整式的乘法练习题38289.

合集下载

整式的乘法练习题及答案

整式的乘法练习题及答案

整式的乘法练习题及答案整式的乘法练习题及答案整式的乘法是数学中的基本运算之一,它在代数中起着重要的作用。

通过乘法运算,我们可以将两个或多个整式相乘,得到一个新的整式。

整式的乘法练习题可以帮助我们巩固和提高整式乘法的技巧。

在本文中,我将为大家提供一些整式的乘法练习题及答案,希望能够对大家的学习有所帮助。

1. 将多项式 (3x + 2y)(4x - 5y) 展开并化简。

解答:(3x + 2y)(4x - 5y) = 3x * 4x + 3x * (-5y) + 2y * 4x + 2y * (-5y)= 12x^2 - 15xy + 8xy - 10y^2= 12x^2 - 7xy - 10y^22. 将多项式 (2a - 3b)(a + 4b) 展开并化简。

解答:(2a - 3b)(a + 4b) = 2a * a + 2a * 4b - 3b * a - 3b * 4b= 2a^2 + 8ab - 3ab - 12b^2= 2a^2 + 5ab - 12b^23. 将多项式 (5x - 2)(3x^2 + 4x - 1) 展开并化简。

解答:(5x - 2)(3x^2 + 4x - 1) = 5x * 3x^2 + 5x * 4x - 5x * 1 - 2 * 3x^2 - 2 * 4x + 2= 15x^3 + 20x^2 - 5x - 6x^2 - 8x + 2= 15x^3 + 14x^2 - 13x + 24. 将多项式 (2x^2 + 3x - 4)(x^2 - 2x + 1) 展开并化简。

解答:(2x^2 + 3x - 4)(x^2 - 2x + 1) = 2x^2 * x^2 + 2x^2 * (-2x) + 2x^2 * 1 + 3x * x^2 + 3x * (-2x) + 3x * 1 - 4 * x^2 - 4 * (-2x) - 4 * 1= 2x^4 - 4x^3 + 2x^2 + 3x^3 - 6x^2 + 3x - 4x^2 + 8x - 4= 2x^4 - x^3 - 8x^2 + 11x - 45. 将多项式 (a + b + c)(a + b - c) 展开并化简。

整式乘法练习题及答案

整式乘法练习题及答案

整式乘法练习题及答案在代数学中,整式乘法是一项重要的基础技能。

通过掌握整式乘法,我们可以解决多种数学问题,包括方程组的解法、因式分解以及多项式的展开等。

本文将提供一些整式乘法的练习题,以及它们的详细解答。

1. 练习题1:计算下列整式的积:(2x + 3)(x^2 - 4x + 5)解答:我们可以使用分配律逐项相乘的方法来计算整式的乘积:(2x + 3)(x^2 - 4x + 5) = 2x * (x^2 - 4x + 5) + 3 * (x^2 - 4x + 5)首先计算第一项:2x * (x^2 - 4x + 5)= 2x * x^2 - 8x^2 + 10x= 2x^3 - 8x^2 + 10x然后计算第二项:3 * (x^2 - 4x + 5)= 3 * x^2 - 12x + 15= 3x^2 - 12x + 15将两项相加得到最终结果:(2x + 3)(x^2 - 4x + 5) = 2x^3 - 8x^2 + 10x + 3x^2 - 12x + 15= 2x^3 - 5x^2 - 2x + 15因此,(2x + 3)(x^2 - 4x + 5)的乘积为2x^3 - 5x^2 - 2x + 15。

2. 练习题2:计算下列整式的积:(3x - 2y)(2x + 5y)解答:同样地,我们可以使用分配律逐项相乘的方法来计算整式的乘积:(3x - 2y)(2x + 5y) = 3x * (2x + 5y) - 2y * (2x + 5y)首先计算第一项:3x * (2x + 5y)= 6x^2 + 15xy然后计算第二项:-2y * (2x + 5y)= -4xy - 10y^2将两项相加得到最终结果:(3x - 2y)(2x + 5y) = 6x^2 + 15xy - 4xy - 10y^2= 6x^2 + 11xy - 10y^2因此,(3x - 2y)(2x + 5y)的乘积为6x^2 + 11xy - 10y^2。

(完整word版)整式的乘法练习题

(完整word版)整式的乘法练习题

整式的乘法练习题(一)填空1.a8=(—a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(—3a)2·(-7ab3)=______.6.(—a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(—mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x—3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n 是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.—{—[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a—b)2[9(a—b)n+2](b—a)5=______(a—b)n+9.20.已知3x·(x n+5)=3x n+1—8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x—x2-1)(x2—x+1)n(x—x2—1)2n=______.25.(4+2x—3y2)·(5x+y2—4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x—z-2|+(3x—6y-7)2+|3y+3z—4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m—2)(m+3)=m2+m-6;C.(y+4)(y—5)=y2+9y—20;D.(x—3)(x—6)=x2—9x+18.31.计算-a2b2·(-ab3)2所得的结果是[]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(—2x3y4)3的值是[ ]A.-6x6y7;B.-8x27y64;C.-8x9y12;D.—6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(—m)(—m)4=-m5.35.(a—b)2n·(b—a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.—(a—b)2n+m;C.(b—a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是[] A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(—2。

整式乘法练习题及答案

整式乘法练习题及答案

整式乘法练习题及答案整式乘法是数学中的一项基础技能,它在代数运算中起着重要的作用。

通过练习整式乘法题目,我们可以加深对整式乘法的理解,并提高解题的能力。

下面,我将为大家提供一些整式乘法的练习题及答案,希望能对大家的学习有所帮助。

1. 计算下列整式的乘积:(2x + 3)(x - 4)解答:(2x + 3)(x - 4) = 2x * x + 2x * (-4) + 3 * x + 3 * (-4) = 2x^2 - 8x + 3x - 12 =2x^2 - 5x - 122. 计算下列整式的乘积:(3a - 2b)(4a + 5b)解答:(3a - 2b)(4a + 5b) = 3a * 4a + 3a * 5b - 2b * 4a - 2b * 5b = 12a^2 + 15ab - 8ab - 10b^2 = 12a^2 + 7ab - 10b^23. 计算下列整式的乘积:(5x^2 + 2xy)(3x - y)解答:(5x^2 + 2xy)(3x - y) = 5x^2 * 3x + 5x^2 * (-y) + 2xy * 3x + 2xy * (-y) = 15x^3 -5x^2y + 6x^2y - 2xy^2 = 15x^3 + x^2y - 2xy^24. 计算下列整式的乘积:(2x^2 - 3xy + 4y^2)(x - 2y)解答:(2x^2 - 3xy + 4y^2)(x - 2y) = 2x^2 * x - 2x^2 * 2y - 3xy * x + 3xy * 2y + 4y^2 *x - 4y^2 * 2y = 2x^3 - 4x^2y - 3x^2y + 6xy^2 + 4xy - 8y^3 = 2x^3 - 7x^2y +6xy^2 + 4xy - 8y^3通过以上的练习题,我们可以看到整式乘法的计算过程。

在计算时,我们需要将每一项都与另一个整式的每一项进行相乘,并根据指数和系数的规则进行合并和整理。

(完整版)整式的乘法习题(含详细解析答案)

(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。

练习题初二数学整式的乘法练习题

练习题初二数学整式的乘法练习题

练习题初二数学整式的乘法练习题一、计算下列各题:1. $(x+2)(x-3)$解:使用分配律进行展开计算,得:$(x+2)(x-3) = x(x-3) + 2(x-3) = x^2-3x+2x-6 = x^2-x-6$2. $(2a-3b)(a+4b)$解:同样使用分配律展开计算,得:$(2a-3b)(a+4b) = 2a(a+4b) - 3b(a+4b) = 2a^2+8ab-3ba-12b^2 =2a^2+5ab-12b^2$3. $(3x-4y)(2x+5y)$解:应用分配律展开计算,得:$(3x-4y)(2x+5y) = 3x(2x+5y) - 4y(2x+5y) = 6x^2+15xy-8xy-20y^2 = 6x^2+7xy-20y^2$4. $(a+2)(3a-5)$解:继续运用分配律进行展开计算,得:$(a+2)(3a-5) = a(3a-5) + 2(3a-5) = 3a^2-5a+6a-10 = 3a^2+a-10$5. $(2x+3)(x-4)$解:使用分配律展开计算,得:$(2x+3)(x-4) = 2x(x-4) + 3(x-4) = 2x^2-8x+3x-12 = 2x^2-5x-12$二、根据题意列式计算下列题目:1. 一个矩形的长是$x+3$,宽是$x-2$,求面积。

解:矩形的面积可以通过长乘以宽来计算,所以应用乘法运算的规则得:面积 = 长×宽 = $(x+3)(x-2)$使用分配律展开计算得:面积 = $x^2-x+3x-6 = x^2+2x-6$2. 一片长方形花田的长是$2a+5$,宽是$3a-2$,求面积。

解:同样应用乘法的规则进行计算,得:面积 = 长×宽 = $(2a+5)(3a-2)$使用分配律展开计算得:面积 = $6a^2+15a-4a-10 = 6a^2+11a-10$3. 一个正方形的边长是$4x-5$,求面积。

解:正方形的面积可以通过边长乘以边长来计算,所以得:面积 = 边长×边长 = $(4x-5)(4x-5)$使用分配律展开计算得:面积 = $16x^2-20x-20x+25 = 16x^2-40x+25$4. 一片田地的长是$a+3$米,宽是$2a-4$米,求面积。

初二整式的乘法练习题及答案

初二整式的乘法练习题及答案

初二整式的乘法练习题及答案乘法作为数学中的基本运算之一,在初中阶段是非常重要的一部分。

掌握整式的乘法运算是学习代数的基础,对于提高数学能力和解决实际问题都具有重要的作用。

为了帮助初二学生更好地掌握整式的乘法运算,下面将提供一些乘法练习题及其答案。

1. 计算下列乘法:(1) $(2a + 3b)(4c - 5d)$(2) $(3x - 2y)(-5x + 7y - 1)$(3) $(5p - q)(-2p + 3q)$解答:(1) $(2a + 3b)(4c - 5d)$ = $2a \cdot 4c + 2a \cdot (-5d) + 3b \cdot 4c +3b \cdot (-5d)$= $8ac - 10ad + 12bc - 15bd$(2) $(3x - 2y)(-5x + 7y - 1)$ = $3x \cdot (-5x) + 3x \cdot 7y + 3x \cdot (-1) - 2y \cdot (-5x) - 2y \cdot 7y - 2y \cdot (-1)$= $-15x^2 + 21xy - 3x + 10xy - 14y^2 + 2y$= $-15x^2 + 31xy - 3x - 14y^2 + 2y$(3) $(5p - q)(-2p + 3q)$ = $5p \cdot (-2p) + 5p \cdot 3q - q \cdot (-2p) - q \cdot 3q$= $-10p^2 + 15pq + 2pq - 3q^2$= $-10p^2 + 17pq - 3q^2$2. 化简下列乘法:(1) $2m \cdot (4m^2 - 3mn + 5n^2)$(2) $(-3a^2b) \cdot (2ab^2 - 5a^2)$(3) $(x - y)^2$解答:(1) $2m \cdot (4m^2 - 3mn + 5n^2)$ = $2m \cdot 4m^2 - 2m \cdot 3mn + 2m \cdot 5n^2$= $8m^3 - 6m^2n + 10mn^2$(2) $(-3a^2b) \cdot (2ab^2 - 5a^2)$ = $-3a^2b \cdot 2ab^2 - 3a^2b \cdot 5a^2$= $-6a^3b^3 + 15a^4b$(3) $(x - y)^2 = (x - y)(x - y)$= $x^2 - xy - xy + y^2$= $x^2 - 2xy + y^2$3. 利用乘法公式进行计算:(1) $(-2x + 1)(2x + 3)$(2) $(a - 4)(a + 4)$(3) $(5 - 3x)(5 + 3x)$解答:(1) $(-2x + 1)(2x + 3)$ = $(-2x)(2x) + (-2x)(3) + (1)(2x) + (1)(3)$= $-4x^2 - 6x + 2x + 3$= $-4x^2 - 4x + 3$(2) $(a - 4)(a + 4)$ = $(a)(a) + (a)(4) + (-4)(a) + (-4)(4)$= $a^2 + 4a - 4a - 16$= $a^2 - 16$(3) $(5 - 3x)(5 + 3x)$ = $(5)(5) + (5)(3x) + (-3x)(5) + (-3x)(3x)$= $25 + 15x - 15x - 9x^2$= $25 - 9x^2$通过以上乘法练习题,我们可以更好地理解和掌握初二整式的乘法运算。

整式的乘法练习题

整式的乘法练习题

整式的乘法练习题1. 问题描述本文档将提供一系列整式的乘法练习题,以帮助读者加深对整式乘法的理解和应用。

在每个习题中,读者将需要计算给定整式的乘积,并简化结果。

每个习题的答案将在习题后面提供,以方便读者对照和核对自己的答案。

2. 习题列表2.1 习题一计算以下整式的乘积,并简化结果:(2x+3)(3x+5)习题一答案:首先,我们可以使用分配律将乘法展开:$$ (2x + 3)(3x + 5) = 2x \\cdot 3x + 2x \\cdot 5 + 3 \\cdot 3x + 3 \\cdot 5 $$ 化简后得到:(2x+3)(3x+5)=6x2+10x+9x+15合并同类项后得到最简结果:(2x+3)(3x+5)=6x2+19x+152.2 习题二计算以下整式的乘积,并简化结果:(4y+1)(2y−3)习题二答案:使用分配律将乘法展开:$$ (4y + 1)(2y - 3) = 4y \\cdot 2y + 4y \\cdot -3 + 1 \\cdot 2y + 1 \\cdot -3 $$ 化简后得到:(4y+1)(2y−3)=8y2−12y+2y−3合并同类项后得到最简结果:(4y+1)(2y−3)=8y2−10y−32.3 习题三计算以下整式的乘积,并简化结果:(5a−2)(4a+7)习题三答案:使用分配律将乘法展开:$$ (5a - 2)(4a + 7) = 5a \\cdot 4a + 5a \\cdot 7 - 2 \\cdot 4a - 2 \\cdot 7 $$化简后得到:(5a−2)(4a+7)=20a2+35a−8a−14合并同类项后得到最简结果:(5a−2)(4a+7)=20a2+27a−143. 结语通过以上习题的练习,我们可以更好地理解和掌握整式的乘法运算。

整式的乘法是代数学中的基本运算,我们在解决各种数学问题时都会经常用到。

希望本文档提供的习题能帮助读者加深对整式乘法的理解,并提高在实际问题中运用整式乘法的能力。

整式的乘法练习题八年级

整式的乘法练习题八年级

整式乘法练习题八年级一、单项式乘单项式1. 计算:3x × 4x2. 计算:2a × 5b3. 计算:(1/2)m × (4)n4. 计算:5xy × (3x^2)5. 计算:4ab^2 × 2a^2b二、单项式乘多项式1. 计算:3x(2x 5y + 4)2. 计算:2a(a^2 + 3a 2)3. 计算:4xy(3x^2y 2xy + 5)4. 计算:3m^2(2m^3 4m^2 + 5m)5. 计算:5ab(3a^2b 4ab + 2b^2)三、多项式乘多项式1. 计算:(x + 3)(x 4)2. 计算:(2a 5b)(3a + 4b)3. 计算:(3x 2y + 1)(x + y 1)4. 计算:(a^2 + 2ab 3b^2)(2a b)5. 计算:(4m^2 3mn + 2n^2)(2m^2 + 5mn 3n^2)四、平方差公式1. 计算:(x + 5)^22. 计算:(2a 3b)^23. 计算:(3x + 4y)^24. 计算:(m 2n)^25. 计算:(4ab + 5c)^2五、完全平方公式1. 计算:(x 3)(x + 3)2. 计算:(2a + 5b)(2a 5b)3. 计算:(3x 2y)(3x + 2y)4. 计算:(m + 4n)(m 4n)5. 计算:(ab 6c)(ab + 6c)六、综合运用1. 计算:(x + 2y)(x 2y + 3)2. 计算:(3a 4b)(2a + 3b 5)3. 计算:(4x^2 3y^2)(2x^2 + 5y^2)4. 计算:(a + 2b 3c)(a 2b + 3c)5. 计算:(5m^2 + 4mn 6n^2)(3m^2 2mn + 4n^2)七、分配律的应用1. 计算:2x(3x + 4y 5) + 3(2x y)2. 计算:4a(5a 2b + 3c) 2(3a b + 2c)3. 计算:3x(2x^2 4xy + 5y^2) + x(4x^2 3xy)4. 计算:5m(2m^2 3mn + 4n^2) 2m(3m^2 4mn)5. 计算:7ab(3a^2 2ab + 5b^2) 4a(2a^2 3b^2)八、因式分解与乘法结合1. 计算:(x + 2)(x 2)(x + 3)2. 计算:(2a + 3b)(2a 3b)(a + 4b)3. 计算:(3x 4)(3x + 4)(x 2)4. 计算:(m + n)(m n)(2m + n)5. 计算:(ab + 5)(ab 5)(2ab + 3)九、特殊乘法1. 计算:(x + 1)(x + 2)(x + 3)2. 计算:(2a 1)(2a + 1)(2a 3)3. 计算:(3x + 4)(3x 4)(x + 6)4. 计算:(m 2)(m + 2)(m 4)5. 计算:(ab 3)(ab + 3)(ab 5)十、实际应用题1. 一个长方形的长是x米,宽是y米,求它的面积。

整式乘法计算专题训练(含答案)

整式乘法计算专题训练(含答案)

整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算: a3·a5+(-a2)4-3a87、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2•(﹣a)5•(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2•(xy)3;16、17、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2•a421、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2•a5•a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2•(xy)3=4x2y4•x3y3=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x 2+7x+12﹣x 2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18、(a+2b )(3a ﹣b )﹣(2a ﹣b )(a+6b )=3a 2﹣ab+6ab ﹣2b 2﹣2a 2﹣12ab+ab+6b 2=a 2﹣6ab+4b 219、原式=3x 2﹣3xy ﹣2x 2﹣xy+y 2=x 2﹣4xy+y 2;20、(﹣a 2)3﹣6a 2•a 4=﹣a 6﹣6a 6=﹣7a 6;21、(y ﹣2)(y+2)﹣(y+3)(y ﹣1)=y 2﹣4﹣y 2﹣2y+3=﹣2y ﹣1;22、==2a 6b 5c 5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y] =(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、。

初二数学整式的乘法练习题

初二数学整式的乘法练习题

初二数学整式的乘法练习题整式是指只包含常数、变量、加法、减法和乘法运算的数学表达式。

在初二数学中,掌握整式的乘法运算是非常重要的一部分。

下面是一些初二数学整式的乘法练习题,希望能帮助同学们巩固和提高乘法运算的能力。

1. 计算下列乘法:(1)$(2a + 3b)(4a - 5b)$(2)$(3x^2 - 2)(x^2 + 5)$(3)$(2m^3 - 4m)(m^2 + 6)$2. 计算下列乘法:(1)$(2x - 3)(x + 4)$(2)$(3y^2 + 2)(y^2 - 5)$(3)$(5z^3 - 2z)(2z^2 + 1)$3. 计算下列乘法:(1)$(2p^2 + 3p + 4)(p^2 - 2p + 1)$(2)$(4q^3 - 2q^2 + 3q - 4)(3q^2 + 2q - 1)$(3)$(5r^4 + 2r^2 + 1)(2r^3 - r + 3)$4. 计算下列乘法:(1)$(3a + 4b)(a - 2b)$(2)$(5x^2 + 2x - 3)(2x^2 - 3x + 4)$(3)$(2m^3 - 3m^2 + 4m - 5)(m^2 + 2m - 1)$5. 计算下列乘法:(1)$(2n^2 - 3n + 4)(3n^2 + 4n + 5)$(2)$(4x^3 - 5x^2 + 2x - 3)(x - 1)$(3)$(y^4 - 2y^3 + 3y^2 - 4y + 5)(3y^3 + 2y^2 + y - 1)$通过以上的乘法练习题,同学们可以加深对初二数学整式乘法运算的理解,并提高乘法运算的能力。

希望同学们能够认真思考每道题目,理清乘法运算的步骤,快速、准确地得出答案。

写完以后别忘了检查答案,确保计算结果无误。

如果答案有错误,可以仔细检查自己的计算过程,找出错误所在,及时纠正。

乘法运算是数学学习中的基础技能之一,在解决实际问题和理论推导中都有广泛的应用。

通过大量的练习,可以提高我们的计算能力和思维逻辑能力,为以后学习更复杂的数学内容打下坚实的基础。

《整式的乘法》测试题含答案(2021年整理精品文档)

《整式的乘法》测试题含答案(2021年整理精品文档)

(完整版)《整式的乘法》测试题含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)《整式的乘法》测试题含答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)《整式的乘法》测试题含答案的全部内容。

1.6 整式的乘法(总分100分 时间40分钟)一、填空题:(每题3分,共27分)1.(—3xy)·(—x 2z )·6xy 2z=_________。

2。

2(a+b )2·5(a+b )3·3(a+b )5=____________。

3.(2x 2—3xy+4y 2)·(-xy )=_________.4.3a (a 2—2a+1)—2a 2(a —3)=________.5。

已知有理数a 、b 、c 满足│a-1│+│a+b │+│a+b+c —2│=0,则代数式(—•3ab )。

(-a 2c )。

6ab 2的值为________。

6.(a+2)(a-2)(a 2+4)=________。

7。

已知(3x+1)(x-1)—(x+3)(5x-6)=x 2-10x+m ,则m=_____.8。

已知ax 2+bx+1与2x 2—3x+1的积不含x 3的项,也不含x 的项,那么a=•_______,b=_____. 9。

123221123221()()n n n n n n n a a a b a b ab b b a a b a b ab b ----------+++++-+++++=____________. 二、选择题:(每题4分,共32分)10。

若62(810)(510)(210)10a M ⨯⨯⨯=⨯,则M 、a 的值可为( )A.M=8,a=8 B 。

整式的乘法计算题专项训练(精心整理、很全)

整式的乘法计算题专项训练(精心整理、很全)

整式的乘法计算题专项训练(精心整理、很全)1、填空:(1)=⋅53x x ; =⋅⋅32a a a ; =⋅2x x n ;(2)=-⋅-32)()(a a ;=⋅⋅b b b 32 ⋅2x =6x ;(3)=⋅-32)(x x ;=⋅10104 ;=⨯⨯32333 ;(4)34a a a ⋅⋅ = ; ()()()53222--- = ;(5)()()()352a a a -⋅-⋅-- = ;(1)32a a ⋅=___________;(6)()=-⋅-⋅-62)()(a a a ;m m m m2543∙∙∙= ;(7)=-⋅-43)()(a b a b ;=⋅2x x n ;(8)=⎪⎭⎫ ⎝⎛-⨯-6231)31( ;=⨯4610102、简单计算:(1)=⋅64a a (2)=⋅5b b (3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c 3.计算:(1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32 (10)=--⋅54)2()2( 4.下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+; (3)n n n y y y 22=⨯; (4)22m m m =⋅; (5)422)()(a a a =-⋅-; (6)1243a a a =⋅; 二、幂的乘方:幂的乘方,底数不变,指数相乘.即:(a m)n=a mn1、填空:(1) )2(24-=___________ (2) )3(32-=___________(3))2(22-=___________ (4))2(22-=___________(5))(77m = ___________ (6))(335mm = ___________ 2、计算 : (1)(22)2;(2)(y 2)5 (3)(x 4)3 (4))(3bm -(4)(y 3)2 • (y 2)3(5))()(45a a a --∙∙ (6)xx x 72)(23-∙三、积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n =a n b n1、填空:(1)(2x )2=___________(ab )3 =_________(ac)4. =__________ (2)(-2x )3=___________)2(22a-=_________)(42a =_________(3))2(23b a - =_______)2(422ba -=_________(4)(xy 3)2=_________(5)__________)(=ab n(6))(__________)(为正整数n abc n= (7)__________3212)(3=-b a(8)__________333)(=--ba ab (9)__________2)3(2=-y x(9)________3)(3=b a nn )(23b an=___________(10) ________32)(3=-y x ___________23)(2=-y x2、计算:(1)(3a )2(2)(-3a )3(3)(ab 2)2(4)(-2×103)3(5)(103)3(6)(a 3)7 (7)(x 2)4; (8)(a 2)• 3 • a 53、选择题:(1)下列计算中,错误的是( )A b a b a 642)(32= B y x y x4429)3(22=Cyx y x 33)(--= D n m nm 462)(23=-(2)下面的计算正确的是( ) A m m m532=∙ B m m m 532=+C nm n m 2523)(= D222mnn m=∙四、整式的乘法1、单项式乘单项式1、2(3)x -·32x 2、33a ·44a 3、54m ·23m 4、23(5)a b 2(3)a -5、2x ·x ·5x6、(3)x -·2xy7、24a ·23a 8、2(5)a b -·(3)a -9、3x ·53x 10、34b c ·12abc 11、32x ·2(3)x - 12、4y ·2(2)xy -13、2(3)x y -·21()3xy 14、4(210)⨯·5(410)-⨯ 15、47x ·32x16、433a b ·232(4)a b c - 17、19、2x ·232()y xy -18、23(5)a b ·23()ab c - 19、3(2)a -·2(3)a - 20、5m -·42(10)m - 21、3m nx +-·4m nx- 22、23(3)x y ·(4)x - 23、24ab ·21()8a c -24、(5)ax -·22(3)x y 25、242()m a b -·2()mab - 26、54x y ·232()x y z -27、33(3)a bc -·22(2)ab - 28、4()3ab -·2(3)ab - 29、3(2)x ·2(5)xy -30、34322(2)()x y x yc -- 31、24xy ·233()8x yz - 32、32(2)ab c -·2(2)x33、232(3)a b -·33(2)ab c - 34、323331()(2)73a b a b c - 35、2(4)x y -·22()x y -·31()2y36、24xy ·32(5)x y -·2(2)x y - 37、22(2)x y -·1()2xyz -·3335x z38、1()2xyz -·2223x y ·33()5yz - 39、26m n -·3()x y -·2()y x -40、221()2ab c ·231()3abc -·31()2a 41、、2xy ·221()2x y z -·33(3)x y - 42、331()2ab -·1()4ab -·222(8)a b - 43、26a b ·3()x y -·213ab ·2()y x -44、2(4)x y -·22()x y -·312y二、单项式乘多项式:(利用乘法分配率,转变为单项式乘单项式,然后把结果相加减) 1、2(34)m x y + 2、11()22ab ab + 3、2(1)x x x -- 4、22(321)a a b +-5、23(21)x x x -- 6、4(3)x x y - 7、()ab a b + 8、6(21)x x +9、(1)x x + 10、3(52)a a b - 11、3(25)x x -- 12、212()2x x -13、2323(2)a a b a - 14、(3)(6)x y x -- 15、22()x x y xy - 16、2(4)(2)a b b --17、2(31)(2)x x -+- 18、(2)a -·31(1)4a - 19、2323()(21)2x x x -+-20、22(2)3ab ab -·12ab 21、224(35)m m n mn -+ 22、2(3)(22)ab a b ab --+23、5ab ·(20.2)a b -+ 24、224(2)39a a --·(9)a - 25、23(251)x x x ---26、22(1)x x x --+ 27、2x ·21(1)2x - 28、2123()33x x +29、24(231)a a a -+- 30、22(3)(21)x x x --+- 31、25(1)xy x y +-32、212(3)2x y xy y -+ 33、2223(34)xy x y xy -- 34、223()ab a b ab ab -+35、22(232)ab a ab a -+ 36、213a b -·22(639)a ab b -+ 37、321(248)()2x x x ----38、322(356)x x x --- 39、3223(36)4a b c ac -+·13ab40、(1)2(1)3(25)x x x x x x +++--41、()()()a b c b c a c a b ---+- 42、223121(3)()232x y y xy +--43、221(2)2x y xy y -+·(4)xy - 43、2325101(1)()335a b a b ab -+-44、、221(2)(4)2x y xy y xy -+-三、多项式乘多项式:(转化为单项式乘多项式,然后在转化为单项式乘单项式) 1、(31)(2)x x ++ 2、(8)()x y x y -- 3、(1)(5)x x ++ 4、(21)(3)x x ++5、(2)(3)m n m n +-6、(3)(3)a b a b +-7、2(21)(4)x x -- 8、2(3)(25)x x +-9、(2)(3)x x ++ 10、(4)(1)x x -+ 11、(4)(2)y y +- 12、(5)(3)y y --13、()()x p x q ++ 14、(6)(3)x x -- 15、11()()23x x +- 16、(32)(2)x x ++17、(41)(5)y y -- 18、2(2)(4)x x -+ 19、(4)(8)x x -- 20、(4)(9)x x ++21、(2)(18)x x -- 22、(3)()x x p ++ 23、(6)()x x p -- 24、(7)(5)x x ++25、(1)(5)x x ++ 26、11()()32y y +- 27、(2)(3)a b a b -+ 28、(3)(23)t t +-29、2(45)(2)x xy x y +- 30、(3)(34)y y -+ 31、(3)(2)x x +- 32、(2)(2)a b a b +-33、(23)(3)x x +- 34、(3)()x x a ++ 35、(1)(3)x x -+ 36、(2)(2)a b --37、(32)(23)x y x y ++ 38、(6)(1)x x +- 39、(3)(34)x y x y -+ 40、(2)(1)x x -+-41、(23)(32)x y x y +- 42、2(1)(1)x x x -++ 43、22()()a b a ab b +-+44、22(321)(231)x x x x +++- 45、22()()a b a ab b -++46、22()()x xy y x y ++-47、22()()x a x ax a -++ 48、22()()x y x xy y -++ 49、4242(331)(2)x x x x -++-50、22()()x y x xy y +-+四、平方差公式和完全平方公式1、(1)(1)x x +-2、(21)(21)x x +-3、(5)(5)x y x y +-4、(32)(32)x x +-5、(2)(2)b a a b +-6、(2)(2)x y x y -+--7、()()a b b a +-+8、()()a b a b ---9、(32)(32)a b a b +- 10、5252()()a b a b -+ 11、(25)(25)a a +-12、(1)(1)m m --- 13、11()()22a b a b --- 14、(2)(2)ab ab --- 15、10298⨯ 16、97103⨯17、4753⨯ 18、22()()()a b a b a b +-+ 19、(32)(32)a b a b +-20、(711)(117)m n n m --- 21、(2)(2)y x x y --- 22、(4)(4)a a +-+23、(25)(25)a a -+ 24、(3)(3)a b a b +- 25、(2)(2)x y x y +-完全平方:1、2(1)p + 2、2(1)p - 3、2()a b - 4、2()a b + 5、2(2)m +6、2(2)m -7、2(4)m n + 8、21()2y - 9、2(3)x y - 10、2(2)a b --11、21()a a+ 12、2(52)x y -- 13、2(2)a b - 14、21()2x y - 15、2(23)a b +16、2(32)x y - 17、2(2)m n -- 18、2(22)a c + 19、2(23)a -+ 20、21(3)3x y +21、2(32)a b + 22、222()a b -+ 23、22(23)x y -- 24、2(1)xy - 25、222(1)x y -五、同底数幂的除法:底数不变,指数相减。

八年级数学《整式的乘法》测试题(K12教育文档)

八年级数学《整式的乘法》测试题(K12教育文档)

八年级数学《整式的乘法》测试题(word版可编辑修改) 八年级数学《整式的乘法》测试题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学《整式的乘法》测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学《整式的乘法》测试题(word版可编辑修改)的全部内容。

12八年级数学(上)整式的乘法单元测试题一、选择题(每题3分,共30分)1、 下列计算中正确的是( )A 、()6623333-y x y x = B 、20210a a a =⋅C 、()()162352m m m=-⋅- D 、1263428121y x y x -=⎪⎭⎫⎝⎛-2、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-8 3、(-a +1)(a +1)(a 2+1)等于( )A 、a 4-1B 、a 4+1C 、a 4+2a 2+1D 、1-a 44、下列运算正确的是 ( ). A 。

236x x x = B. 2242x x x+= C 。

22(2)4x x -=-D .358(3)(5)15a a a --=5、如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ).A .14ac B .214a c C .294a c D .94ac6、计算233[()]()a b a b ++的正确结果是( ). A .8()a b + B .9()a b + C .10()a b + D .11()a b +7、长方形的长为(a -2)cm ,宽为(3a +1) cm ,那么它的面积是多少?( ).A .2(352)a a cm --B .2(352)a a cm -+C .2(352)a a cm +-D .2(32)a a cm +-8、下列关于301300)2(2-+的计算结果正确的是 ( ). A .3003013003016012(2)(2)(2)(2)+-=-+-=- B .1301300301300222)2(2-=-=-+C .300300300301300301300222222)2(2-=⨯-=-=-+D .601301300301300222)2(2=+=-+9、下列各式中,计算结果是2718x x +-的是 ( ).A .(1)(18)x x -+B .(2)(9)x x -+C .(3)(6)x x -+D .(2)(9)x x ++10.下列各式,能够表示图中阴影部分的面积的是( ).3①()at b t t +- ②2at bt t +- ③()()ab a t b t --- ④2()()a t t b t t t -+-+A .只有① B.①和② C.①、②和③ D .①、②、③、④二、填空题(每空2分,共20分)1、a 2·a 5=2、(3a 2)3=3、(—b )2·b 3=_______4、a m ·a 2m =______________5、〔(-x )2〕3=6、若x ﹒x 2﹒x n =2008x ,则n =_________.7、(2a-b)(—2ab)=__________ 8、(-a 2)3﹒(-a 3)2=_________9、如果2423)(a a a x =⋅,则______=x .10、计算:(12)(21)a a ---= .三、计算:(每小题4分,共24分)(1)3243-ab c 2⎛⎫ ⎪⎝⎭ (2)()2232315x y-xy -y -4xy 426⎛⎫⎪⎝⎭(3)、(-6a 2b 5c)÷(-2ab 2)2 (4)、(—6x 2)2+(—3x )3﹒x(5)、(3x —y+4)(3x —y-4) (6)、(-2x 2)﹒(-y)+3xy(1—2x)五、先化简,再求值:(每小题6分,共18分)1、(3x 4-2x 3)÷(-x)—(x —x 2)﹒3x ,其中x=— 12-42、〔(ab+1)(ab-2)—2a2b 2+2〕÷(-ab ) 其中a=32b=—433、)52)(13()1(2)1(---++-x x x x x x ,其中2=x .六、解方程:(8分)1. 2(10)(8)(4)100x x x +-=+-2。

初二数学整式的乘法练习题

初二数学整式的乘法练习题

初二数学整式的乘法练习题1. 计算下列各题。

(1) $(3x-2)(4x+5)$(2) $(2a+3b)(a-4b)$(3) $(5x+2)(2x-3)-(3x-1)(2x-3)$(4) $(x-2)(x+3)-(2x-1)(x-3)$2. 解下列各题。

(1) 如果 $(3x-2)(a+1)=21x-4$,求 $a$ 的值。

(2) 如果 $(2x+1)(bx-2)=10x^2-3$,求 $b$ 的值。

(3) 如果 $(2x-1)(x+3)-(x-4)(x+2) = 12$,求 $x$ 的值。

(4) 如果 $(3a-1)(2a+x)=18a^2-3ax+2$,求 $x$ 的值。

3. 完成下列各题。

(1) 将 $(5x+2)(2x-3)$ 展开并整理答案。

(2) 将 $(2x-1)(3-x)$ 展开并整理答案。

(3) 将 $(a+3b)(a-b)$ 展开并整理答案。

(4) 将 $(4x+1)(2+x)$ 展开并整理答案。

4. 你能找到一组整数解 $(x,y)$,使得 $(x+y)(x-y)=63$ 吗?如果可以,请给出一个解,并说明你的思路。

5. 现在你来出两个类似的乘法练习题,并给出详细解答。

本文主要介绍了初二数学中整式的乘法练习题,旨在帮助同学们巩固和提高整式乘法的运算能力。

通过解决各式各样的乘法练习题,同学们可以更好地理解整式的乘法运算规律,熟练掌握展开整式以及解方程等相关技巧。

【题目一】计算下列各题。

(1) $(3x-2)(4x+5)$解:展开式为 $12x^2+7x-10$(2) $(2a+3b)(a-4b)$解:展开式为 $2a^2-5ab-12b^2$(3) $(5x+2)(2x-3)-(3x-1)(2x-3)$解:化简可得 $(5x+2-3x+1)(2x-3) = (2x+3)(2x-3) = 4x^2-9$(4) $(x-2)(x+3)-(2x-1)(x-3)$解:化简可得 $(x-2-2x+3)(x-3) = (-x+1)(x-3) = -x^2+4x-3$【题目二】解下列各题。

整式乘法练习题初二纯计算

整式乘法练习题初二纯计算

整式乘法练习题初二纯计算在初二的数学学习中,整式乘法是一个非常重要的知识点。

通过大量的习题练习,可以帮助学生熟练掌握整式乘法的计算方法,提高计算效率和准确性。

本文将为大家提供一些初二纯计算的整式乘法练习题,希望能够帮助大家更好地理解整式乘法。

练习题一:计算以下整式的乘积1. (2x + 3)(3x + 4)2. (4x - 5)(x - 6)3. (3a + 2b)(a - b)4. (5x^2 - 2)(3x + 1)5. (2x^2 + 3y^2)(x - y)解答:1. (2x + 3)(3x + 4) = 2x * 3x + 2x * 4 + 3 * 3x + 3 * 4= 6x^2 + 8x + 9x + 12= 6x^2 + 17x + 122. (4x - 5)(x - 6) = 4x * x + 4x * (-6) - 5 * x - 5 * (-6)= 4x^2 - 24x - 5x + 30= 4x^2 - 29x + 303. (3a + 2b)(a - b) = 3a * a + 3a * (-b) + 2b * a + 2b * (-b)= 3a^2 - 3ab + 2ab - 2b^2= 3a^2 - ab - 2b^24. (5x^2 - 2)(3x + 1) = 5x^2 * 3x + 5x^2 * 1 - 2 * 3x - 2 * 1= 15x^3 + 5x^2 - 6x - 25. (2x^2 + 3y^2)(x - y) = 2x^2 * x + 2x^2 * (-y) + 3y^2 * x - 3y^2 * y= 2x^3 - 2x^2y + 3xy^2 - 3y^3通过以上习题的计算,我们可以发现整式乘法的计算方法其实并不复杂。

将每个项按照指数的大小进行相乘,并按照规定的符号进行运算,最后将所有的项相加或减即可得到整式的乘积。

希望以上练习题对大家的数学学习有所帮助,通过反复的练习和理解,相信大家一定能够熟练掌握整式乘法的计算方法,提高数学成绩。

整式的乘法练习题八年级

整式的乘法练习题八年级

整式的乘法练习题八年级一、选择题1. 已知 \( a^{3} \cdot a^{2} = a^{5} \),那么 \( a^{4} \cdota \) 等于:A. \( a^{3} \)B. \( a^{4} \)C. \( a^{5} \)D. \( a^{6} \)2. 计算 \( (-3x)^{2} \) 的结果,正确的是:A. \( -9x^{2} \)B. \( 9x \)C. \( 9x^{2} \)D. \( -9x^{4} \)3. 多项式 \( (x+y)(x-y) \) 展开后,不含 \( y \) 的项是:A. \( x^{2} \)B. \( -y^{2} \)C. \( x+y \)D. \( x-y \)4. 根据乘法公式 \( (a-b)(a+b) = a^{2} - b^{2} \),计算\( (2x-3y)(2x+3y) \) 的结果是:A. \( 4x^{2} - 9y^{2} \)B. \( -4x^{2} + 9y^{2} \)C. \( 9y^{2} - 4x^{2} \)D. \( 4x^{2} + 9y^{2} \)5. 计算 \( (-2xy)^{3} \) 的结果是:A. \( 8x^{3}y^{3} \)B. \( -8x^{3}y^{3} \)C. \( 8x^{2}y \)D. \( -8x^{2}y \)二、填空题6. 根据乘法公式 \( (a+b)^{2} = a^{2} + 2ab + b^{2} \),计算\( (x-3)^{2} \) 等于 \( x^{2} - 6x + \_\_\_\_\_\_ \)。

7. 计算 \( (3x-2y)(2x+3y) \) 的结果是 \( 6x^{2} -\_\_\_\_\_\_ + 9xy - 6y^{2} \)。

8. 已知 \( 2x^{2}y^{3} \) 与 \( 4xy^{2} \) 是同类项,求\( 8x^{3}y^{4} \) 与 \( 16x^{2}y^{3} \) 相乘的结果是\( \_\_\_\_\_\_ \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法练习题(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x) =[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]2n+m2n+m2n+m36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是 [ ]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是 [ ] A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1. 41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]A.(a+b)2=a2+b2;B.a m·a n=a mn;C.(-a2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的计算结果写成10的幂的形式,正确的是[ ]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[ ]A.-4t-5 ;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[ ]A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[ ]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833;B.2891;C.3283;D.1225.(三)计算52.(6×108)(7×109)(4×104).53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2.55.(-4a)·(2a2+3a-1).56.(3m-n)(m-2n).57.(x+2y)(5a+3b).58.(-ab)3·(-a2b)·(-a2b4c)2.59.[(-a)2m]3·a3m+[(-a)5m]2.60.x n+1(x n-x n-1+x).61.(x+y)(x2-xy+y2).62.5x(x2+2x+1)-(2x+3)(x-5).63.(2x-3)(x+4).64.(-2ab2)3·(3a2b-2ab-4b2) 65.-8(a-b)3·3(b-a) 66.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).67.(-4xy3)·(-xy)+(-3xy2)2.68.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).69.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=70.已知ab2=-6,求-ab(a2b5-ab3-b)的值(四)化简(五)求值104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来).108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.70.(-2a m b n)(-a2b n)(-3ab2).119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.1、2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5)8、计算9、计算,当a6 = 64时, 该式的值。

相关文档
最新文档