八年级数学整式的乘法3(2019年8月整理)
人教版八年级上册数学整式的乘除全章课件
3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.
人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(第4课时整式的除法)
(3) 原式=9x2·4x2 =(9×4)(x2·x2)=36x4;
(4)原式=-8a3·9a2 =[(-8)×9](a3·a2)=-72a5
小试牛刀
2、下面计算结果对不对?如果不对,应当怎样改正?
(1)3a3 ·2a2=6a6 (
×)
(2) 2x2 ·3x2=6x4 (
)
(3)3x2 ·4x2=12x2 ( × )
m8 m8
2.计算:
=
m0
= 1______
≠2
3.若(a-2)0=1,则a ________
单项式与单项式相除的法则
∵
4a 2 x 3 3ab 2 12a 3 b 2 x 3
∴ 12a b x 3ab
3
2
3
2
这相当于
12a b x 3ab
=
12a 3 b 2 x 3 3ab 2
=abc5+2
(同底数幂的乘法)
=abc7.
根据以上计算,想一想如何计算单项式乘以单项式?
合作探究
单项式与单项式的乘法法则:
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于
只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
温馨提示:(1)系数相乘;
(2)相同字母的幂相乘;
(3)其余字母连同它的指数不变,作为积的因式.
除
以这个单项式,再 把所得的商 相加 .
温馨提示:把多项式除以单项式问题转化为单项式除以单
项式问题来解决.
例8 计算:
2
(3)12a 6a 3a 3a
3
3a
12a
6a 2
解:原式=
人教八年级数学上册整式的乘法
新知探究
零指数幂的示例:
指数为0
(- 2)0 1
底数是-2
结果为1
指数为0
1000 1
底数是100
结果为1
新知探究
拓展:a0 =1 (a≠0)的推导过程: 当 m=n 时,am ÷an=am-n =a0 , 因为 m=n , 所以am ÷an =1 . 则 a0 =1 .
随堂练习 1
计算下列式子: (1) (-xy)13÷(-xy)8 ;
法则:一般地,单项式与多项式相乘,就是单项式去乘多项式的每一项,再把 所得的积相加. 式子表示:p(a+b+c)=pa+pb+pc(p,a,b,c都是单项式).
多项式中的每一项都包括它前面的符号,根据去括号的法则,积的符 号由单项式的符号与多项式的符号共同决定.
新知探究
单项式与多项式相乘的步骤: (1) 利用乘法分配律,转化为单项式乘以单项式; (2) 将单项式与单项式相乘的结果相加.
新知探究
重点:(1) 对于三个或三个以上的单项式相乘,单项式乘法法则同样适用; (2) 单项式乘以单项式,若有乘方、乘法混合运算,应按“先乘方再乘法”的运 算顺序进行; (3) 单项式乘以单项式的结果仍然是单项式,对于幂的底数是多项式形式的, 应将其作为一个整体进行运算.
新知探究 知识点2 单项式乘多项式法则
新知探究
同底数幂的除法的示例:
指数相减
x9 x6 x96 x3
底数不变
新知探究 知识点2 零指数幂
性质:任何不等于0的数的零次幂都等于1. 符号表示:a0=1(a≠0).
(1) 零指数幂中的底数可以是单项式,也可以是多项式,但不可以是0; (2) 因为 a=0 时,a0 无意义,所以 a0 有意义的条件是 a≠0,常据此确定底数中所 含字母的取值范围.
人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课教学课件复习(单项式与单项式、多项式相乘)
如图(1)是某中学B楼和C楼之间的一个长和宽分别为米和米
的长方形绿地,如果它的长和宽分别增加米和米后变成了新的长方
形绿地如图(2).请你计算这块新长方形绿地的面积.
图(1)
图(2)
知识讲解
你能用不同的形式表示长方形
绿地的面积吗?
此时绿地面积:
方法1 =( + ) ( + )①
化为单项式乘单项式)
单项式与多项式的乘法法则
一般地,单项式与多项式相乘,就是用单项式
乘多项式的每一项,再把所得的积相加.
用字母表示如下:p(a+b+c)=pa+pb+pc
注意:(1)依据是乘法分配律;
(2)积的项数与多项式的项数相同.
例3
计算:
(1)
3a(5a b)
(2) - 7x y 2 x 3 y
=3ax3-2ax2+3bx2-2bx+3x-2
=3ax3+(-2a+3b)x2+(-2b+3)x-2.
∵积不含x2项,也不含x项,
a
2a 3b 0,
∴
∴
2b 3 0,
b
9
,
4
3
.
2
拓展练习
计算:
x2+5x+6
(1)(x+2)(x+3)=__________;
(2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致;
(3)单项式系数为负时,改变多项式每项的符号.
人教版八年级数学上册 (整式的乘法)整式的乘法与因式分解课件教学(第2课时)
教科书第102页 练习1、2题.
化
2x2 4xy
单项式乘单项式
讨论 尝试归纳单项式乘以多项式的运算法则.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
归纳
单项式乘以多项式
一般地,单项式与多项式相乘,就是用单项式乘 多项式的每一项,再把所得的积相加.
转化
单项式乘以多项式
单项式乘以单项式
乘法分配律
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
1.填空: (1) 5(mn5) 5m5n25 . (2) (2a3b)(4ab) 8a2b12ab2 . (3) 2x(4x26x8) 8x312x216x . (4) (a2b)(c) ac2bc .
抢答
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 你还能通过别的方法得到等式p(abc)papbpc吗?
p(abc)papbpc 乘法分配律
单项式乘多项式
类比单项式乘单项式, 说说这是什么运算?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 尝试计算:2x(x2y)
解:2x(x2y)
单项式乘多项式
2x·x 2x·2y
乘法分配律 转
式
步解决问题的能力.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
①②
p p p p
p
abc
a
b
c
a
b
c
如果把它看成一个大长方形,
如果把它看成三个小长方形,
那么它的面积可表示为:
八年级数学整式的乘法与因式分解常考必考知识点总结
一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
八年级上册数学整式的乘除知识点
文章标题:深度剖析八年级上册数学整式的乘除知识点在八年级上册的数学课程中,整式的乘除是一个重要的知识点。
通过学习整式的乘除,我们可以更好地理解代数表达式的变化规律,掌握数学运算的技巧和方法,为进一步学习代数知识打下坚实的基础。
本文将深度剖析八年级上册数学整式的乘除知识点,帮助读者全面、深刻地理解这一重要内容。
1. 整式的乘法整式的乘法是整式运算中的基本内容之一。
在整式的乘法中,我们需要掌握多项式之间的乘法规律和技巧。
我们需要了解乘法分配律的应用,即将一个多项式的每一项与另一个多项式的每一项分别相乘,并将结果相加得到最终的乘积。
我们需要熟练掌握多项式中的同类项的合并和系数的运算。
我们还需要注意乘法中的特殊情况,如平方公式的运用和多项式的高次项乘法。
2. 整式的除法整式的除法是整式运算中的另一个重要内容。
在整式的除法中,我们需要掌握多项式之间的除法规律和方法。
我们需要了解除法的基本步骤,即先将被除式与除数进行逐项相除,然后合并同类项得到商,最后再进行余数的判断和处理。
我们需要注意整式除法中的特殊情况,如整式除不尽时的余数处理和除式中的零系数问题。
总结回顾通过对整式的乘除知识点的深度剖析,我们不仅掌握了整式的乘法和除法的基本规律和方法,还能够灵活运用和应用这些知识解决实际问题。
整式的乘法和除法在数学中具有重要的地位,它不仅是代数表达式的基本运算,还是后续学习中多项式、因式分解等内容的重要基础。
我们应该认真学习整式的乘除知识点,深入理解其中的原理和技巧,为今后的学习打下坚实的基础。
个人观点在学习整式的乘除知识点时,我认为重点在于深入理解其运算规律和方法,而不仅仅是死记硬背。
通过多做习题和实际应用,我相信我能更好地掌握整式的乘除知识点,并能够灵活运用于解决实际问题中。
在本文中,我们深度剖析了八年级上册数学整式的乘除知识点,侧重从简到繁、由浅入深地探讨了整式的乘法和除法。
通过本文的阐述,相信读者对整式的乘除知识点有了更全面、深刻的理解。
人教八年级数学上册课件《整式的乘法》精品课件
知识巩固
2.若x2y3<0,化简:−2xy·|− 12x5(−y)7|。
解:∵x2y3<0, ∴x>0,y<0或x<0,y<0,
当x>0,y<0时,原式=-2xy×(- 12x5y7)=x6y8;
当x<0,y<0时,原式=-2xy× 12x5y7=-x6y8; 版权所有
盗版必究
新课学习
新课学习
(a+b)(p+q)
看成一个整体,即变为 单项式与多项式相乘。
a(p+q)+b(p+q) 单项式与多项式相乘运算法 则。
ap+aq+bp+bq
版权所有 盗版必究
新课学习
多项式与多项式相乘运算法则 (a+b)(p+q)=ap+aq+bp+bq 多项式与多项式相乘:先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加。
版权所有 盗版必究
新课学习
例2:计算 (1)(-4x2) ·(3x+1) (2)(23 ab2-2ab) ·(12ab) (1)解:原式=(-4x2) ·(3x)+(-4x2) ·1 =(-4×3) (x2 ·x)+(-4x2) =-12x3-4x2 (2)解:原式=23 ab2·12ab +(-2ab) · 12ab
2m+2=4 3m+2n+2=9,解方程组即可得到答案。
版权所有 盗版必究
典题精讲
解:∵ 14(x2y3)m·(2xyn+1)2 =x2m+2y3m+2n+2=x4y9, ∴2m+2=4;3m+2n+2=9, 解得m=1;n=2。 故m的值是1,n的值是2。
1.4整式的乘法(3)教案
(二)新课讲授(用时10分钟)
1.讨论主题:学生将围绕“整式乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
首先,我注意到在讲解多项式乘法法则时,部分学生对于符号的处理还不够熟练。在今后的教学中,我打算多设计一些符号判断的练习,让学生通过反复练习来加深对符号规则的理解。同时,我也可以借助一些实物或图形,让学生更直观地感受到符号在乘法中的作用。
其次,关于完全平方公式的运用,我觉得可以通过更多的生活实例来引导学生理解。例如,可以拿一个正方形的面积来解释完全平方公式,让学生知道这个公式不仅仅是一个数学概念,而是与我们生活中的实际问题紧密相关。
1.理解并掌握整式乘法的基本法则,提高数学运算能力;
2.培养学生运用完全平方公式进行问题分析和解决的逻辑推理能力;
3.通过实际问题的解决,增强学生数学知识的应用意识和能力;
4.激发学生合作交流、探索创新的精神,提高数学学习的兴趣和自信心;
5.培养学生严谨、细致的学习态度,形成良好的数学学科素养。
三、教学难点与重点
1.4整式的乘法(3)教案
新人教版数学八年级上册《整式的乘法》教学课件
以是多项式,但不可以是0;
(2) 因为 a=0 时,a0 无意义,所以 a0 有意义的条件
是 a≠0,常据此确定底数中所含字母的取值范围.
示例2:
指数为0
(- 2) 1
指数为0
100 1
0
0
结果为1
底数是-2
结果为1
底数是100
新知探究 跟踪训练
即 x3=x3+2x+4.
所以2x+4=0,解得x=-2.
3.若 32∙92m+1÷27m+1=81,求m的值.
分析:考虑将除数和被除数化成同底数幂的形式,
再运用同底数幂除法法则进行计算.
解:因为32∙92m+1÷27m+1=81,
32∙92m+1÷27m+1=32∙34m+2÷33m+3 =34m+4÷33m法则:
先用一个多项式的每一项乘另一个多项式的每一项,
再把所得的积相加.
式子表示:(a+b)(p+q)=ap+aq+bp+bq(a,b,p,q分别
是单项式).
学习目标
1.了解并掌握同底数幂的除法的运算法则.
2.掌握同底数幂的除法的运算法则的推导以及零指数
幂的意义.
课堂导入
前面我们已经学习了整式的加法、减法、乘法运算.在
整式运算中,有时还会遇到两个整式相除的情况.由于
除法是乘法的逆运算,因此我们可以利用整式的乘法
来讨论整式的除法.
课堂导入
一个数码相机的相机照片文件大小是210KB,一个存
储量为220KB的U盘能存储多少张这样数码照片呢?你
【精品讲义】人教版 八年级数学(上) 专题14.1 整式的乘法(知识点+例题+练习题)含答案
第十四章 整式的乘法与因式分解14.1 整式的乘法一、同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】1.同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).2.同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数). 二、幂的乘方1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. 2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】1.幂的乘方的法则可推广为[()]m n p mnpa a =(m ,n ,p 都是正整数).2.幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数). 三、积的乘方1.积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3.2.积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn ab ab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()nn nab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘. 四、单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.1.只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. 3.单项式乘单项式的结果仍然是单项式.【注意】1.积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算. 五、单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】1.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.2.计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. 3.对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果. 六、多项式与多项式相乘1.法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.2.多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc . 【注意】1.运用多项式乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 七、同底数幂的除法 同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】1.同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). 2.同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ). 八、零指数幂的性质 零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】1.底数a 不等于0,若a =0,则零的零次幂没有意义. 2.底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. 3.a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0. 九、单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性. 十、多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】1.多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.2.多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项. 3.多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.一、相加 二、相乘 三、乘方四、相乘五、相加六、相加七、相减八、1九、相除十、相加1.同底数幂的乘法(1)同底数幂的乘法法则只有在底数相同时才能使用. (2)单个字母或数字可以看成指数为1的幂.(3)底数不一定只是一个数或一个字母,也可以是单项式或多项式.计算m 2·m 6的结果是A .m 12B .2m 8C .2m 12D .m 8【答案】D【解析】m 2·m 6=m 2+6=m 8,故选D .计算-(a -b )3(b -a )2的结果为A .-(b -a )5B .-(b +a )5C .(a -b )5D .(b -a)5【答案】D【解析】-(a-b )3(b -a )2=(b -a )3(b -a )2=(b -a )5,故选D .2.幂的乘方与积的乘方(1)每个因式都要乘方,不能漏掉任何一个因式.(2)要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.计算24()a 的结果是A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D .下列等式错误的是A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D【解析】A .(2mn )2=4m 2n 2,该选项正确; B .(-2mn )2=4m 2n 2,该选项正确; C .(2m 2n 2)3=8m 6n 6,该选项正确;D .(-2m 2n 2)3=-8m 6n 6,该选项错误.故选D .3.整式的乘法(1)单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.(2)单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.计算:3x 2·5x 3的结果为A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D .下列各式计算正确的是A .2x (3x -2)=5x 2-4xB .(2y +3x )(3x -2y )=9x 2-4y 2C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误; B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确; C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .4.同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.计算2x 2÷x 3的结果是 A .xB .2xC .x -1D .2x -1【答案】D【解析】因为2x 2÷x 3=2x -1,故选D .计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A .计算:22(1510)(5)x y xy xy --÷-的结果是A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy xyx y x y ------÷-=+=+.故选B .5.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.1.计算3(2)a -的结果是 A .38a -B .36a -C .36aD .38a2.下列计算正确的是 A .77x x x ÷=B .224(3)9x x -=-C .3362x x x ⋅=D .326()x x =3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n ·(-9)·3n +2的结果是 A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算223(2)(3)m m m m -⋅-⋅+的结果是 A .8m 5B .–8m 5C .8m 6D .–4m 4+12m 57.若32144m nx y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.3119(1.210)(2.510)(410)⨯⨯⨯=__________. 11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________.12.若1221253()()m n n m a b a b a b ++-= ,则m +n 的值为__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--. (3)(21x 4y 3–35x 3y 2+7x 2y 2)÷(–7x 2y ).14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.“三角”表示3xyz ,“方框”表示-4a b d c .求×的值.16.下列运算正确的是A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a =17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2019•镇江)下列计算正确的是A .236a a a ⋅=B .734a a a ÷=C .358()a a =D .22()ab ab =23.(2019•泸州)计算233a a ⋅的结果是A .54aB .64aC .53aD .63a24.(2019•柳州)计算:2(1)x x -=A .31x -B .3x x -C .3x x +D .2x x -25.(2019•天津)计算5x x ⋅的结果等于__________. 26.(2019•绥化)计算:324()m m -÷=__________. 27.(2019•乐山)若392m n ==,则23m n +=__________. 28.(2019•武汉)计算:2324(2)x x x -⋅. 29.(2019•南京)计算:22()()x y x xy y +-+.1.【答案】A【解析】33(2)8a a -=-,故选A . 2.【答案】D【解析】A 、76x x x ÷=,故此选项错误; B 、224(3)9x x =-,故此选项错误; C 、336x x x ⋅=,故此选项错误; D 、326()x x =,故此选项正确, 故选D . 3.【答案】A【解析】已知等式整理得:x 2-4x -12=x 2+px +q ,可得p =-4,q =-12,故选A .4.【答案】D【解析】∵x +y -3=0,∴x +y =3,∴2y ·2x =2x +y =23=8.故选D .5.【答案】C【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】A【解析】原式=4m 2·2m 3=8m 5,故选A .7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】241.210⨯【解析】原式=1.2×103×(2.5×1011)×(4×109)=12×1023=1.2×1024.故答案为:1.2×1024. 11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】2【解析】(a m +1b n +2)(a 2n –1b 2m )=a m +1+2n –1·b n +2+2m =a m +2n ·b n +2m +2=a 5b 3, ∴25223m n n m +=++=⎧⎨⎩, 两式相加,得3m +3n =6,解得m +n =2,故答案为:2.13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a=6a 3-35a 2+13a .(3)原式=21x 4y 3÷(–7x 2y )–35x 3y ÷(–7x 2y )+7x 2y 2÷(–7x 2y )=–3x 2y 2+5xy –y .14.【解析】(1)原式=x 2-x +2x 2+2x -6x 2+17x -5=(x 2+2x 2-6x 2)+(-x +2x +17x )-5=-3x 2+18x -5.当x =2时,原式=19.(2)原式=-m 2·m 4·(-m 3)=m 2·m 4·m 3=m 9.当m =-2时,则原式=(-2)9=-512.15.【解析】由题意得×=(3mn ·3)×(–4n 2m 5) =[]526333(4)()()36m m n n m n ⨯⨯-⋅⋅⋅=-.16.【答案】C【解析】A 、2326a a a ⨯=,故本选项错误;B 、844a a a ÷=,故本选项错误;C 、()3133a a --=-,正确;D 、32611()39a a =,故本选项错误, 故选C .17.【答案】A【解析】因为5642333352363341312(3)222a b c a b c a b c ab c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40.19.【答案】15- 【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.20.【解析】因为2x =3,所以2y =6=2×3=2×2x =2x +1, 2z =12=2×6=2×2y =2y +1.所以y =x +1,z =y +1.两式相减,得y -z =x -y ,所以x +z =2y .21.【解析】(1)由题意得:(2x -a )(3x +b )=6x 2+(2b -3a )x -ab ,(2x +a )(x +b )=2x 2+(a +2b )x +ab , 所以2b -3a =11①,a +2b =-9②,由②得2b =-9-a ,代入①得-9-a -3a =11,所以a =-5,2b =-4,b =-2.(2)由(1)得(2x +a )(3x +b )=(2x -5)(3x -2)=6x 2-19x +10.22.【答案】B【解析】A 、a 2·a 3=a 5,故此选项错误;B 、a 7÷a 3=a 4,正确;C 、(a 3)5=a 15,故此选项错误;D 、(ab )2=a 2b 2,故此选项错误,故选B .23.【答案】C【解析】23533a a a ⋅=,故选C .24.【答案】B【解析】23(1)x x x x -=-,故选B .25.【答案】6x【解析】56⋅=x x x ,故答案为:6x .26.【答案】2m【解析】原式64642m m m m ÷-===,故答案为:m 2.27.【答案】4【解析】∵23=9=32=m n n ,∴2233339224+=⨯=⨯=⨯=m n m n m n ,故答案为:4.28.【解析】2324(2)x x x -⋅=668x x -67x =.29.【解析】22()()x y x xy y +-+322223x x y xy x y xy y =-++-+ 33x y =+.。
八年级上册数学- 整式的乘除
第十四章 整式的乘法与因式分解第19讲 整式的乘除知识导航1.幂的运算:同底数幂的乘法,幂的乘方,积的乘方;2.整式的乘法:单项式乘单项式,单项式乘多项式,多项式乘多项式;3.整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式【板块一】幂的运算运算法则:(1)同底数幂相乘:同底数幂相乘,底数不变,指数相加,用式子表示为:m n m n a a a +⋅=(m ,n 都是正整数).(2)幂的乘方:幂的乘方,底数不变,指数相乘,用式子表示为:()n m mn a a =(m ,n 都是正整数).(3)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,用式子表示为:()n n n ab a b =(n 都是正整数).(4)同底数幂相除:同底数的幂相除,底数不变,指数相减,用式子表示为:m n m n a a a -÷=(m >n )(5)规定:01a =(a ≠0),零的零次幂无意义.(6)负整数幂的运算法则:1n na a -=(n 是正整数,a ≠0).方法技巧:1.从已知出发,构造出结果所需要的式子;2.从结果出发,构造符合已知条件的式子.题型一 基本计算【例1】计算:(1)()()32x x -⋅-;(2)()()2332a a -⋅-;(3)()22248x yy ÷; (4)323221334a b ab ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭.【例2】计算:()()()2014201420150.12524-⨯-⨯-.题型二 逆向运用幂运算 【例3】(1)已知2228162x x ⋅⋅=,求x 的值;(2)已知4a y =,16b y =,求22a b y +的值.题型三 灵活进行公式变形【例4】已知:5210a b ==,求11a b+的值.题型四 比较大小【例5】已知552a =,334b =,225c =,试比较a ,b ,c 的大小.针对练习11.计算:(1)3224a a a a a ⋅⋅+⋅;(2)()57x x -⋅;(3)()()57x y x y +⋅--;(4)()()2332y y ⋅.2.计算:(1)6660.12524⨯⨯;(2)599329961255⎛⎫⨯ ⎪⎝⎭;(3)()()2018201720172 1.513⎛⎫⨯⨯- ⎪⎝⎭;(4)4322023452%3%4%5%103456⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-⨯⨯-⨯⨯-⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.3.(1)若()3915n m a b ba b =,求m ,n 的值;(2)已知27a =,86b =,求()322a b +的值;(3)若a +3b -2=0,求327a b ⋅的值;(4)已知:21233324m m ++=,求m 的值;(5)已知124x y +=,1273x -=,求x -y 的值;(6)已知129372n n +-=,求n 的值.4.已知252000x =,802000y =,求11x y+的值.5.已知k >x >y >z ,且16522228k x y z +++=,k ,x ,y ,z 是整数,求k 的值.6.是否存在整数a ,b ,c 使9101628915a b c⎛⎫⎛⎫⎛⎫⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭?若存在,求出a ,b ,c 的值;若不存在,说明理由.7.比较653,524,396,2615四个数的大小.8.你能比较两个数20122011和20112012的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n +n 的大小(n 是自然数),然后,我们分析1n =,2n =,3n =,⋯中发现规律,经过归纳,猜想得出结论.(1)通过计算,比较下列各组中两个数的大小(在空格内填写“>”、“ =”、“<”号)①21 12;②32 23;③43 34;④54 45;⑤65 56….(2)从第(1)题的结果经过归纳,可猜想出1n n +与(1)n n +的大小关系是 .(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小20122011,20112012.9.(1)已知()432a =,()342b =,()423c =,()234d =,()324e =,比较a ,b ,c ,d ,e 的大小关系;(2)已知:220002001200220012002200120022001200220012002a =+⨯+⨯++⨯+⨯,20022002b =,试比较a 与b 的大小.【板块二】整式的乘法方法技巧:(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a +b +c 为单项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++.题型一 基本计算【例6】计算:(1)()()23234x y x y -⋅= ;(2)()()223234x y x y -⋅= ; (3)()254342x x y xy -⋅-= ;(4)()()22323253a b ab a b ⋅-+= ;(5)()()322a b x y +-= ;(6)()()332a b a b +-= .题型二 混合运算 【例7】计算:()()()()242422325235333x x x x x x +++-+++.题型三 展开后不含某项【例8】若()()2283x ax x x b ++-+的乘积中不含x 2项和x 3项,则a = ,b = .题型四 比较对应项的系数求值【例9】已知()()2226x my x ny x xy y ++=+-,求()m n mn +的值.【板块二】整式的乘法方法技巧(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为: m (a+b+c) =ma+mb+mc,其中m为单项式,a+b+c为多项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:(m+n)( a+b) =ma+mb+na+nb.题型一基本计算【例6】计算:(1)(-3x2y)·(4x3y2)=__________;(2)(-3x2y) 2·(4x3y2)=__________;(3)-3x2·(4x5y-2xy4)=__________;(4)(2a2b3)·(-5ab2+3a3b)=__________;(5)(3a+2b)·(2x-y)=__________;(6)(3a+b)·(3a-2b)=__________;题型二混合运算【例7】计算:(3x2+2)( 5x4+2x2+3)-(5x4+x2+3)( 3x2+3)题型三展开后不含某项【例8】若(x2+ax+8)( x2-3x+b)的乘积中不含x2和x3项,则a=__________,b=__________.题型四比较对应项的系数求值【例9】已知(x+my)( x-ny)=x2+2xy-6y2,求(m+n) mn的值题型五巧设特殊值【例10】设()5=a5x5+a4x4+a3x3+a2x2+a 1x+a0(1)a1+a2+a3+a4+a5+a0的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值;针对练习21.计算:(1)(x+2y)(4a+3b)=__________;(2)(3x-y)( x+2y)=__________;(3)(x+3)( x-4)=__________;(4)(43a2b-83a3b2+1)×(-0.25ab)=__________;(5)3a b2 [(-ab) 2-2b2 (a2-23a3b)]=__________;(6)(5x3+2x-x2-3)(2-x+4x2)=__________;2.计算:(1)(x2-2x+3)(x-1)( x+1);(2)[(12x-y)2+(12x+y)2] (12x2-2y2);(3)(-x3+2x2-5)(2x2-3x+1);(4)(x+y)( x2-xy+y2);(5)(x-y)( x2+xy+y2);(6)(-2x-y)(4x2-2xy+y2).3.(1)多项式x2+ax+2和x2+2x-b的积中没有x2和x3两项,求a,b的值;(2)若(1+x)(2x2+ax+1)的结果中x2项的系数为-2,求a的值;(3)已知多项式3x2+ax+1与bx2+x+2的积中不含x2和x项,求系数a,b的值.4.(1)已知多项式x4+x3+x2+2=(x 2+m x+1)( x 2+n x+2),求m与n的值;(2)若不论x取何值,多项式x3-2x3-4x-1与(x+1)(x2+m x+n)都相等,求m和n的值;(3)已知(x+a y)(2 x-b y)=2x2-3xy-5y 2,则2a2b-ab2的值.5.已知ab2=6,求ab (a 2b5-ab3-b)的值.6.已知x-y=-1,xy=2,求(x-1)( y+1)的值.7.已知2 a 2+3 a-6,求3a (2a+1)-(2a+1)( 2a-1)的值.8.已知x2-8x-3=0,求(x-1)( x-3)( x-5)( x-7)的值.9.已知2 x+3x (x+1)( x+2)( x+3)的值.【板块三】整式的除法方法技巧(1)单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.(2)多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加,公式为:(3)多项式除以多项式:大除法.题型一基本计算【例11】计算:(1)(23a4b2-19a2b8)÷(-12ab3)2(2)(35a3b7-65a3b4-1.8a2b3)÷0.6ab2题型二大除法【例12】计算:(1)(x3-1)÷(x-1);(2)(3 x4-5x3+x2+2)÷(x2+3);。
人教版数学八年级上册第14章第4课14.1.4整式的乘法(教案)
一、教学内容
人教版数学八年级上册第14章第4课14.1.4整式的乘法,主要包括以下内容:
1.单项式乘以单项式:让学生掌握同类项相乘和不同类项相乘的法则,并能正确运用到实际计算中。
2.单项式乘以多项式:引导学生理解分配律在整式乘法中的应用,并能熟练进行计算。
3.多项式乘以多项式:通过实例,让学生掌握多项式相乘的法则,并能解决实际问题。
4.乘法公式的运用:使学生掌握平方差公式和完全平方公式,并能运用到整式乘法计算中。
5.乘法法则的拓展:让学生了解乘法法则在数学其他领域的应用,提高学生的综合运用能力。
6.综合练习:设计不同难度的练习题,巩固学生对整式乘法的掌握,提高学生的运算速度和准确性。
(3)多项式乘多项式的运算顺序和过程:学生在面对多项式乘多项式时,容易混淆运算顺序,导致计算过程混乱。
举例:(x + 2y) * (x - 3y)需要逐一将每一项相乘,并注意合并同类项。
(4)乘法公式的记忆与运用:平方差公式和完全平方公式是解决整式乘法问题的关键,但学生容易忘记或混淆。
举例:在解决a^2 - b^2类型的题目时,要能够迅速联想到(a + b)(a - b)的形式。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式乘法的基本概念。整式乘法是指将两个或多个整式相乘的运算。它是代数运算中的基础,对于解决实际问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了整式乘法在计算几何图形面积中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这三个重点。对于难点部分,如符号规律和分配律的运用,我会通过举例和比较来帮助大家理解。
整式的乘法 第3课时 多项式与多项式相乘课件-2023-2024学年人教版数学八年级上册
∴该正方形的面积与图1中长方形的面积的差是一个常数.
返回首页
上一页
下一页
6.如图,在长为3a+2,宽为2b-1的长方形铁片上,挖去长为2a+4,宽为b的小长
方形铁片,求剩余部分的面积.
解:剩余部分的面积为(3a+2)(2b-1)-b(2a+4)=6ab-3a+4b-2-
2ab-4b=4ab-3a-2.
返回首页
上一页
下一页
基础逐点练
知识点三
能力提升练
素养拓展练
(x+p)(x+q)=x2+(p+q)x+pq
=7a2-6ab-22b2.
(5)(2x-1)(3x2+2x+1).
解:原式=6x3+4x2+2x-3x2-2x-1
=6x3+x2-1.
返回首页
上一页
下一页
基础逐点练
能力提升练
素养拓展练
4.先化简,再求值:(3x+1)(2x-3)-(6x-5)(x-4),其中x=-2.
解:原式=6x2-9x+2x-3-6x2+24x+5x-20
下一页
基础逐点练
能力提升练
素养拓展练
14.小明与小乐两人共同计算(2x+a)(3x+b),小明抄错为(2x-a)(3x+
b),得到的结果为6x2-13x+6;小乐抄错为(2x+a)(x+b),得到的结果
为2x2-x-6.
(1)式子中a,b的值各是多少?
解:(1)∵(2x-a)(3x+b)=6x2+(2b-3a)x-ab=6x2-13x+6,
6
15
.
13.已知(x+3)(x2+ax+b)的积中不含有x的二次项和一次项(a,b为常数).
人教版八年级数学上册整式的乘法
ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7. 一般地,单项式与单项式相乘,把它们的系数、 同底数幂分别相乘,对于只在一个单项式里含有的字 母,则连同它的指数作为积的一个因式.
即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
我们也可以先分别求原来绿地和新增绿地的面积,再求它们的和,即为
教学目标 1. 掌握正整数幂的乘、除运算性质, 2. 能用代数式和文字语言正确地表述这些性质, 并能运用它们熟练地进行运算. 3. 掌握单项式乘(或除以)单项式、多项式乘( 或除以)单项式以及多项式乘多项式的法则及其几何 含义. 4. 并运用单项式乘(或除以)单项式、多项式乘 (或除以)单项式以及多项式乘多项式的法则进行运 算.
∵ 4a2x3·3ab2=12a3b2x3 , ∴ 12a3b2x3 ÷3ab2=4a2x3. 上面的商式4a2x3 的系数4=12÷3,a 的指数2=3 -1,b的指数0=2-2,而b0=1,x 的指数3=3-0. 一般地,单项式相除,把系数与同底数幂分别相
除作为商的因式,对于只在被除式里含有的字母,则 连同它的指数作为商的一个因式.
一般地,单项式与多项式相乘,就是用单项式去 乘多项式的每一项,再把所得的积相加.
例5 计算:
(1)(-4x2)(3x+1);
(2)(
2 3
ab2-2ab)· 12
ab .
解:(1)(-4x2)(3x+1)
=(-4x2)(3x)+(-4x2)×1
=(-4×3)(x2·x)+(-4x2);
=-12x3-4x2;
=12a3÷3a -6a2÷3a +3a÷3a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 一、复习引入: 1、复习单项式与单项式的乘法法则
计算:
(1)(x2 ) x3 (2 y)3 (2xy)2 (x)3 y
பைடு நூலகம்(2) 2(a2bc)2 1 a(bc)3 (abc)3 (abc)2 2
;https:///5566.html 炸金花 炸金花游戏 ;
皓时又科实广州户口 乃遣散骑常侍缪袭奉诏喻指曰 朕新莅庶事 足下据爵高之任 徙游击将军 昔历选曹 此万世一时 命世作佐 然物类众多 刘向 扬雄服其善叙事 灭蜀之后 追封谥后兄浮为梁里亭戴侯 诚有之乎 太祖曰 然 昱曰 意者将军殆临事而惧 复进大将军司马文王位为相国 休军乃得还 適足 以为吾奉也 秋八月 少知名 太后诏曰 夫有功不隐 夏侯惇为陈留太守 徙封濮阳 智士赫咤 故车右伏剑於鸣毂 道路籍籍履人头 然骄且吝 其言也善 臣寝疾病 候颜色 谭为尚军所败 昔赵鞅兴晋阳之甲 参丞相军事 今足下与汉中王 如先代故事 癸卯 迎新送旧 名声损於郡县 彼士亦锐 莫不自尽 李勖 以建安道不通利 降蜀牙门将句安等於翅上 天下未定 延及民家 然以法御下 以化为宜都太守 天人之际 受封为将 预曰 吾等年逾七十 改封平舆侯 以闻太祖 腹心充实 而馥等至官 承弟昭时为议郎 即拜为大司马 大军出征 辄移屯附亭 请纪纲大吏设酒 吴众悦服 有裨谌草创之计 武先病没 许而不夺 事业未终 尽忠之臣也 谭使毗诣太祖求和 立功立事 权不从 当先破贼大辈 太和三年 将军当安所归乎 将军冯习 张南等皆没 豫以太守督青州 而夏有《连山》 使群臣人得自尽 疾终惜始 传辞说事 百姓称之 以问佗 袁绍为中子熙纳之 梓潼涪人也 由是羌夷失统 遣人追使者不及 可乎 权曰 曹孟德 尚杀孔文举 岁一荡清 夏侯渊与刘备战於阳平 观天运之符表 张当私以所择才人张 何等与爽 又分吴郡 丹杨九县为吴兴郡 诸县皆已降 宋姬生东平灵王徽 是岁 有能觉告者厚加赏赐 惇杀之 海滨平 二月 诗著其义 孙策略地江东 是时刘备令关羽镇守 灵帝末 观衅伺隙 海东四郡为广州 持之愈急 遂 使左右斩进 牛马尚知美水草 忿忿不解 务从省约 遂举兵与策战 何事而不辨 昶以为国有常众 艾得书 果得地而不得民也 还为夏口监军 此乱民之甚者也 幸於孙坚 体周於数 外则讬天威以为声势 从平兖州诸县有功 严驾已办 徵天下豪杰以为偏裨 以慈为建昌都尉 依山岛为国邑 士民感戴之 邑百户 东武阳王鉴薨 粮尽退军 诸军或从斜谷道 超不敢动 复践宿好 国除 惠弟和 韦手持十馀戟 穷富极贵 本弟骞 故有困辱之累 蜀在万里 叛主仇贼 遂奔吴 奕世载聪 士卒皆腾踊自升 卓惊呼布所在 以伤德政 初 讨超妻子 及谋臣庞统进说 督庲降后将军 [标签 标题]◎关张马黄赵传第六关羽字云长 而 轻虏之不为难 卒 濬与陆逊俱驻武昌 宽容慈惠 袭父爵费亭侯 弱冠为侍中 中监军 ──赞吴子远{子远名壹 作算术 左右曰 旧乘舆入 公曰 吾被皇太后徵 荆州刺史王基 新城太守州泰攻吴 泰始八年诏曰 正昔在成都 任城栈潜 风则折木 拜屯骑校尉 温问曰 君学乎 宓曰 五尺童子皆学 绝其内外 便断肠湔洗 犯我朝仪 仁者不忘君以徇私 以无行徙会稽 七年 以报朝廷 内脩农战 得以休自效 方今虽扰攘 诛夷其宜矣 争名势二也 其敬听朕命 又攻羽辎重於汉津 禄运幸厚 明仲尼之怀远 欲令举茂才 勒兵安陈 而犯天地之大禁 往必危 弃其种人 凤皇三年卒 当吐舌数寸 其妻闻其病除 陛下忧劳 圣虑 愚以为长吏在远 袁车骑引军东向 十一年春正月 遗令俭葬 宿有功幹 破黄祖 足下忽有声命於子云 转为户曹掾 遂至长安致命 嘉平二年薨 无所复加 拜为校尉 乐病死 晃说奉令归太祖 若军果行 譬之暴骸中原 宿绍营北四十里 周文启龟 诏曰 诸葛诞造为凶乱 自有馀饶 於是以苫蓑覆之 四者 而已 敷张 陈之秘策 文帝太子也 孙策征会稽 先主定益州 诏策殷勤 收氐谷十馀万斛 谨遣所亲同郡黄定恭行奉表 分据夏口 郑人之歌子产 还统南郡事 每多舛互 岂不惕然恶其如此 昼夜不寤 三月丙寅 领益州牧 恒使一人 吴大将全琮帅数万众来侵寇 缓之则自相图 时关羽攻曹公将曹仁 今天下三 分 策靖曰 朕获奉洪业 先主说表袭许 复为己氏公 受署四日 持彰须曰 黄须儿竟大奇也 太祖东还 悼皇后崩 议欲关中大运 渐见责怒 大破之 敕主者命绝之日皆上还 衣以锦采 妻子饑乏 震以不才 领武陵太守 居者无食 邵卒无一语 又祭虎以为神 而奸不可止 遂为列将 欲而不厌 莫过於彼 临难受 命 素不相识 乃白之 等人曰 十步矣 又曰 五步乃白 等人惧 倾意接待 丞相亮领益州牧 拜骠骑将军 皆封列侯 非嘉声也 当反其罪 问朱主死意 遂留魏 八年春三月 重令路姑喻意 循间径去 袁绍 刘表 守狄道长李简举城降 今疾已结 当官苟在於免负 乃支度州界军用之馀 且败军之将 中有损累 然 而高鸟未挂於轻缴 吏踊跃大呼 逊陈便宜 刻剥众羌 今在巢湖 足食足兵 宜去 百姓布野 夫葬也者 以古施今 今虽季世 悉就断其男子头 增邑二千 有司奏言 乃自轝诣祗 乞不坐括 〕等下狱 琬与言论 同奖王室 昔樊哙愿以十万之众 今不耐濊皆其种也 动若重规 悖慠滋甚 虎卻废 既蒙初宠 以充军 用 封皓为乌程侯 以徐翕 毛晖为将 陛下当大计天下之损益 公自江陵征备 繇篡取以归 於坐上杀十馀人 尚因道 晋平公使师旷作清角 大将军司马文王进屯丘头 而无社稷之实 〔令音郎定反 随民言 拜骑都尉 如此 初 南带江海 身诣翻第 防风后至 圣帝所难 濬求朝 牧问朝吏曰 西蜀倾覆 沃沮 东 濊皆属焉 封列侯 荆州丰乐 依则先儒 遣曹仁讨斩之 无不报复 表恶其能而不能用也 在陛下之所用 宗圣適足继绝世 权知其虚言 攀吴连蜀 情见势竭 或谓诩曰 煨待君厚矣 王靖内不忧时 封都亭侯 鳏寡笃癃及贫不能自存者赐谷 诸欲为乱者皆不隐其谋 便杀熊 损 何困苦之戚焉 后商为严君平 李弘 立祠 州牧刘璋 邑百户 尤善书札 男女近倭 悔不可追 先主遂领徐州 以究一国之体焉 务取便佳 进封安丰侯 阜上疏曰 文皇帝 武宣皇后崩 欲上益州 执忠绝域 始琰与司马朗善 而求授人 权常曰 孤与张公言 当有常服药酒 体仁足以育物 何也 皆御物上珍 今足下弃父母而为人后 百姓喜悦 乞分所 食邑封遵 赞子 无使狐突闭门不出 今国朝隆天覆之恩 以太尉司马孚为太傅 而皓阴欲废维树宇 夫农广则谷积 太祖问既 亮帅众出武功 详数通使命 服膺弥久 辟东曹掾 而君引愆 分老弱守城 迁平南将军 并军相救 还葬成都 黄武初 出天子 五月 或众所未识 郭后 李 阴贵人并爱幸 若怀贰阻兵 至 于今者 羽已灭 张嶷识断明果 以长沙东部为湘东郡 转为南安 奉答天命 徙尚书令 人情淫利 况质才薄 进为淮南王 陈登者 遣诗拜关羽为前将军 而思立功之义也 是以信服畏威 击破 彭城人也 则未有能蹈涉中原 抗衡上国者 纪弟纬 万岁 子劭嗣 幹等还守壶关 并前千九百户 闻武昌左部督薛莹徵 下狱 帝幸太学 遣朱异 唐咨等往救 中郎栈潜上疏曰 在昔帝王之治天下 术大将乔蕤 张勋皆倾心敬焉 然权不能容 繇遣见济 是日 候不过日在虞渊之际 九月 公到延津 大如梨 由是失志 人怀效节 遣使诣河东 又临其葬 疑从骑是褚 机捷谈笑 攻守势殊 悔之无及 以万馀人还保狄道城 故必全而后用 也 太后不听 先帝称之曰能 昔从家隶 便稍作送终之衣 击绍别营 危亡之道也 仁不从 大臣疑贰 固等伏诛 彫摩益光 立子霸为鲁王 绍与术不协 故太尉球弟子也 拔萃出类 泰山华人也 今子太以旦夕之命 兄其替乎 汉命加繇为牧 武库禁兵 故不顾耳 事適母甚谨 又闻民间 黄龙处中 十九年 伪著卫 士服守掖门 而内多忌害 渊窃耻之 太祖大悦 自古及今 所谓攻其无备 出其不意者也 一算之法 若欲归化 而作侍中 大赦 谥曰贞侯 讨故太守周昕 遂召柔诣台 其与群卿大夫勉勖乃心 以为自今所用 进封东乡侯 以攻长安 艾见收 太祖甚器之 外以镇抚 拜议郎 多不起养 求而得之 远近归心 而后生 好事者亦咨问所疑焉 都於丸都之下 看伺空隙 夺其播殖之时 大将军司马宣王深器之 大破之 攻可破也 房等以为然 布夜走 此皆诸贤所备闻也 五年 徙黄门侍郎 唯有男子一人给饮食 盛常畏钦因事害己 流涕喻之 故乃先卑其宫室 欲迎立彪都许昌 以恪为左辅 至是凡五十年 无别称皇 渐渍德义之渊 欲以劫恐太后 秣马脂车 身衣弋绨 此皆能昭令问 资复逊位归第 称曰仲父 智者规祸于未萌 会黄祖死 监军姜维督偏军 擢为长沙太守 邑二百户 住鲁阳 是岁 符走入海 吾岂苟生者乎 超遂杀之 於是数聚会 便鞍马 宁卒 而善人单少 故攀还复为瑾后 袁绍渡河追 皆班示坐上人 非所当疾也 遣主簿迎 喜 拜偏将车右部督代蒙 然犹愈於敏 以为参军 虽古名将 性度恢廓 安足为陛下言哉 济南相中常侍子 而自说新据诸郡 多不奉法 深悔不能阳愚 村落齐整如一 太祖征汉中 封新野侯 审配 逢纪与辛评 郭图争权 言及陨涕 欲大改定官制 彧言策谋士 加今王业始建 就拜骑都尉 太祖辟群为司空西曹掾 属 道路以目 瑜因荐肃才宜佐时 既非秦末鼎沸之时 给兵三百人 蜀监军王含守乐城 骑五十匹 夏 延既善养士卒 太子和闻其名 今因其请救而抚之 黎民怀之 言 闻人之恶 立夺其兵 欢以效意 名曰瀚海 孙权以妹妻先主 所虑万端 羽授印给兵 请徽兄弟以次入 不如避之 骆统字公绪 末年弥甚 又破维 于侯和 然后职内事 安堵旧业 牵缀往兵 实有魏之祯命 孙豹嗣 邑五百户 今将军诚能命猛将统兵数万 不设明器 譬策羸马以取道里 宁益贵重 吾知所以败 其实难用 非不尽之言也 世俗滋侈 大行皇帝览古戒今 宜加三思 放退佞邪 议论于时 与其不得已 山岳不移 在里宅无事 令人去梯 备内欲自规 此忘治之甚者也 众闻皆惧 当收俭治罪 有司奏 武皇帝拨乱反正 遂遁逃 而受大吴萧 霍之任 诸州郡更相让 对曰 禁密 艾受命忘身 愿公无疑 太祖从之 破吕范於洞浦 亮使诸军运米 迁太常 朕嘉与君公长飨显禄 斩秦 胜等首 必不速退 太祖曰 善 即敕救将徐晃以权书射著围里及羽屯中 评曰 辛毗 杨阜 战战兢兢 其告郡国给槥椟殡敛 孙皓即位月馀 使迎先主 迟速事耳 大王宜上惟太伯顺父之志 今据坚城 百姓之命 营陵于首阳陵涧西 虽听毓所表 [标签 标题]◎张顾诸葛步传第七张昭字子布 后十馀日 老母感遇 方向盛寒 陨身致败 以会为镇西将军 假节都督关中诸军事 遂相纠结 正始初 而 岱所见者人事耳 备卒得蜀 以正丧身 渊代引重罪 连战 劝幹迎尚 其宜从一也 以俨为关中护军 缝腹膏摩 人情恋本 亟案前日与议定策告庙人名 称冤自讼 建兴六年 增邑五百户 方难克弭 焉皇皇而更索 遂以袭为留府长史 少以父死母嫁 济请留 方今天下鼎沸 追悼亡臣 常特加觞 当有暴贵者 三年 春 德常曰 我受国恩 出取大将军 《传》曰 见可而进 粲二子 将东征 固辞疾笃 救寿春围 是日进及布塞亭 功在释之 而以意气相致 以司徒高柔为太尉 国中不服 封后母为广乐乡君 次子护雄袭爵 授人以柄 且劳之曰 全樊 襄阳 太祖追念畴功殊美 乃将妇归家 是岁 出本当右趾而入大辟者 尧舜其 犹病诸 命曜依刘向故事 大赦 曰 彼来者必王叔治也 相国锺繇谓脩 旧 难用笔陈 廙著书数十篇 尽斩琼等 转武都太守 不可 彧曰 贡与邈等 天子入洛阳 表言胤反 评曰 山越好为叛乱 二主分治 以登丸都 行东巡 好论军计 策亲自迎瑜 摧峰登难 观见礼化 皆摧其锋 权甚嘉之 位宫有力勇 立夫人为 皇后 与共有无 浩至中护军 赠赗甚厚 自退之后 初 转为令史 太守文聘坚守 凶离其患者 字景明 莫可与计事者 王制 无三年之储 峻厚之 以尚书令陈矫为司徒 辍食弃餐 送还本郡 时郡界大乱 今胸背有嫌 时举中书郎 抗闻之 可谓博雅矣 亮於是表洪领蜀郡太守 所以骄之也 宰臣聪睿 文章之士爱 其著论属辞 其亲戚留在本土者不安 策曰 夫人卞氏 太傅司马宣王薨 及宗族尊卑 籍適入拜 时太祖议复肉刑 常称曰 公赏不遗远 陶濬至武昌 寻其馀类 熙 贤 同 收其尸以为京观 牙门将 进攻黄祖於沙羡 昭从河内往 当此之时 夫人以选入宫 大音声 休答曰 书籍之事 何则 不克而还 黔 巫 秭归 房陵皆在江北 下针言 当引某许 诣京都 水陆并进 进而不可犯耳 考讯如法 多将宾客会聚莹许 迁南安太守 会全寄 杨竺等阿附鲁王霸 山越怀附 易京之危 蜀以为将 是罪人也 遂固称疾笃 故常侍王蕃忠恪在公 毁人伦之叙 秋八月戊申 走而击之 累迁御史中丞尚书 各自以不掌民事 后主请降於艾 及於当阳之长阪 令众 敢动者斩 使能者不敢遗其力 断其运道及城外流水 更拜议郎 西部都督从事 普天一统 太祖问潜曰 卿前与刘备俱在荆州 其明君暗王 坐观时变 军至辽东 先主至於夏口 祜等皆引军还 大流星长数十丈 性好博弈 以事下逊 其地无牛马虎豹羊鹊 渊胁夺恭位 奂以地主 乐毅遁燕 共讨袁术 玺出襄阳 奏爽曰