果精确到1m,参考数据:≈1.732)?2.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:≈1.41,≈1.73)3.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)4.如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).求教学楼AB的高度.(参考数据:sin22°≈,cos22°≈,tan22°≈)5.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)6.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.三角函数练习题1.如图,山顶建有一座铁塔,塔高CD=20m,某人在点A处,测得塔底C的仰角为45°,塔顶D的仰角为60°,求山高BC(精确到1m,参考数据:≈1.41,≈1.73)2.如图,河对岸有一高层建筑物AB,为测其高,在C处由点D用测量仪测得顶端A的仰角为30°,向高层建筑物前进50米,到达E处,由点F测得顶点A的仰角为45°,已知测量仪高CD=EF=1.2米,求高层建筑物AB的高.(结果精确到0.1米,,)3.如图所示,当一热气球在点A处时,其探测器显示,从热气球看高楼顶部点B的仰角为45°,看高楼底部点C的俯角为60°,这栋楼高120米,那么热气球与高楼的水平距离为多少米?(结果精确到0.1米,参考数据:)4.如图,大楼AB高16米,远处有一塔CD,某人在楼底B处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰角为22°,求塔高CD及大楼与塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )5.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为多少?6.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)。

(完整word版)精选三角函数解答题30道带答案

(完整word版)精选三角函数解答题30道带答案

三角函数综合练习三学校:___________姓名:___________班级:___________考号:___________一、解答题1(0ω>) (1)求()f x 在区间 (2)将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得个单位,得到函数()g x 的图象,若关于x 的方程()0g x k +=在区上有且只有一个实数根,求实数k 的取值范围. 2.其中,m x R ∈.(1)求()f x 的最小正周期;(2)求实数m 的值,使函数()f x 的值域恰为并求此时()f x 在R 上的对称中心.3 (1)求)(x f 的最小正周期;(2. 4 (1)求()f x 的最小正周期;(2)求()f x 在区间 5.已知函数.(1)求最小正周期; (2)求在区间上的最大值和最小值.6 (1)求()f x 的最小正周期;(2)若将()f x 的图象向右平移个单位,得到函数()g x 的图象,求函数()g x 在区间[]0,π上的最大值和最小值.7 (Ⅰ)(Ⅱ)8(1)求()f x 的定义域与最小正周期;(2求α的大小.9, x R ∈(1)求函数()f x 的最小正周期及在区间 (2,求0cos 2x 的值。

10.(本小题满分12 (1)求()f x 单调递增区间;(2)求()f x 在.11 (Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 在.12 (I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移个单位长度,得到函数()g x 的图象,求()g x 在的值域.13 (1)求()f x 的最小正周期;(2)求()f x 在区间 14(其中x ∈R ),求: (1)函数()f x 的最小正周期;(2)函数()f x 的单调区间;15 (1)求函数()f x 的最小正周期和图象的对称轴方程;(2)求函数()f x 在区间16 (1及()f x 的单调递增区间; (2)求()f x 在闭区间17(1(2成立的x 的取值集合.18 (Ⅰ)求函数()f x 的单调递减区间;19 (Ⅰ)求函数)(x f 的最小正周期T 及在],[ππ-上的单调递减区间;(Ⅱ)若关于x 的方程0)(=+k x f ,在区间上且只有一个实数解,求实数k 的取值范围.20 (1)求函数)(x f 的最小正周期和单调递减区间;(2)若将函数)(x f 的图象向左平移)0(>m m 个单位后,得到的函数)(x g 的图象关于轴对称,求实数m 的最小值.21(x R ∈). (1)求函数()f x 的最小正周期和单调减区间;(2)将函数()f x 的图象向右平移个单位长度后得到函数()g x 的图象,求函数()g x22(1)求函数()f x 的最小正周期;(2)求函数()f x 取得最大值的所有x 组成的集合.23 (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在. 24.已知函数()22sin 2sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值. 25.已知函数()()cos sin cos f x x x x =-. (Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值.26(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在m 的取值范围.27(1)求函数()y f x =的最大、最小值以及相应的x 的值;(2)若y >2,求x 的取值范围.28 (1)求函数()f x 的最大值;(2)若直线x m =是函数()f x 的对称轴,求实数m 的值.29.函数()2cos (sin cos )f x x x x =+.(1 (2)求函数()f x 的最小正周期及单调递增区间.30 (1)求()f x 的最小正周期和最大值;(2)讨论()f x 在参考答案1.(1(2或1k =-. 【解析】试题分析:(1时,()f x 为减函数⇒所以()f x 的减区间为(2()y g x =的图象与直线y k =-在区间上只有一个交点⇒或1k =-.试题解析:(1因为()f x 的最小正周期为时,()f x 为减函数, 所以()f x 的减区间为 (2)将函数()f x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到再将的图象向右平移个单位,得到若关于x 的方程()0g x k +=在区间 即函数()y g x =的图象与直线y k =-在区间上只有一个交点, 或1k -=,即或1k =-. 考点:三角函数的图象与性质.2.(1)T π=;(2,Z k ∈∈. 【解析】试题分析:(1)则最小正周期T π=;(2)时,)(x f 值域为]3,[m m +解得函数)(x f 对称中心为,Z k ∈∈. 试题解析:(1)最小正周期T π=;(2考点:三角函数图象的性质.3.(1)π=T ;(2)()f x 在【解析】试题分析:(1)根据正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式可将)(x f 化可得)(x f 的最小正周期为π;(2)进而得)(x f . 试题解析:(1所以f(x)f(x)考点:1、正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式;2、三角函数的周期性及单调性.4.(1)函数的最小正周期为π(2时,)(x f 取最大值2时,)(x f 取得最小值1-【解析】试题分析:(1最小正周期及其图象的对称中心的坐标;(2从而可求求f (x试题解析::(Ⅰ)因为f (x )=4cosxsin (-1=4cosx )-12x-1=2sin (, 所以f (x )的最小正周期为π,由于是,当2;当f (x )取得最小值-1 考点:三角函数的最值;三角函数中的恒等变换应用;三角函数的周期性及其求法【答案】(1)π=T ;(2【解析】试题分析:(1)借助题设条件和两角和的正弦公式化简求解;(2)借助题设条件及正弦函数的有界性求解.试题解析:(1)因()()2sin cos cos 2f x x x x =++考点:三角变换的有关知识及综合运用.6.(1)π;(2)2,1.【解析】试题分析:(1)利用二倍角公式、诱导公式、两角和的正弦函数化为一个角旳一个三角函数的形式,即可求()f x 的最小正周期;(2)将()f x 的图象向右平移求出函数()g x 的解析式, 然后根据三角函数有界性结合三角函数图象求()g x 在区间[]0,π上的最大值和最小值.考点:1、三角函数的周期性;2、三角函数的图象变换及最值.【方法点晴】本题主要考查三角函数的周期性、三角函数的图象变换及最值,属于难题.三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过和、差、倍角公式的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.7.(Ⅰ)2π(Ⅱ【解析】试题分析:(Ⅰ)先利用二倍角公式、配角公式将函数化为基本三角函数:()fx ,再根据正弦函数性质求周期(Ⅱ))的基础上,利用正弦函数性质求试题解析:(Ⅰ)(1)()f x 的最小正周期为(()f x 取得最小值为:考点:二倍角公式、配角公式8.(1(2 【解析】试题分析:(1)利用正切函数的性质,可求得()f x 的定义域,由其周期公式可求最小正周期;(2)利用同三角函数间的关系式及正弦、余弦的二倍角公式,,从而可求得α的大小. 试题解析:解:(1所以()f x 的定义域为.()f x 的最小正周期为考点:1、两角和与差的正切函数;2、二倍角的正切.9.(1)π=T,()[]2,1-∈xf;(2【解析】试题分析:(1)再利用周,,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系.试题解析:(1所以π=T由函数图像知()[]2,1-∈xf.(2考点:三角函数性质;同角间基本关系式;两角和的余弦公式10.(1(2【解析】试题分析:(1)利用两角和的正弦公式、二倍角公式和辅助角公式,化简(2)试题解析:(1(2)由得f x在,因此,()考点:三角恒等变换,三角函数图象与性质. 11.(I )T π=;(II【解析】试题分析:(I )利用两角和的正弦公式,降次公式,辅助角公式,将函数化简为,由此可知函数最小周期T π=;(II)试题解析:∴()fx 的最小正周期考点:三角恒等变换.12.(I )π=T ,(II【解析】试题分析:(I )利用和差角公式对()x f 可化为:,解出x 可得对称轴方程;(II )由x 的范围可得x 2范围,从而得x 2cos 的范围,进而得()x g 的值域. 试题解析:(1)即函数()x g 在区间考点:(1)三角函数中恒等变换;(2)三角函数的周期;(3)复合函数的单调性.【方法点晴】本题考查三角函数的恒等变换、三角函数的周期及其求法、三角函数的图象变换等知识,熟练掌握有关基础知识解决该类题目的关键,高考中的常考知识点.于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.13.(1)π=T ;(2) -2.【解析】 试题分析:(1)首先将函数进行化简,包括两角和的正弦公式展开,以及二倍角公式以及x x 2cos 1cos 22=-,然后合并同类项,最后利用辅助角公式(2. 试题解析:(1)由题意可得∴()f x 的最小正周期为T π=;(2∴()f x 在区间-2. 考点:1.三角函数的恒等变形;2.三角函数的性质.14.(1)π(2【解析】试题分析:f (x )的最小正周期.x 的范围,即可得到f (x )的单调增区间,同理可得减区间试题解析:(1所以()f x 的单调减区间为考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的单调性15.(1)π,(2 【解析】试题分析:(1)先根据两角和与差的正弦和余弦公式将函数()f x 展开再整理, 可将函数化简为()sin y A x ωρ=+的形式, 根据可求出最小正周期, 令求出x 的值即可得到对称轴方程;(2)先根据x 的范围求出, 进而得到函数()f x 在区试题解析:(1(2时,()f x 取最大值1,时,()f x 取最小值所以函数()f x 在区间 考点:1、三角函数的周期性及两角和与差的正弦和余弦公式;2、正弦函数的值域、正弦函数的对称性.16.(1(2)最大值为1,最小值为 【解析】试题分析:(1)将原函数()f x 由倍角公式和辅助角公式,,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值. 试题解析:(1),则,(2)所以最大值为1,考点:1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数()()sin 0,0y A x A ωϕω=+>>的单调区间的确定,基本思路是把x ωϕ+视做一个整体,解出x 的范围所得区间即为增区间,由x 的范围,所得区间即为减区间.若函数中()0,0A ω><,可用诱导公式先将函数变为()()sin 0,0y A x A ωϕω=--->>,则()()sin 0,0y A x A ωϕω=-->>的增区间为原函数的减区间,减区间为原函数的增区间.17.(1)(2)【解析】试题分析:(1)直接代入解析式即可;(2)由两角差的余弦公式,及正余弦二倍角公式和辅,k Z ∈,从而求解.试题解析:(1(2)f (x )=cos xcos x因f (x )于是2k2x2kk ∈Z. 解得kx <kk ∈Z.故使f (xx 的取考点:1、二倍角公式;2、辅助角公式;3、余弦函数图象与性质. 18.,k Z ∈;(Ⅱ)()f x 取得最大值1,()f x 取得最小值 【解析】试题分析:,k Z ∈,可解得单调减区间;(Ⅱ)最小值.试题解析:,k Z ∈.,k Z ∈.时,()f x 取得最小值时,()f x 取得最大值1. 考点:(1)降幂公式;(2)辅助角公式;(3)函数()ϕω+=x A y sin 的性质.【方法点晴】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.19. 【解析】试题分析:(Ⅰ)借助题设条件运用正弦函数的图象和性质求解;(Ⅱ)借助题设条件运用正弦函数的图象建立不等式求解. 试题解析:(Ⅰ)由已知又因为.当0=k 时 当1-=k 时∴函数)(x f 在[]ππ,-的单调递减区间为(Ⅱ) ,0)(=+k x f 在区与2--=∴k y 在区间考点:正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.用问题为背景,要求运用三角变换的公式将其化为k x A y ++=)sin(ϕω的形式,再借助正弦函数的图象和性质求解.解答本题时,首先要用二倍角公式将其化简为再运用正弦函数的图象即可获得答案.这里运用二倍角公式进行变换是解答本题的关键.20.(1)π,(2【解析】试题分析:(1)将展开后再次合并,化简得(2)先按题意平移,得到试题解析:∴函数)(x f 的最小正周期函数)(x f 单调递减.考点:三角函数图象与性质.21.(1)T π=,单调减区间(k Z ∈);(2【解析】试题分析:(1)利用降次公式和两角和的余弦公式,先展开后合并,化简函数,故周期T π=,代入余弦函数单调减区间[]2,2k k πππ-,可求(2)函数()f x 的图象向右平移试题解析:(1(k Z ∈).(2,()g x 在 考点:三角恒等变换、三角函数图象与性质.22.(1)π;(2【解析】试题分析:(1)利用降次公式,和辅助角公式,故周期等于π;(23.试题解析:(1)∴函数()f x 的最小正周期为(2)当()f x 取最大值时,考点:三角恒等变换.23.(I )π;(II )函数()f x 的单调递增区间是 【解析】试题分析:(I数的最小正周期;(II )函数2sin y z =的单调递增区间,即可求解函数的单调递增区间.试题解析:函数2sin y z =的单调递增区间是所以,,()f x . 考点:三角函数的图象与性质.【方法点晴】本题主要考查了三角函数的恒等变换、三角函数的图象与性质及三角函数的单调区间的求解,本题的解答中利用三角恒等变换的公式求解函数的解析式查了学生分析问题和解答问题的能力,以及学生的化简与运算能力. 24.(Ⅰ)π;,最小值1- 【解析】试题分析:(Ⅰ)化简函数解析式,可得最小正周期为π;(Ⅱ)可得()f x 在和1-试题解析:(Ⅰ)()22sin 2sin cos cos f x x x x x =+-sin 2cos2x x =-所以()f x 的最小正周期时,()f x 取得最大值,即0x =时,()f x 取得最小值1-所以()f x 在和1- 考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,辅助角公式,由x 的范围求得相位. 25.(Ⅰ)π;(Ⅱ)最大值0,最小值 【解析】试题分析:,可得最小正周期为π;,可得()f x 在最小值分别为0和 试题解析:(Ⅰ)因为()()cos sin cos f x x x x =-所以函数()f x 的最小正周期时,函数()f x 取得最大值0,时,函数()f x 取得最小值所以()f x 在0考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,将函数解析式化为y ,再用辅助角公式将函数化简为y ,由x 的范围求得相位的范围,进一.26.(1)周期为π,(2)[]0,1m ∈ 【解析】试题分析:(1)利用倍角公式,两角和的正余弦公式将函数转化为()sin()f x A x bωϕ=++的形式,进一步求函数的周期和单调性;(2得()f x 的取值范围,进一步得2m +的取值范围,可解得实数m 的取值范围.试题解析:(k ∈Z ). (2,所以()f x 的值域为[]2,3.而()2f x m =+,所以[]22,3m +∈,即[]0,1m ∈.考点:1.倍角公式;2.辅助角公式;3.函数()sin()f x A x b ωϕ=++的性质. 27.(1时有最大值3;时,取最小值1-;(2【解析】试题分析:(1)由函数()sin()f x A x k ωϕ=++的最值取值情况求所给函数的最值;(2)对于2y >,利用特殊角的三角函数值与正弦函数的单调性,可将不等式转化为关于x 的不等式,解不等式可得x 的取值范围. 试题解析:(1)设sin (1,此时函数f (x )=2sin (+1取最大值3.当u=2kπx=kπsin (-1,此时函数f (x )=2sin (+1取最小值-1.(2)∵y=2sin((k∈Z)(k∈Z)∴x (k∈Z) 考点:1.()sin()f x A x k ωϕ=++的性质;2.特殊角的三角函数性质.28.(1)最大值是2;(2 【解析】试题分析:(1)从而化简函数解析式,然后利用正弦函数的性质求出函数的最大值;(2)利用sin y x =的对称轴,列出关系式,解出x ,即可求得m 的值.试题解析:(1)所以()f x 的最大值是2.(2而直线x m =是函()y f x =的对称轴,所以 考点:1、诱导公式;2、正弦函数的图象与性质. 【方法点睛】三角函数的性质由函数的解析式确定,在解答三角形函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.29.(1)2;(2)π, 【解析】试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和二倍角公式求解. 试题解析:(1(2所以()f x 的单调递增区间为 考点:三角函数的图象及诱导公式二倍角公式的运用.30.(1)π,1;(2)()f x 在 【解析】试题分析:(1)()f x 整理得由公式可求得()f x 的周期和最大值;(2)求函数()f x 在R 上的单调区间,分别与.(1)()f x 的最小正周期为π,最大值为1;(2)当()f x 递增时,()k Z ∈,当()f x ()k Z ∈所以,()f x 在 考点:两角的正弦公式;函数sin()y A x ωϕ=+的性质.。

(word完整版)中考数学三角函数题集

(word完整版)中考数学三角函数题集
函数题集
单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善 教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能.教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。
.
(word 完整版)中考数学三角函数题集
中考数学三角函数题集,需要加强的同学可以 做一下!
这篇文章专门提供一个三角函数的习题集,希望有兴趣的同学做一下,需要答案的可以留言给 我。
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集
.
(word 完整版)中考数学三角函数题集

三角函数(一)Microsoft Word 文档

三角函数(一)Microsoft Word 文档

三角函数部分(一)1.以下四个命题中,正确的是 ( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6π,k ∈Z }≠{α|α=-k π+6π,k ∈Z }C .若α是第二象限的角,则sin2α<0D .第四象限的角可表示为{α|2k π+23π<α<2k π ,k ∈Z }2.若θθθ则,0cos sin >在 ( ) A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3. 若角α的终边过点(-3,-2),则 ( ) A .sin αtan α>0 B .cos αtan α>0 C .sin αcos α>0 D .sin ααtan >0 4.若角α满足条件sin 20,cos sin 0,ααα<-<则α在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.若点P 在32π的终边上,且OP=2(O 为坐标原点),则点P 的坐标 ;6.已知P (-3,y )为角 的终边上一点,且si n α=1313,那么y 的值等于________;7.已知α为第二象限角,且sin α=54,则tan α= ;8.已知=-=-ααααcos sin ,45cos sin 则 ;9.已知1sin cos ,8θθ=且,42ππθ<<则cos sin θθ-的值为 ;10.若20π<α<,则|sin |log 22α= ;11.已知函数)(x f 是以4为周期的奇函数,且1)1(=-f ,那么]2)5([sin ππ+f = 。

12.函数|tan |tan cos |cos ||sin |sin x x xx x x y ++=的值域是 .13.化简求值:(1)tan (-300°) (2)sin 49πtan37π (3、(4)已知21tan -=α,求1cos sin 3sin 22--ααα的值.。

完整word版,(精品)北师版九年级下三角函数复习专题

完整word版,(精品)北师版九年级下三角函数复习专题

NM GED CBA北师版九年级下册三角函数复习专题题型一:求三角函数值例1.(直接求)(1)在△ABC 中,∠C =900,AC =BC =1,则tanA 的值是 . (2)在Rt △ABC 中,CD 是斜边AB 上的高线,已知∠ACD 的正弦值是32,则ABAC 的值是 . (3)在Rt △ABC 中,∠C =900,若43tan =A ,则sinA = .例2.(1)△ABC 中,AB =AC =3,BC =2,则cosB = .(2)在△ABC 中,∠B =300,tanC =2,AB =2,则BC 的长是 .例3.(1)某人沿倾斜角为β的斜坡前进100米,则他上升的高度为( )A 、βsin 100米 B 、βsin 100米 C 、βcos 100米 D 、βcos 100米 (2)如下左图,重庆市“旧城改造”中,计划在市内一块如图所示的三角形空地上种植某种草皮,以美化环境。

已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、a 3450元 B 、a 3225元 C 、a 3150元 D 、a 3300元变式1.如右图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为 米(结果用含α的三角函数表示).例4.(转化求)如图,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若1tan 3AEN ∠=,DC+CE=10.(1)求△ANE 的面积; (2)求sin ENB ∠的值.0120选择第4题图30m 20m45°30°A C B P 题型二:三角函数计算例1.计算:(1)13tan30--︒; (2)000045tan 60cos 30tan 30sin ⋅++;例2.△ABC 中,∠A 、∠B 均为锐角,且0)3sin 2(3tan 2=-+-A B ,试确定△ABC 的形状。

例3.(1)若α为锐角,化简αα2sin sin 21+-= 。

解答题三角函数应用(针对河南中考18题)

解答题三角函数应用(针对河南中考18题)

像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,
他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4 m,在A
处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结
果精确到0.1 m.参考数据:sin 37.5°≈0.61,cos 37.5°≈0.79,tan 37.5°≈0.77).
在Rt△DHE中,∠DEH=34°,



.
tan34° tan34°
∴EH=
∵EF=15,∴EH-FH=15,

-x=15.
tan34°

解得x≈30.5.
∴DC≈30.5+1.5=32.
答:拂云阁DC的高度约为32 m.
方法总结
解锐角三角函数实际应用题的一般步骤
1.正确画出平面图或截面示意图,并通过图形找出已知量和未知量.
端D的仰角为45°.已知测角仪的高度为1.5 m,测量点A,B与拂云阁DC的底部C在同
一水平线上,求拂云阁DC的高度(结果精确到1 m.参考数据:sin 34°≈0.56,cos
34°≈0.83,tan 34°≈0.67).
解:延长EF交DC于点H,由题意知,EH⊥DC.
设DH=x m,在Rt△DHF中,∠DFH=45°,∴FH=DH=x.
∴BC=
≈25,
sin53°
∴x=
∴B船到达C船处约需时间:25÷25=1(小时).
在Rt△ADC中,AC= 2x≈1.41×20=28.2,
∴A船到达C船处约需时间:28.2÷30=0.94(小时),
而0.94<1,所以C船至少要等待0.9ห้องสมุดไป่ตู้小时才能得到救援.

初中九年级数学三角函数应用题练习及答案

初中九年级数学三角函数应用题练习及答案

三角函数的应用题第一阶梯[例1]如图,AD∥BC,AC⊥BC,若AD=3,DC=5,且∠B=30°,求AB的长。

解:∵∠DAC=90°由勾股定理,有CD2=AD2+AC2∵AD=3,DC=5∴AC=4∵∠B=30°∴AB=2AC∴AB=8[例2]如图,△ABC中,∠B=90°,D是BC上一点,且AD=DC,若tg∠DAC=,求tg∠BAD。

探索:已知tg∠DAC是否在直角三角形中?如果不在怎么办?要求∠BAD的正切值需要满足怎样的条件?点拨:由于已知中的tg∠DAC不在直角三角形中,所以需要转化到直角三角形中,即可地D点作AC的垂线。

又要求∠BAD的正切值应已知Rt△BAD的三边长,或两条直角边AB、BD的长,根据已知可知没有提供边长的条件,所以要充分利用已知中的tg∠DAC的条件。

由于AD=DC,即∠C=∠DAC,这时也可把正切值直接移到Rt△ABC中。

解答:过D点作DE⊥AC于E,且设DE=k,则AE=4k∵AD=DC,∴∠DAC=∠C,AE=EC∴AC=8k∵设AB=m,BC=4m由勾股定理,有AB2+BC2=AC2∴由勾股定理,有CD2=DE2+EC2由正切定理,有[例3]如图,四边形ABCD中,∠D=90°,AD=3,DC=4,AB=13,BC=12,求sinB。

探索:已知条件提供的图形是什么形?其中∠D=90°,AD=3,DC=4,可提供什么知识?求sinB应放在什么图形中。

点拨:因已知是四边形所以不能求解,由于有∠D=90°,AD=3,DC=4,这样可求AC=5,又因有AB=13,BC=12,所以可证△ABC是Rt△,因此可求sinB。

解:连结AC∵∠D=90°由勾股定理,有AC2=CD2+CD2∵AD=3,CD=4,∴AC=5∵AB=13,BC=12∴132=122+52∴∠ACB=90°由正弦定义,有第二阶梯[例1]如图,在河的对岸有水塔AB,今在C处测得塔顶A的仰角为30°,前进20米后到D处,又测得A的仰角为45°,求塔高AB。

中考数学复习专题训练三角函数应用题

中考数学复习专题训练三角函数应用题

中考数学复习专题训练三角函数应用题1.在山顶建有一座铁塔,塔高为30米,某人在点A处测得塔底C的仰角为20度,塔顶D的仰角为23度,求此人距离CD的水平距离AB。

已知sin20度≈0.342,cos20度≈0.940,tan20度≈0.364,sin23度≈0.391,cos23度≈0.921,tan23度≈0.424.2.某班学生到白塔山参观“XXX”,甲站在此处看塔顶仰角为60度,乙站在此处看塔顶仰角为30度,两人身高都是1.5米,相距20米。

根据两位同学的对话,计算白塔的高度(精确到1米)。

3.某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,斜坡AB长度为40米,坡角BAD为60度,BC与AD平行。

为防止因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造。

经地质人员勘测,当坡角不超过45度时,可确保山体不滑坡。

改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)。

4.河流两岸a、b互相平行,某C、D是河岸a上间隔50米的两个电线杆。

人在河岸b上的A处测得∠DAB为30度,然后沿河岸走了100米到达B处,测得∠CBF为60度,求河流的宽度CF的值(结果精确到个位)。

5.某超市在一楼至二楼之间安装有电梯,天花板(一楼的楼顶墙壁)与地面平行。

已知小敏身高1.85米,sin28度≈0.47,tan28度≈0.53.问他乘电梯会不会有碰头危险?6.山脚下有一棵树AB,XXX从点B沿山坡向上走50米到达点D,用高为1.5米的测角仪CD测得树顶的仰角为10度,已知山坡的坡角为15度,求树AB的高(精确到1米)。

已知sin10度≈0.17,cos10度≈0.98,tan10度≈0.18,sin15度≈0.26,cos15度≈0.97,tan15度≈0.27.某旅游区有一个景观奇异的望天洞,游客从入口D进洞游览后,可经过山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处。

(直打版)中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总

(直打版)中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总

(直打版)中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总(word版可编辑修改)的全部内容。

专题3 三角函数在实际中的应用自我诊断1。

某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1。

7)自我诊断2.如图所示,某古代文物被探明埋于地下的A处,由于点A上方有一些管道,考古人员不能垂直向下挖掘,他们被允许从B处或C处挖掘,从B处挖掘时,最短路线BA与地面所成的锐角是56°,从C处挖掘时,最短路线CA与地面所成的锐角是30°,且BC=20m,若考古人员最终从B处挖掘,求挖掘的最短距离.(参考数据:sin56°=0。

83,tan56°≈1。

48,≈1。

73,结果保留整数)跟踪训练11.年4 月20 日,四川雅安发生里氏7.0 级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B 相距4 米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C 的深度(结果精确到0。

初三三角函数的应用试题与答案

初三三角函数的应用试题与答案

姓 名学 号密封教师填写内容 考试类型 考试【 】 考查【 】 审 批绝密★启用前三角函数的应用测试时间:35分钟一、选择题1、在台风来临之前,有关部门用钢管加固树木(如图),固定点A 离地面的高度AC=m,钢管与地面所成角∠ABC=∠α,那么钢管AB 的长为( )A.mcosα B.m·sin α C.m·cos α D.msinα2、如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A.tanαtanβB.sinβsinαC.sinαsinβD.cosβcosα3、如图,要测量小河两岸相对的两点P 、A 的距离,可以在小河边取PA 的垂线PB 上一点C,测得PC=100米,∠PCA=35°,则小河宽PA 等于( )A.100sin 35°米B.100sin 55°米C.100tan 35°米D.100tan 55°米4、在东西方向的海岸线上有A,B 两个港口,甲货船从A 港口沿东北方向以5海里/小时的速度出发,同时乙货船从B 港口沿北偏西60°的方向出发,2 h 后在点P 处相遇,如图所示,则A 港口和B 港口之间的距离为( )A.10√2 海里B.(5√2+5√6)海里C.(10+5√6)海里D.20海里5、如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与底面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台的坡面CD 的坡度i=1∶0.75,坡长CD=2米,若旗杆底部到坡面CD 的水平距离BC=1米,则旗杆AB 的高度约为( ) (参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)A.12.6米B.13.1米C.14.7米D.16.3米二、填空题6、为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12√3米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tan E=3√313,则CE 为 米.7、我国海域辽阔,渔业资源丰富.如图,现有渔船B 在海岛A,C 附近捕鱼作业,已知海岛C 位于海岛A 的北偏东45°方向上,在渔船B 上测得海岛A 位于渔船B 的北偏西30°的方向上,此时海岛C 恰好位于渔船B 的正北方向的18(1+√3)n mile 处,则海岛A,C 之间的距离为 n mile.三、解答题8、如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工.从AC 上取一点B 使∠ABD=120°,BD=520 m,∠D=30°,当另一边开挖点E 离D 多远时,正好使A,C,E 三点在同一条直线上?(√3取1.732,结果取整数)横线以内不许答题9、如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500 m 的A 点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2 000 m 后到达B 点,在B 处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号).10、由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37°方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11、据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C 到公路的距离CD=200 m,检测路段的起点A 位于点C 的南偏东60°方向上,终点B 位于点C 的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A 处行驶到B 处的时间为10 s,问此车是否超过了该路段16 m/s 的限制速度?(观测点C 离地面的距离忽略不计,参考数据:√2≈1.41,√3≈1.73)参考答案一、选择题1.答案 D 在Rt △ABC 中,AC=m,∠ABC=∠α,sin ∠ABC=AC AB ,∴AB=msinα,故选D.2.答案 B 根据直角三角形中边与角的关系即可得到答案.在Rt △ABC 中,AB=ACsinα,在Rt △ADC中,AD=AC sinβ,所以AB AD =ACsinαAC sinβ=sinβsinα.3.答案 C 在Rt △PCA 中,PC=100米,∠PCA=35°,∠APC=90°,tan ∠PCA=PAPC,所以PA=PC·tan ∠PCA=100tan 35°米.4.答案 B 如图,作PC ⊥AB 于点C,∵甲货船从A 港口沿东北方向以5海里/小时的速度出发,2 h 到P 处, ∴∠PAC=45°,AP=5×2=10海里,∴PC=AC=5√2 海里, ∵乙货船从B 港口沿北偏西60°的方向出发, ∴∠PBC=30°,∴BC=√3PC=5√6 海里, ∴AB=AC+BC=(5√2+5√6)海里,故A 港口与B 港口之间的距离为(5√2+5√6)海里,故选B.5.答案 B 如图,延长AB 交ED 的延长线于M,作CJ ⊥DM 于J,则四边形BMJC 是矩形.在Rt △CJD 中,CJ DJ =10.75=43,设CJ=4k 米,DJ=3k 米,k>0,∵CD=2米,∴9k 2+16k 2=4,解得k=25, ∴BM=CJ=85米,DJ=65米,又∵BC=MJ=1米, ∴EM=MJ+DJ+DE=465米, 在Rt △AEM中,tan ∠AEM=AMEM ,∴tan 58°=AB+85465≈1.60,∴AB≈13.1米.故旗杆AB 的高度约为13.1米.故选B.横线以内不许答题二、填空题6.答案 8解析 分别过A 、D 作AF ⊥BC,DG ⊥BC,垂足分别为F 、G,如图所示.在Rt △ABF 中,AB=12米,∠B=60°,sin B=AFAB ,∴AF=AB·sin B=12×sin 60°=12×√32=6√3米, ∴DG=6√3米.在Rt △DGC 中,CD=12√3米,DG=6√3米, ∴GC=√CD 2-DG 2=18米. 在Rt △DEG中,tan E=DG GE =3√313,∴6√3GE =3√313,∴GE=26米,∴CE=GE -CG=26-18=8(米), 即CE 为8米. 7.答案 18√2解析 如图,过A 作AD ⊥BC 于D,由题意可得,∠ABC=30°,∠DAC=45°,设AC=x n mile,在Rt △ACD 中,AD=AC·cos ∠DAC=√22x n mile,则CD=√22x n mile,在Rt △ABD 中,BD=AD tan∠ABD =√62x n mile,则√22x+√62x=18(1+√3),解得x=18√2.故海岛A,C 之间的距离为18√2 n mile.三、解答题8.解析 ∵∠ABD=120°,∠D=30°,∴∠E=90°.∵在Rt △BDE 中,cos D=DEBD ,∴DE=BD·cos D=BD·cos 30°=520×√32=260√3=260×1.732≈450(m). 答:当另一边开挖点E 离D 约450 m 时,正好使A,C,E 三点在同一条直线上. 9.解析 如图,过C 作CD ⊥AB,交AB 的延长线于D,交海面于点E,设BD=x m,∵∠CBD=60°,∠CDB=90°, ∴tan ∠CBD=CDBD , ∴CD=√3x m.∵AB=2 000 m,∴AD=(x+2 000)m.∵∠CAD=45°,∴tan ∠CAD=CDAD ,∴CD=AD·tan 45°=AD, ∴√3x=x+2 000,解得x=1 000√3+1 000, ∴CD=√3×(1 000√3+1 000)=(3 000+1 000√3)m, ∴CE=CD+DE=3 000+1 000√3+500=(3 500+1 000√3)m. 答:海底黑匣子C 点距离海面的深度为(3 500+1 000√3)m. 10.解析 由题意可知,∠ACD=70°,∠BCD=37°,AC=80海里. 在Rt △ADC 中,cos ∠ACD=CD AC ,∴CD=AC·cos ∠ACD=80×cos 70°≈80×0.34=27.2(海里). 在Rt △BDC 中,tan ∠BCD=BD CD , ∴BD=CD·tan ∠BCD=27.2×tan 37°≈27.2×0.75=20.4(海里). 答:还需航行的距离BD 的长约为20.4海里. 11.解析 ∵CD=200 m,∠DCB=45°, ∴BD=CD=200 m.在Rt △ACD 中,∠DCA=60°,AD=CD·tan ∠DCA=200√3 m. ∴AB=AD -BD=200√3-200≈146 m. ∴此车的实际车速为146÷10=14.6 m/s. ∵14.6<16,∴此车没有超过该路段16 m/s 的限制速度.。

初中三角函数专项练习题及答案(DOC)

初中三角函数专项练习题及答案(DOC)

初中三角函数专项练习题及答案(DOC)初中三角函数专项练题及答案1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都不变。

2、在Rt△ABC中,∠C=90,BC=4,sinA=5,则AC=3.3、若∠A是锐角,且13sinA-tanA>4,则30<∠A<45.4、若cosA=3,则4sinA+2tanA=11.5、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=1:1:2.6、在Rt△ABC中,∠C=90,则sinA=cosB。

7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么正确的是tanB=3/2.8.点(-sin60°,cos60°)关于y轴对称的点的坐标是(-2,2)。

9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣。

某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°。

若这位同学的目高1.6米,则旗杆的高度约为10.3米。

10.___同学从A地沿北偏西60º方向走100m到B地,再从B地向___方向走200m到C地,此时___同学离A地150m。

11、如图1,在高楼前D点测得楼顶的仰角为30,向高楼前进60米到C点,又测得仰角为45,则该高楼的高度大约为82米。

12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距约为67.5海里。

1.在三角形Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=4/5.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=3/7.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是120°。

4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为2sin15°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数应用题
1.甲楼楼高50米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:
(1)如果两楼相距50米,那么甲楼的影子落在乙楼上有多高?
(2)小明住在乙楼16m高(地板距地面的距离)的五层楼上,
要是冬至中午12时阳光不被挡住,两楼至少距离多少米(结果
精确到1m,参考数据:≈1.732)?
2.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面
A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:≈1.41,
≈1.73)
3.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,
∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地
比原来少走多少千米?(结果保留根号)
4.如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直
线上).求教学楼AB的高度.(参考数据:sin22°
≈,cos22°≈,tan22°≈)
5.如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)
(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,
tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,
tan70°=2.75)
6.如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.
三角函数练习题
1.如图,山顶建有一座铁塔,塔高CD=20m,某人在点A处,测得塔底C的仰角为45°,塔顶D的仰角为60°,求山高BC(精确到1m,参考数据:≈1.41,≈1.73)
2.如图,河对岸有一高层建筑物AB,为测其高,在C处由点D用测量仪测得顶端A的仰角为30°,向高层建筑物前进50米,到达E处,由点F测得顶点A的仰角为45°,已知测量仪高CD=EF=1.2米,求高层建筑物AB的高.(结果精确到0.1
米,,)
3.如图所示,当一热气球在点A处时,其探测器显示,从热气球看高楼顶部点B的仰角为45°,看高楼底部点C的俯角为60°,这栋楼高120米,那么热气球与高楼的水平距离为多少米?
(结果精确到0.1米,参考数据:)
4.如图,大楼AB高16米,远处有一塔CD,某人在楼底B
处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰
角为22°,求塔高CD及大楼与塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )
5.如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为多少?
6.如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.
(1)求建筑物BC的高度;(2)求旗杆AB的高度.
(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)。

相关文档
最新文档