8气体放电 和放电特性

合集下载

气体放电的主要形式

气体放电的主要形式

气体放电的主要形式一、电晕放电电晕放电是一种在电极周围形成辐射状光晕的放电形式。

当电压升高到电晕放电阈值时,电极周围的电场强度足够强,使电极附近的气体分子电离和激发,产生电子和正离子。

这些电子和离子通过碰撞和俘获电子的过程,导致电晕放电区域内的气体发光,形成光晕。

电晕放电常见于高压线路和电晕灯中,具有稳定性好、能耗低的特点。

二、辉光放电辉光放电是一种在电极附近形成均匀辉光的放电形式。

当电压升高到辉光放电阈值时,电极附近的电场强度足够强,使气体分子电离和激发,产生电子和正离子。

这些电子和离子经过长距离的自由运动后,与其他气体分子碰撞,再次激发和电离,最终导致整个放电区域内的气体发光。

辉光放电常见于荧光灯、气体放电显示器和气体激光器等装置中,具有均匀亮度和较高的放电稳定性。

三、电弧放电电弧放电是一种高能放电形式,具有强烈的光和热效应。

当电压升高到电弧放电阈值时,电极附近的电场强度足够大,使气体分子电离和激发,产生电子和正离子。

这些电子和离子在电场的作用下,加速运动,形成电子和离子流,即电弧。

电弧放电常见于焊接、电弧灯和电弧炉等场合,具有高能量密度和高温度的特点。

四、等离子体放电等离子体放电是一种高度电离的气体放电形式,具有丰富的物理和化学特性。

当电压升高到等离子体放电阈值时,电极附近的电场强度足够大,使气体分子电离和激发,产生电子和正离子。

这些电子和离子在电场的作用下,以及与其他等离子体粒子的碰撞,形成高度电离的等离子体。

等离子体放电广泛应用于等离子体显示器、等离子体喷涂和等离子体刻蚀等领域,具有可控性好和反应速度快的特点。

五、脉冲放电脉冲放电是一种以脉冲形式工作的放电形式,具有高能量和高频率的特点。

脉冲放电通常通过将高电压脉冲施加在电极上,使气体分子电离和激发,产生电子和正离子。

这些电子和离子在电场的作用下,以及与其他气体分子的碰撞,形成脉冲放电。

脉冲放电广泛应用于等离子体切割、等离子体喷涂、光谱分析和生物医学领域,具有高精度和高效率的特点。

气体放电的主要形式

气体放电的主要形式

气体放电的主要形式一、气体放电的主要形式①气体放电:气体中流通电流的各种形式统称为~。

空气中有来自空闪的辐射,有少量带电质点500—1000对/cm3,少,电导差—绝缘体。

②击穿:间障电压肯定值后,间嘹电流剧增,失去绝缘力量,绝缘状态变为导电状态的变化称~。

③放电形式:气压、电流功率、电场分布不同,放电形式不同。

辉光放电:布满整个电极空间,电流密度小,1mA/cm2~5mA/cm2,整个间隙仍呈上升的伏安特性—绝缘状态电晕放电:高场强电极四周消失发光的薄层,间隙仍处于绝缘状态。

刷状放电:由电晕电极伸出的光明面细的断续的放电通道,电流增大,仍未击穿。

火花放电:贯穿两电极的光明而细的断续的放电通道,间隙由一次次火花放电间歇地击穿。

电弧放电:光明面电导很大,持续贯穿两电极的细放电通道间隙完全击穿,持续短路状态。

二、带电质点的产生1.电极空间带内质点的产生(1)碰撞电离电场E作用下,质量m,电荷量带电质点被加速,沿电场方向行经X距离后获得肯定的能量,速度U动能动能超过分子电离能Wi,与气体分别碰撞,可能会使分子电离为正离子和电子,碰撞电离条件不肯定每次碰撞都引起电离,几率小。

碰撞过程的争论自由行程:一个质点在每两次碰撞间自由通过的距离平均自由行程:表时:温度高,压力小的气体中带电质点的平均自由行程大,积累能量大,简单造成电离。

常态=10-5cm量级电子引起电离占主导.电子质量小,与气体分子发生弹性碰撞,几乎不损失动能,连续积累功能。

.离子—短,两次碰撞间获得的动能少(E给),碰撞损失动能,积累够电离质量可能性小。

(2)光电离——光辐射引起的气体分子电离。

光波能量:w=hf=bc/ w光波能量, h=6.62x10-34Js,普朗克常数,c光速,f光波,波长紫外线=300nm w=6.62-19J=4.14eV光辐射hc/≥Wi Wi电离能,有可能引起光电离引起光电离的临界波长o=hc/Wi 小于o电离(3)热电离——因所气体热状态引起的电离本质:仍是高速运动的气体分子的碰撞电离和光电离,不过其能量来源于热能,而非电场。

名词解释气体的自持放电

名词解释气体的自持放电

名词解释气体的自持放电气体的自持放电是指在气体中由于电场作用产生的放电现象。

在特定条件下,气体中会发生电离,形成电子、离子等带电粒子,这些带电粒子在电场的作用下会发生运动并产生放电现象。

自持放电一般分为两种类型:正极自持放电和负极自持放电。

正极自持放电是指电子从电极中飞离,负极自持放电是指电子从气体中被吸引到电极上的现象。

无论是正极自持放电还是负极自持放电,都需要满足一定的条件才能发生。

首先,气体的压力是自持放电发生的重要条件之一。

当气体的压力适当时,电离产生的离子与电子数量相当,使得放电现象能够稳定进行。

当气体压力过低时,电离产生的离子数量不足以维持放电,放电现象会逐渐消失。

而当气体压力过高时,电子和离子之间发生碰撞的可能性增大,电离产生的离子数量也会增加,导致放电现象过于激烈。

其次,电场强度也是自持放电发生的重要因素。

电场越强,自持放电发生的概率也越大。

当电场强度适当时,电子能够克服气体分子的束缚力,从而产生离子和电子。

当电场强度过弱时,电子无法被加速到足够高的速度,不足以克服气体分子的束缚力,放电现象也无法发生。

此外,气体的成分对自持放电也有一定影响。

不同气体的电离能量不同,电子在不同气体中的能量损失也不同,导致放电现象的发生条件有所区别。

例如,空气中的氮气和氧气是常见的自持放电气体,它们的电离能量较低,容易发生自持放电。

而一些稀有气体,如氩气和氙气,需要更高的电场强度才能发生自持放电。

在自持放电中,电子和离子的复合过程也是一个重要的因素。

当电子和离子发生复合时,会释放出能量以及产生新的离子,这可能引发新的放电现象。

复合过程的速率与气体的密度、温度等因素有关。

在高密度和低温的条件下,复合过程较为缓慢,自持放电现象较为稳定。

自持放电不仅在物理学研究中有着重要应用,还广泛应用于工业技术和科学研究领域。

例如,气体放电可以被应用于电力传输中的断路器技术,以及气体激光器和等离子体物理研究中。

通过掌握自持放电的机理和特性,科学家们可以更好地理解和利用气体行为,为未来的科学和技术发展做出贡献。

气体的绝缘特性

气体的绝缘特性

(2). 利用空间电荷对电场的畸变作用
(3). 极不均匀电场中采用屏障
当屏障与棒极之间的距离约等于间隙的距离 的15%-----20%时,间隙的击穿电压提高得最多 ,可达到无屏障时的2---3倍
2. 削弱游离因素的措施
(1). 采用高气 压 气体压力提高后,气体的密度加大,减少了电 子的平均自由行程,从而削弱了碰撞游离的过程 。
f0=11g/m3
2. 相对密度的影响
相对密度
p
=0.289---T
当在0.95到1.05之间时,空气间隙的击穿电压U 与成正比 U= U0
3. 湿度的影响
(1). 均匀或稍不均匀电场
湿度的增加而略有增加,但程度极微,可以不校正
(2). 极不均匀电场
由于平均场强较低,湿度增加后,水分子易吸附电 子而形成质量较大的负离子,运动速度减慢,游离能 力大大降低,使击穿电压增大.因此需要校正.
4. 高度的影响
随着高度增加,空气逐渐稀薄,大气压力及空气 相对密度下降,间隙的击穿电压也随之下降.
U=ka U0
k
1 H 1.1 1000
六. 提高气体间隙绝缘强度的方法
有两个途径: 一个是改善电场分布,使之尽量均匀; 另一个是削弱气体间隙中的游离因素.
1. 改善电场分布的措施
(1). 改变电极形状
如高压空气断路器和高压标准电容器等
10kv高压标准介损器
(2). 采用高真空
气体间隙中压力很低时,电子的平均自由 行程已增大到极间空间很难产生碰撞游离的程 度。 如真空电容器、真空断路器等
真空断路器
真空电容器
(3). 采用高强度气体 SF6气体属强电负性气体,容易吸附电子 成为负离子,从而削弱了游离过程.提高压力 后可相当于一般液体或固体绝缘的绝缘强度. 它是一种无色、无味、无臭、无毒、不燃的 不活泼气体,化学性能非常稳定,无腐蚀作 用。它具有优良的灭弧性能,其灭弧能力是 空气的100倍,故极适用于高压断路器中。

气体放电原理

气体放电原理

气体放电原理气体放电是指在一定条件下,气体中的自由电子受到电场的作用而加速,与气体原子或分子发生碰撞,使其电离并产生电流的现象。

气体放电是一种重要的物理现象,广泛应用于放电灯、气体放电激光器、等离子体物理研究等领域。

气体放电的原理主要包括电离、电子与离子的碰撞、电子能量的损失和复合等过程。

在电场的作用下,气体分子中的自由电子受到电场力的作用而加速,当电子的动能足够大时,就能够克服原子或分子的束缚能而发生电离。

电离过程是气体放电的起始阶段,也是电流的产生阶段。

在电离过程中,产生了大量的自由电子和离子,它们在电场的作用下加速运动,与气体分子发生碰撞,使得气体分子进一步电离,形成电子级联增殖的现象。

在气体放电过程中,电子与离子的碰撞是不可避免的。

当电子与离子碰撞时,它们会相互传递动量和能量,使得电子的能量逐渐损失,而离子的能量逐渐增加。

这种能量的转移和损失导致了电子的能量分布发生变化,形成了电子能谱。

电子能谱的形状和分布对气体放电过程的性质和特性有着重要的影响。

除了电离和碰撞外,电子的能量损失和复合也是气体放电过程中重要的物理过程。

当电子与气体分子碰撞时,它们会失去能量,并使得气体分子电离或激发。

另一方面,电子还会与正离子复合,释放能量并再次形成原子或分子。

这种能量的损失和复合过程是维持气体放电的能量平衡的重要机制。

综上所述,气体放电是一种复杂的物理现象,其原理涉及到电离、碰撞、能量损失和复合等多个过程。

深入理解气体放电的原理,有助于我们更好地应用气体放电技术,推动相关领域的发展。

同时,气体放电的研究也为我们提供了一个认识自然界和探索未知领域的重要途径。

希望本文能够为读者提供一些有益的信息,促进气体放电领域的进一步研究和应用。

高电压工程-第二章 气体放电的基本理论【】

高电压工程-第二章  气体放电的基本理论【】

第6节 沿面放电与污秽闪络
1)定义—当绝缘承受的电压超过一定值时,在固体介 质和空气交界面上出现的放电现象,叫沿面放电。
当沿面放电发展成为贯穿性的空气击穿时,叫沿面闪络。 沿面放电是气体放电,由于交界面上电压分布不均匀,
沿面闪络电压比气体单独存在时的击穿电压低 输电线路遭受雷击时绝缘子的闪络,处于大气脏污地区
的瓷瓶在雷雾天发生闪络,均属沿面放电。 为避免绝缘子发生不可恢复的击穿,在设计中让其击穿
电压高出闪络电压约50% 2)影响因素—绝缘表面状态、污秽程度、气候条件等
因素影响很大。
沿面闪络的几种形式
工频电压作用下
沿平板玻璃表面 滑闪放电照片
辽沈地区2001年2月22日遭遇最严重大面积停电事故,沈阳市区 停电面积超过70%。辽沈停电事故是从输电线路污闪开始的。 辽沈为重工业区,含盐的空气污染物附着在绝缘瓷瓶上,大雾 湿气使瓷瓶绝缘能力降低,电弧沿着瓷瓶表面爬升,出现闪烙
➢电晕造成的损耗可削弱输电线上的雷电冲击电压 波的幅值和陡度;
➢利用电晕制造除尘器、消毒柜和对废气、废水进 行处理及对水果、蔬菜进行保鲜等。
极不均匀电场中气隙放电的极性效应
对于“棒—板”间隙,将“棒”的极性定义为间隙的 极性
1)正极性--棒 起晕电压高 击穿电压低
2)负极性--棒 起晕电压低 击穿电压高
D54动车组山东出事撞死一人致车头裂开
2009年3月28日,青岛—北京南D54次动车 途经山东潍坊,列车撞上了一男性铁路工人 (当场死亡),导致车头部分裂开,留有暗 红色血迹。列车暂停约20分钟,最终晚点15 分到达北京。
当时D54路过潍坊站后,正处于加速阶段, 时速在200公里以上。
第三节 流注放电理论
沿面放电:气体介质与固体介质的交界面上沿着固体介质的表面 而发生在气体介质中的放电;当沿面放电发展到使整个极间发 生沿面击穿时称为沿面闪络。

气体放电物理

气体放电物理

气体放电物理试验原理(一)、气体放电特性及原理气体放电是指电流通过气体煤质时的放电现象。

电闪雷鸣为大气中的放电过程;电焊机也属气体放电。

气体放电种类很多,用得最多的是辉光放电和弧光放电两大类。

各种气体放电灯的基本结构大同小异。

见图一所示:等离子体说明书第7页图一直流放电管电路示意图在支流高压下工作的放电灯,分阴、阳极。

在交流高压下工作的放电灯无阴、阳极之分两极交替的作为阴、阳极之用。

灯内充有气体,它可以是惰性气体、金属或金属化合物的蒸气。

当电极两端加以高压时,灯内的自由电子被外电场加速,则运动的电子将与原子发生碰撞,碰撞后的电子将动能交给原子,原子获得能量后,便受激激发到高能态。

处于高能态(激发态)的原子是不稳定的,在大约810S -数量级的时间,就要自发的返回到基态。

此过程原子会以辐射的形式发射光辐射。

光辐射的频率和能量的关系为:hc E e V h νλ∆=∆== (1)式中V ∆为激发态和激态两能级间的距离,也称发生跃迁的两能级间的电位差,单位是伏特。

λ的单位是nm 。

徐强调的是原字的激发和跃迁在激发态之间也可进行。

(二)、气体放电的全伏安特性由图一可知,改变管压得大小,可得到系列放电电流值。

由管压和放电电流的关系画成的曲线,成为全伏安特性曲线。

见图二所示:图二气体放电伏安特性曲线OA段:在外加电场的作用下,灯观中所存在的带电粒子向电极运动,形成电流。

随电场的增加,带电粒子的运动速度增加,复合减少,是电流增大。

AB段:当电场继续增大时,所有电离产生的带电粒子全部到达电极,电流达饱和状态,形成BC段。

BC段:如果外加电压继续增高,则外电场将使初始的带电离子速度达到很大值.他们在和中性原子碰撞时,使之电离后产生的电子又被电场加速,又和另外的中性原子碰撞电离,形成更多的电子.这一过程会使电子数呈现雪崩式的增加.在BC段将发生汤生放电.CDEF段为为辉光放电区:当电压加大到C点以后管压降突然下降,通过放电管的电流却增加很快.同时在放电管中产生可见光.相应C点成为放电管的着火点,相对应的外加电压称为放电管的着火电压. 在C点以后所发生的各种放电称为自持放电.而在C点以前发生的各种非自持转为自持所需的电压就成为着火电压.自C点以后,无论如何增大外加电压,还是减少回路电阻R使电流增加,管压降基本不变,此段(EF)称为正常辉光放电.发生正常辉光放电时, 管压降维持不变,是因为在此范围内,阴极并没有全部用于发射电子,由于阴极发射的面积正比于发射电流,故此时阴极上的电流密度是一常数.FG段:当整个阴极表面都用于发射电子以后.(既F点以后),如还继续加大电流的话, 阴极电流密度就必须增加会造成管压升高.此时就进入异常辉光放电阶段(FG).当管压升高到一定数值后如(G)点,继续加大放电电流, 由于此时阴极温度升高而转入热电子发射,管压大幅降低,电流迅速增加.在一般情况下,放电管呈现负组效应.此时放电将转入较强的弧光放电区域,既GH 段.从图(1)可知,反常辉光放电的峰值电压就是弧光放电的启动电压,它是反常辉光放电和弧光放电的的转折点. (三)、帕型定律通常将放电管与电阻、电感串联,直接接于220伏的交流电网或其他电源上,放电管是不能发光的.我们必须施加更高的电压(或采用其他的启动方法)才能使放电管(或各种气体放电灯)发光.着火电压的大小与气体的压强、阴极的逸出功、电极间距、气体的种类与成分有关。

气体放电管的工作原理

气体放电管的工作原理

气体放电管的工作原理气体放电管是一种利用气体放电现象发光的器件。

它由一个密封的玻璃管或金属外壳制成,内部充满了特定气体或混合气体。

当在两个电极之间施加足够的电压时,气体放电管会发生气体放电现象,产生强烈的电场和等离子体,从而产生可见光。

气体放电管的工作原理可以分为以下几个方面:1. 气体放电现象:当气体放电管两个电极之间施加足够的电压时,电场强度会超过气体的击穿电场强度,使得气体内部发生局部击穿。

生成的电子会被加速到较高的能量状态,碰撞到气体分子,使其激发或电离。

这些激发态或离子态分子在退激或复合过程中,会释放出能量,产生光的发射。

2. 气体种类:气体放电管内部充满了特定的气体或混合气体。

不同气体种类会在放电时产生不同的光谱特性。

常见的气体种类包括氖气、氩气、氦气、氪气等。

每种气体发生放电时,由于不同的电子激发过程和能级跃迁,会发出不同颜色的光。

3. 灯管结构:气体放电管通常由一个中央电极和外部金属或玻璃外壳形成。

中央电极通常由钨或钢制成,起到引导电流的作用。

外部金属或玻璃外壳则起到保护和密封的作用,以防止气体泄漏或外界气体进入。

4. 放电特性:气体放电管的放电特性包括电压-电流特性和电压-光强特性。

在气体放电过程中,电流的大小与电压之间存在一定的关系,呈现出特定的V-I 曲线。

而光强与电压之间也存在一定的对应关系,通常呈现出非线性特性。

总的来说,气体放电管利用气体放电现象产生的等离子体激发气体分子,从而产生可见光。

这种光谱特性可以根据不同气体种类和气体内部压强进行调节,达到不同颜色和强度的发光效果。

因此,气体放电管具有广泛的应用领域,包括照明、显示、激光、广告等。

气体放电原理

气体放电原理

气体放电原理
气体放电是指当气体中的电子和离子获得足够的能量时,发生放电现象的过程。

其原理涉及到气体的电离和电子的碰撞等基本物理过程。

气体电离是指在电场的作用下,气体中的原子或分子失去电子成为正离子和自由电子的过程。

当电场强度足够大时,气体中的原子或分子受到电场的力,电子被加速并获得足够的能量,从而发生电离,形成正离子和自由电子。

电子的碰撞是指在气体中,自由电子与离子或原子之间发生的碰撞过程。

电子在碰撞过程中会失去能量,导致其速度减小。

当碰撞速率和电子再次获得能量的速率达到平衡时,电子的速度将保持稳定。

在气体放电过程中,电子和离子受到电场的作用而产生加速,当它们的能量达到一定程度时,就会引发碰撞电离,进而导致更多的电离。

这种连锁反应会引起电流的流动,形成可见的放电现象,如闪电、辉光灯等。

不同的气体放电现象具有不同的特点和应用。

例如,闪电放电具有极高的能量和电流,可破坏设备和引起火灾。

辉光灯则是通过控制气体放电来产生可见光,用于照明和显示等领域。

总之,气体放电现象是通过电场作用下的电离和碰撞过程实现的。

这一原理在各种领域的应用中发挥着重要的作用,从科学研究到工业应用都有广泛的应用价值。

气体放电分类及其特性 PPT

气体放电分类及其特性 PPT

均匀电场中气体的伏安特性
16
均匀电场下气体间隙中电流随电压变化的分析
c点 U=Uc,电流急剧增大。气体间隙被击穿 进入导电状态(自持放电),不再需要 任何外界因素(光照射、外加电源)。 c点处的临界电压Uc就是击穿电压Ub, 当电压达到Uc后气体即被击穿,由原来 的绝缘体变成了导体。
I
I0 Ua Ub Uc U
7
流注理论:pd值较大时的情况
特点 :由电子崩形成 ---〉会产生电离特强,发展 速度更快的新放电区:流注放电;快一个数量级; 有分支 形成条件:空间电荷到达一定数量引起电场畸变; 复合产生光电离
流注形成示意图
电子崩空间电荷对原均匀电场的畸变。(a) 电子崩示意图,(b)崩空间中的电荷浓度 分布,(c)空间电荷的电场,(d)合成电 场。
均匀电场中气体的伏安特性
17
自持放电 起始电压
电源和空气湿度的影响
International Journal of Mass Spectrometry 233 (2004) 317–324 在干燥的空气中负电晕放电的负离子主要是 CO3-,如果在电晕放电中产生了足量的氮氧 化物,主要的负离子是NO3- ,臭氧浓度过 大,可以完全抑制O2-的产生。
8
电晕放电的一般描述
⑴ 电晕放电的概念
电晕放电——极不均匀电场所特有的一种自持放电现象

⑵ 发生电晕放电现象的条件
电场极不均匀时,曲率大的电极附近很小范围内带电粒子已达相当 数值时,间隙中大部分区域带电离子数值都仍然很小,放电达到自 持放电后,间隙没有击穿。 电场越不均匀,击穿电压和电晕起始电压间的差别也越大。 电晕放电由于局部强场区的放电过程造成。
断断续续的随机电流脉冲很薄的光晕层流光频率和强度随电压不断升高明亮的类似闪电的火花电晕放电电压持续升高导致火花击穿电流脉冲逐渐减弱直至消失电流脉冲具有周期性电晕放电的各过程的基本特性不均匀电场中放电的极性效应负极性棒板间隙的电晕起始电压比正极性棒板电极低负极性棒板间隙击穿电压比正极性棒板电极高正空间电荷负极性加强棒极附近电场棒极附近易于形成流注正空间电荷负极性加强棒极附近电场棒极附近易于形成流注起始电晕电压低削弱了正空间电荷外部朝向板极的电场不利于流注向间隙深处发展放电发展困难故其削弱了正空间电荷外部朝向板极的电场不利于流注向间隙深处发展放电发展困难故其击穿电压高正空间电荷积聚加强了电离正空间电荷积聚加强了电离积聚的正空间电荷在间隙深处减弱电场积聚的正空间电荷在间隙深处减弱电场负极性负棒正板半径为r的球间隙的放电特性与极间距d的关系稍不均匀电场和极不均匀电场的不同特点放电具有稍不均匀场间隙的特点击穿电压与电晕起始电压相同放电具有极不均匀场间隙的特点电晕起始电压明显低于击穿电压放电过程不稳定分散属于过渡区maxaefe电场不均匀系数

气体放电现象及其应用

气体放电现象及其应用

气体放电的研究报告一、气体放电基本理论1、气体放电的定义气体放电是人们在自然界与日常生活中常常碰到的现象,如闪电、日光灯等,它一般是指在电场作用下或其他激活方法使气体电离,形成能导电的电离气体。

气体放电是产生低温等离子体的主要途径。

所谓的低温等离子体是区别于核聚变中高温等离子体而言的。

低温等离子体物理与技术在经历了一个由20世纪60年代初的空间等离子体研究向80年代和90年代以材料及微电子为导向的研究领域的重大转变之后,现在已经成为具有全球影响的重要课题,其发展对于高科技经济的发展及传统工业的改造有着巨大的影响。

2、气体放电的基本理论气体放电的经典理论主要有汤森放电理论和流注放电理论等。

1903年,为了解释低气压下的气体放电现象,汤森(J.S.Townsend)提出了气体击穿理论,引入了三个系数来描述气体放电的机理,并给出了气体击穿判据。

汤森放电理论可以解释气体放电中的许多现象,如击穿电压与放电间距及气压之间的关系,二次电子发射的作用等。

但是汤森放电解释某些现象也有困难,如击穿形成的时延现象等;另外汤森放电理论没有考虑放电过程中空间电荷作用,而这一点对于放电的发展是非常重要的。

电子雪崩中的正离子随着放电的发展可以达到很高的密度,从而可以明显的引起电场的畸变,进而引起局部电子能量的加强,加剧电离。

针对汤森放电理论的不足,1940年左右,H.Raether及Loeb、Meek等人提出了流注(Streamer)击穿理论,从而弥补了汤森放电理论中的一些缺陷,能有效地解释高气压下,如大气压下的气体放电现象,使得放电理论得到进一步的完善。

近年来,随着新的气体放电工业应用的不断涌现及实验观测技术的进一步发展,将放电理论与非线性动力学相结合,利用非线性动力学的方法来研究气体放电中的各种现象成为气体放电研究中的重要内容。

3、气体放电的主要类型通常,低气压、低温等离子体是在1~100Pa的气体中进行直流、射频或微波放电产生的,而大气压下产生低温等离子体的主要方式有电晕放电、电弧放电和介质阻挡放电(DBD)。

第一章-气体放电的基本物理过程PPT课件

第一章-气体放电的基本物理过程PPT课件
质点的平均自由行程
:一个带电质点在向前行进1cm距离内,发生碰撞 次数的倒数 。
-
5
1.1.1 带电粒子在气体中的运动
质点的平均自由行程
的性质
λ∝ T P
受温度和气压影响
电子的要比分子和离子的大得多
反映了带电质点自由运动的能力
-
6
1.1.1 带电粒子在气体中的运动
带电质点的迁移率
正离子
负极
电子
E
-
61
1.5 电晕放电和沿面放电
1.5.1 电晕放电
1.概念 2.物理过程和效应 3.直流输电线上的电晕 4.交流输电线上的电晕 5.输电线路电晕的抑制方法 6.电晕的应用
1.5.2 沿面放电
1.概念
2.类型及特点
3.放电电压提高方法
4.湿闪现象
5.污闪放电
-
62
1.5.1 电晕放电
1、电晕放电的概念
-
32
1.2 汤逊理论
1.2.4.汤逊理论
汤逊的理论推导
击穿电压U表示为:
U
Bpd
f ( pd )
ln
Apd ln(1 1 )
汤逊理论的适用条件: 均匀电场 pd 26.66kPacm
-
33
1.2 汤逊理论
汤逊理论的不足:
放电时间较长 放电特征呈丝状
阴极的作用
无法解释长间隙放电的物理现象
-
34
1.3 流注放电
2、电晕放电的物理过程和效应 效应:
2)、电风的作用
电子和离子高速运动 与气体交换能量 形成电风
空气对电风的反作用 使电晕电极舞动
-
69
1.5.1 电晕放电

气体放电基础知识

气体放电基础知识

气体放电基础知识关于气体击穿常用气体绝缘介质:空气、 SF6、CO2、 N2、混合气 + CO2、 SF6 + N2)等。

体(SF6气体击穿:正常情况下气体是良好的绝缘介质,但当电场强度达到一定数值后,气体会失去绝缘能力(气体击穿)。

气体击穿是气体绝缘失败的最后表现形式,深入了解气体击穿的发展过程,对于提高分析问题、解决问题的能力更有意义。

平均电场强度与最大电场强度尖端效应或边缘效应电极表面的电场强度与其表面电荷密度成正比。

在电极尖端或边缘的曲率半径小,表面电荷密度大,电力线密集,电场强度高,容易发生局部放电。

这种现象称为尖端效应或边缘效应。

尖端效应或边缘效应是极不均匀电场的重要标志。

工程上常需改善电极形状,避免电极表面曲率过大或出现尖锐边缘。

分析绝缘结构的击穿电压时,不仅要考虑绝缘距离,而且还要考虑电场不均匀程度的影响。

对于同样距离的间隙,电场愈不均匀,通常击穿电压愈低。

茹柯夫斯基电极任一等位面上电场强度最大值:12211222C U U C C =+静电感应现象电容分压导体受邻近带电体的影响,在其表面不同部位出现正负电荷的现象称为静电感应。

气体放电的几个概念:气体放电:气体中出现电流的各种形式统称为气体放电。

气体击穿:由于外施电压升高,电流突然剧增,气体失去绝缘性能。

气体由绝缘状态突变为良导电态的过程,称为击穿。

沿面闪络:当击穿过程发生在气体与液体或气体与固体的交界面上时,称为沿面闪络。

气体放电的基本形式包括:1、电晕放电(局部放电);2、辉光放电;3、电弧放电;4、火花放电。

气体击穿后的放电形式受气体压力、电源功率、电极形状等因素的影响。

1、电晕放电:随着电压升高,在电极附近电场最强处出现发光层。

发生电晕放电时,气体间隙的大部分尚未丧失绝缘性能,放电电流很小,间隙仍能耐受电压的作用。

2、辉光放电:当气体压力不大、电源功率很小(放电回路中串入很大阻抗),外施电压增到一定值后,回路中电流突增至明显数值,管内阴极和阳极间整个空间出现发光现象。

气体放电

气体放电

气体放电气体在正常状态下是良好的绝缘介质.但在电压的作用下,也会形成微弱的电流;气体在外加电压作用下产生导通电流的现象称为气体放电。

当加于气体上的电压达到一定数值时,通过气体的电流会突然剧增,气体失去绝缘的性能。

气体在外加电压作用下由绝缘状态转变为导电状态的过程称为击穿。

使气体击穿的最低电压称为击穿电压、气体发生击穿时,电导突增,并伴有光、声、热等现象。

通过实验观察,由于电源功率、电极形状、气体压力等的不同,气体放电现象存在以下几种主要形式: 1.辉光放电外加电压增加到一定值时,通过气体的电流明显增加,气体间隙整个空间突然出现发光现象,这种放电形式称为辉光放电。

辉光放电的电流密度较小,放电区域通常占据整个电极同的空间。

辉光放电是低气压下的放电形式,验电笔中的氖管、广告用霓虹灯管发光就是辉光放电的例子。

2.电晕放电对于电极很尖的极不均匀电场气隙,随外加电压的升高,在电极尖端附近会出现暗蓝色的晕光,并伴有咝咝声。

如电压不继续升高,放电就局限在这较小的菹围内,形成局部放电,称为电晕放电。

发生电晕放电时,气体间隙的大部分尚未丧失绝缘性能,放电电流很小。

电气设备带电的尖角和输电线路,在运行中时有发生这种电晕放电。

3.火花或电弧放电在气体间隙的两极,电压升高到一定值时,气体中突然产生明亮的树枝状放电火花,当电源功率不大时,这种树枝状火花会瞬时熄灭,接着又突然产生,这种现象称为火花放电;当电源功率足够大时,气体发生火花放电以后,树枝状放电火花立即发展至对面电极,出现非常明亮的连续弧光,形成电弧放电。

二、气体中带电质点的产生和消失我们已经知道,气体间隙在外加电压作用下会产生放电,甚至击穿,这说明气体中有大量带电质点产生;而气体间隙击穿后,若去掉外加电压,气体又能恢复到它原来的耐电强度,这说明气体中的带电质点会消失。

1.带电质点的产生气体原子由带正电荷的原子核和若干带负电荷的电子构成。

正常状态下,这些电子受原子核的吸引在各自的轨道上围绕原子核旋转,这时的气体原子是一个整体,呈中性,称为中性原子。

气体放电实验报告

气体放电实验报告

气体放电实验报告一、实验目的本实验旨在探究气体放电现象,研究气体放电的基本规律和特性,以及不同条件下气体放电的变化。

二、实验原理气体放电是指在两个电极之间加上足够高的电压时,使其周围的气体分子发生离子化,形成带正负电荷的离子空间,并且在这个空间内发生放电现象。

气体放电可以分为直流放电和交流放电两种类型。

直流放电是指在两个极板之间施加直流高压,使得极板之间产生强烈的静电场,从而使得气体分子发生离子化并形成等离子体。

等离子体中存在着大量的自由带电粒子(如正负离子、自由电子等),它们通过碰撞和复合反应来维持等离子体中能量和带电粒子数目的平衡。

交流放电是指在两个极板之间施加交流高压,使得极板之间产生强烈而快速变化的静电场。

当静电场达到一定程度时,会引起气体分子发生离子化并形成等离子体。

由于交流高压的特殊性质,等离子体中的自由带电粒子会随着电场的变化而快速移动,从而使得等离子体中的能量和带电粒子数目发生快速变化。

三、实验装置本实验使用的气体放电装置主要包括高压发生器、气体放电室、气压计、电流表、电压表和示波器等设备。

四、实验步骤1. 将气体放电室连接到高压发生器上,并设置合适的输出电压和频率。

2. 将气体放电室内充满所需气体,并调节气压计以保持恒定的气压。

3. 通过调节高压发生器输出电压和频率,观察不同条件下气体放电现象的变化。

4. 使用示波器观察不同条件下气体放电产生的波形,并记录相关数据。

五、实验结果与分析在本次实验中,我们观察了不同条件下气体放电现象的变化。

具体来说,我们研究了以下几个方面:1. 不同气体对放电现象的影响:我们使用了不同种类的气体(如氢气、氧气、氮气等)进行了实验,发现不同气体的放电特性存在明显的差异。

例如,氢气放电时产生的电流较小,而氧气放电时产生的电流较大。

2. 不同压力对放电现象的影响:我们调节了不同压力下的放电条件,并观察了其对放电现象的影响。

实验结果表明,在低压条件下,放电容易发生且容易维持;而在高压条件下,放电难以发生且容易熄灭。

电介质及气体放电

电介质及气体放电
(1) 电子式极化 其特点: a.极化所需时间极短 b.极化时没有能量损耗 c.温度对极化影响极小
4/36
(2). 离子式极化 其特点:
a.极化过程极短 b. 极化过程无能量损耗 c. 温度对极化有影响,极化随温度升高而增强
5/36
(3). 偶极子式极化 其特点
a. 极化所需时间较长,因而与频率有关 b. 极化过程有能量损耗 c. 温度对极化影响很大,温度很高和很低时, 极化均减弱
形成的电导电流,它不随时间而变化。
12/36
流过介质的电流i由三个分量组成:
i ic ia ig
13/36
3.吸收现象
固体电介质在直流电压作用下, 观察到电路中的电流从大到小随时 间衰减,最终稳定于某一数值,称为 “吸收现象”。
介质在干燥和嘲湿的情况下, 吸收现象不一样,据此可判断绝缘 性能的好坏。
27/36
电介质的老化
老化的主要形式:电老化和热老化
28/36
绝缘材料的耐热等级
.电介质的极化 2.电介质的电导 3.电介质的损耗 4.电介质的击穿
相对介电系数 r
电导率 γ 介质损失角正切tgδ 电场强度E
30/36
削弱游离因素的措施 (1).采用高气压
14/36
三.电介质的损耗
1. 损耗的形式 (1).电导损耗
由泄漏电流引起的损耗.交直流下 都存在。 (2).极化损耗
由偶极子与夹层极化引起,交流 电压下极明显。
15/36
(3).游离损耗 指气体间隙的电晕放电以及液、固体
介质内部气泡中局部放电所造成的损耗。
电晕放电是一种自持放电
16/36
用介质损耗角的正切tgδ来表示介损的 意义
在交流电压作用下,由于存在三种形式 的损耗,需引入一个新的物理量来表征介 损的特性.直流电压作用下的介质损耗是 电导引起的。 经推导,介质损耗P为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放电特性(discharge characteristic)是指在切断供电电流后,二次场电位差(△U2)随放电时间(t)的变化关系:当充电一定时间后断电,二次场电位差(△U2)随时间缓慢衰减,开始较快,以后逐渐减慢,最后趋于零。

放电特性和极化体的物质成分、离子扩散等因素有关。

[1]气体放电英文名称:gas discharge 定义:气体中流通电流的各种形式的统称。

包括电晕放电、辉光放电、电弧放电、火花放电等。

所属学科:电力(气体放电一级学科);高电压技术(二级学科) :干燥气体通常是良好的绝缘体,但当气体中存在自由带电粒子时,它就变为电的导体。

这时如在气体中安置两个电极并加上电压,就有电流通过气体,这个现象称为气体放电。

干燥气体通常是良好的绝缘体,但当气体中存在自由带电粒子时,它就气体放电变为电的导体。

这时如在气体中安置两个电极并加上电压,就有电流通过气体,这个现象称为气体放电。

依气体压力、施加电压、电极形状、电源频率的不同,气体放电有多种多样的形式。

主要的形式有暗放电、辉光放电、电弧放电、电晕放电、火花放电、高频放电等。

20世纪70年代以来激光导引放电、电子束维持放电等新的放电形式,也日益受到人们的重视。

气体放电的基本物理过程气体放电总的过程由一些基本过程构成,这些基本过程是:激发、电离、消电离、迁移、扩散等。

基本过程的相互制约决定放电的具体形式和性状。

编辑本段激发现象荷能电子碰撞气体分子时,有时能导致原子外壳层电子由原来能级跃迁到较高能级。

这个现象,称为激发;被激发的原子,称为受激原子。

要激发一个原子,使其从能级为E1的状态跃迁到能级为E m的状态,就必须给予(E m-E1)的能量;这个能量所相应的电位差设为eV e,则有eVe=Em-E1电位V e称为激发电位。

实际上,即使电子能量等于或高于激发能量,碰撞未必都能引起激发,而是仅有一部分能引起激发。

引起激发的碰撞数与碰撞总数之比,称为碰撞几率。

原因受激发后的原子停留在激发状态的时间很短暂(约为10-6秒),便从能量为Em的气体放电状态回复到能量为E1的正常状态,并辐射出能量为hv(h为普朗克常数;v为辐射频率)的光量子。

气体放电时伴随有发光现象,主要就是由于这个原因。

在某些情况下,受激原子不能以辐射光量子的形式自发回到正常状态,这时便称为处于亚稳状态,处于亚稳状态的原子称为亚稳原子。

亚稳原子可以借助两种过程回复到正常状态:一是由电子再次碰撞或吸收相应的光量子,升到更高的能级,然后从这个能级辐射出光量子而回到常态。

另一是通过与电子碰撞将能量转化为电子的动能,它本身回到常态。

亚稳原子的寿命约为10-4~10-2秒;由于它寿命较长,在放电中常常起重要的作用。

基态时当受激原子尚未回到基态时,如受到电子的再次碰撞就可能转入更高的激发态。

这种由多次碰撞往高能级激发的现象称为累积(逐次)激发。

电离电子与原子碰撞时,若电子能量足够高,还会导致原子外壳层电子的脱落,使原子成为带正电荷的离子。

与激发的情况类似,电子的动能必须达到或大于某一数值eVi,碰撞才能导致电离。

Vi称为电离电位,其大小视气体种类而定。

同样,即使能量高于电离能,碰撞也仅有一部分能引起电离。

引起电离的碰撞次数与总碰撞次数之比,称为电离几率。

如果受激原子由于电子再次碰撞而电离、则称为累积(逐次)电离。

电离过程在气体放电中还有一类重要的电离过程,即亚稳原子碰撞中性分子使后者电离的过程。

这种过程只有在亚稳原子的亚稳电位高于中性分子的电离电位(如氖的亚稳原子碰撞氩原子)时才可能出现。

这个过程称为潘宁效应。

编辑本段方式如果将一切电离因素都去掉,则已电离的气体,会逐渐恢复为中性气体,这称为消电离。

消电离的方式有三种:①电子先与中性原子结合成为负离子,然后负离子与正离子碰撞,复合成为两个中性原子。

②电子和正离子分别向器壁扩散并附于其上,复合后变为中性原子离去。

③电子与正离子直接复合。

迁移在电场作用下,带电粒子在气体中运动时,一方面沿电力线方向运动,不断获得能量;一方面与气体分子碰撞,作无规则的热运动,不断损失能量。

经若干次加速碰撞后,它们便达到等速运动状态,这时其平均速度u与电场强度E成正比 u=KE系数K称为电子(离子)迁移率。

对于离子,K是一个常数;对于电子,它并不是一个常数,而与电场强度E有关。

编辑本段扩散扩散现象复杂当带电粒子在气体中的分布不均匀时,就出现沿浓度递减方向的运动,这称为扩散。

带电粒子的扩散类似于气体的扩散,也有自扩散和互扩散两种。

扩散现象用扩散系数来描述,它是带电粒子扩散能力的一种量度。

多种带电粒子同时存在于气体时,扩散现象变得复杂。

其中特别重要的一种情况是电子、正离子浓度相等(即等离子体)的情况,这时出现所谓双极性扩散。

这是两种异号带电粒子相互牵制的扩散,其基本特征是:电子由于质量小、扩散得较快;离子由于质量大,扩散得较慢。

结果电子走在前方,于是两种电荷间出现一个电场(约束电场),这电场牵引正离子使它跟上去。

两种带电粒子的扩散速率始终一致,但电子总是在前方,离子则在其后。

电子运动速度快在管壁附近,双极性扩散受到管壁的影响。

此时,电子运动速度快,先附于管壁,使管壁带负电位。

负电位阻止后来电子的抵达,但吸引正离子,在其附近形成正电荷鞘层。

在鞘层中,电子的浓度随着接近管壁而递减,最终自动调整到每秒飞上管壁的电子数恰好等于飞上的正离子数。

气体放电的重要形式最早研究的气体放电形式是低气压(1~100帕)直流放电,即在气体中置入两个电极,通以直流电压而得到的放电。

为使电流不致过大,回路中串联一个电阻(即限流电阻)。

若将电源电压逐渐提高,通过气体的电流就随之增大(图1,纵坐标为跨于两电极上的电压)。

当极间电压提高到u s时,电流突然急剧增加,放电变为明亮的形式,这称为着火,也称为击穿。

着火之后,放电转入自持放电,在开始一段(SB段)为正常辉光放电,极间电压比着火前为低,且其数值不随电流增大而变化,呈现恒电压特性。

当电流增大到某一数值(B点)时,极间电压又随电流而增大,这一段(BE段)属异常辉光放电。

电流增大到E点时就转入电弧放电,此时极间电压将随电流增大而下降,呈现出负阻特性(ECDF段)。

气体放电气体放电的着火是一种突变现象。

闸流管、计数管、气体放电开关管等器件便利用这种突变特性。

利用正常辉光放电的恒电压特性即可制成气体放电稳压管。

暗放电暗放电主要是非自持放电(但自持放电的某些区域中有暗放电存在)。

关于暗放电的理论是英国物理学家J.S.汤生于1903年提出的,故这种放电也称为汤生放电。

编辑本段物理描述汤生理论的物理描述是:设外界催离素在阴极表面辐照出一个电子,这个电子向阳极方向飞行,并与分子频繁碰撞,其中一些碰撞可能导致分子的电离,得到一个正离子和一个电子。

新电子和原有电子一起,在电场加速下继续前进,又能引起分子的电离,电子数目便雪崩式地增长。

这称为电子繁流(图2)。

气体放电电子数目汤生根据上述物理描述,推导出抵达阳极的电子数目n u为式中n0为阴极发射的电子数;d为阴极阳极间距离;α为汤生第一电离系数。

上式表明,电子数目随距离d指数增长。

在一些光电器件中,特意充入一些惰性气体,使光电阴极发射的电子在气体中进行繁流,以得到光电流的放大,提高器件的灵敏度。

自持放电放电中产生的正离子最后都抵达阴极。

正离子轰击阴极表面时,使阴极产生电子发射;这种离子轰击产生的次级电子发射,称为r过程。

r过程使放电出现新的特点,这就是:r 过程产生的次级电子也能参加繁流。

如果同一时间内,由于r过程产生的电子数,恰好等于飞抵阳极的电子数,放电就能自行维持而不依赖于外界电离源,这时就转化为自持放电。

气体的着火电压取决于一系列因素。

1889年,L.C.帕邢发现,对于平行平板电极系统,在其他条件相同时,着火电压是气体压力p与电极距离d乘积的函数,通称为巴邢定律。

图3表示一些气体的着火电压与pd值的关系。

由图可见,着火电压有一最低值。

在最低值右边(右支),着火电压随pd的增大而提高,在其左边(左支),则随pd的减小而提高。

在高电压设备中,各电极间的距离须足够大(即d值应足够大),有时还充以高压强(即取大的p值)的绝缘气体,以提高设备的耐压,就是利用右支的特性。

反之,在真空电容器一类器件中,常将其内部抽至良好的真空(即达到小的p值),以提高其耐压,这是利用左支的特性。

气体放电编辑本段辉光放电低压气体在着火之后一般都产生辉光放电。

若电极是安装在玻璃管内,在气体压力约为 100帕且所加电压适中时,放电就呈现出明暗相间的8个区域(图4)。

图中下方的曲线表示光强的分布,按从阴极到阳极的顺序分为7个区。

气体放电阿斯顿暗区:它是阴极前面的很薄的一层暗区,是F.W.阿斯顿于1968年在实验中发现的。

在本区中,电子刚刚离开阴极,飞行距离尚短,从电场得到的能量不足以激发气体原子,因此没有发光。

阴极辉区:紧接于阿斯顿暗区,由于电子通过阿斯顿暗区后已具有足以激发原子的能量,在本区造成激发而形成的区域,当激发态原子恢复为基态时就发光。

阴极暗区:又称克鲁克斯暗区。

抵达本区域的电子,能量较高,有利于电离而不利于激发,因此发光微弱。

负辉区;紧邻阴极暗区,且与阴极暗区有明显的分界。

在分界线上发光最强,后逐渐变弱,并转入暗区,即后述的法拉第暗区。

负辉区中的电子能量较为分散,既富于低能量的电子也富于高能量的电子。

法拉第暗区:负辉区到正柱区的过渡区域。

在本区中,电子能量很低,不发生激发或电离,因此是暗区。

正辉柱区:与法拉第暗区有明显的边界,是电子在法拉第暗区中受到加速,具备了激发和电离的能力后在本区中激发电离原子形成的,因发光明亮故又称正辉柱。

正辉柱区中电子、离子浓度很高(约1015~1016个/米3),且两者的浓度相等,因此称为等离子体。

正柱区具有良好的导电性能;但它对放电的自持来说,不是必要的区域。

在短的放电管中,正柱区甚至消失;在长的放电管中,它几乎可以充满整个管子。

正柱区中轴向电场强度很小,因此迁移运动很弱,扩散运动(即乱向运动)占优势。

阳极辉区和阳极暗区:只有在阳极支取的电流大于等离子区能正常提供的电流时才出现。

它们在放电中不是典型的区域。

辉光放电各区域中最早被利用的是正柱区。

正柱区的发光和长度可无限延伸的性质被利用于制作霓虹灯。

作为指示用的氖管、数字显示管,以及一些保护用的放电管,也是利用辉光放电。

在气体激光器中,毛细管放电的正柱区是获得激光的基本条件。

近代微电子技术中的等离子体涂覆、等离子体刻蚀,也是利用辉光放电过程。

从正柱区的研究发展起来的等离子体物理,对核聚变、等离子体推进、电磁流体发电等尖端科学技术有重要意义。

辉光放电中的负辉区,由于电子能量分布比正柱区的为宽,近年来被成功地用于制作白光激光器。

相关文档
最新文档