1.2009年广西南宁市中考数学试卷

合集下载

2009年广西南宁市中考数学试卷

2009年广西南宁市中考数学试卷
3
B. 2 .2 1 0
3
C. 2 .2 6 1 0 )
3
D. 0 .2 3 1 0
4
4.与左边三视图所对应的直观图是(
A.
1 x≤1 5.不等式组 2 的解集在数轴上表示为( 2 x 3
B. )
C.
D.
-1
0
1 A.
2
-1
0
1 B.
2
-1
0
1 C.
2
-1
0
1 D.
1 x 2 2 x 1 x 1 1
=
· x 1
2
x
x 1 x 1
1
x 2 ··········· ··········· ·········· · 分 ··········· ·········· ··········· 3 ·········· ··········· ···········
= 1 2 ··········· ··········· ·········· ··········· · 分 ··········· ·········· ··········· ··········· · ·········· ··········· ··········· ·········· · 5 3 ··········· ··········· ·········· ··········· ··· 分 ··········· ·········· ··········· ··········· ·· 6 ·········· ··········· ··········· ·········· ··· 20.解: 1
D. 2 x 2

广西南宁市中考数学试卷及答案

广西南宁市中考数学试卷及答案

2008年广西南宁市中考数学试卷及解答说明:本试卷共八大题,满分120分,考题时间120分钟。

考题结束,将本试卷和答题卷一并交回。

注意事项:1、答题前,考生务必用黑(蓝)墨水笔将自己的姓名、准考证号清楚地填写在答题卷相应的位置上。

2、答题时,请用黑(蓝)墨水将每小题的解答填写在答题卷相应的答题区域内,在试题卷上作答无效。

.......... 一、 选择题(本大题共8小题,每小题3分,共24分)每小题都给出代号为(A )、(B )、(C )、(D )的四个结论,其中只有一个是正确的,选择正确结论的代号填在相应的答题卷内(注意:在试题卷上作答.......无效..) 1. (2008年•南宁市)6的倒数是:(A )61 (B )61- (C )6 (D )―6 解答:A解析:本题考查倒数的概念,乘积是1的两个数互为倒数,故选A 。

2. (2008年•南宁市)下列运算中,结果正确的是:(A )a a a =÷33 (B )422a a a =+ (C )523)(a a = (D )2a a a =⋅解答:D解析:本题考查幂的运算和整式的加减,A 是同底数幂数相除,底数不变,指数相减,应是0a ,B 是合并同类项,C 是幂的乘方,底数不变,指数相乘,应是6a ,D 是同底数幂相乘,底数不变,指数相加,故D 正确。

3. (2008年•南宁市)下列图案中是轴对称图形的有:(A )1个 (B )2个 (C )3个 (D )4个 解答:C解析:本题考察轴对称图形的识别,判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合,所以第2个、第3个、第4个都是轴对称图形,应选C 。

4.(2008年•南宁市)小强同学投掷30次实心球的成绩如下表所示:成绩/m 8 9 10 11 12 频数1 6 9 10 4由上表可知小强同学投掷30次实心球成绩的众数与中位数分别是:(A )10,9 (B )10,11 (C )11,9 (D )11,10 解答:D解析:众数是指一组数据中出现次数最多的数据,而中位数是指将一组数据按从小(或大)到大(或小)的顺序排列起来,位于最中间的数(或是最中间两个数的平均数),表格中的数据已经按从小到大排序,位于最中间的两个数是第15个数和第16个数,都是10,它们的平均数也是10,故选D。

2009年中考数学试题汇编之25-相似试题及答案

2009年中考数学试题汇编之25-相似试题及答案

2009年中考试题专题之25-相似试题及答案一、选择题1.(2009年滨州)如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB =. 其中单独能够判定ABC ACD △∽△的个数为( )A .1B .2C .3D .4【关键词】三角形相似的判定.【答案】C2.(2009年上海市)如图,已知AB CD EF ∥∥,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF=【关键词】平行线分线段成比例【答案】A3.(2009成都)已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为(A)1:2 (B)1:4 (C)2:1 (D)4:1【关键词】【答案】B4. (2009年安顺)如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:A .0个B .1个C .2个D .3个【关键词】等边三角形,三角形中位线,相似三角形【答案】D5.(2009重庆綦江)若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .1∶4B .1∶2C .2∶1 D【关键词】【答案】B6.(2009年杭州市)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个【关键词】相似三角形有关的计算和证明【答案】B7.2009年宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形D .四边形MBCO 和四边形NDCO 都是等腰梯形【关键词】位似【答案】C8.(2009年江苏省)如图,在55 方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格【关键词】平移【答案】D9.(2009年义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金D B CAN MO比。

[09真题]2009年广西省柳州市初中毕业升学考试数学试卷[word][评分标准]

[09真题]2009年广西省柳州市初中毕业升学考试数学试卷[word][评分标准]

(考试时间共120分钟,全卷满分120分)一、选择题(本大题共6小题,每小题3分,满分18分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.在3,0,2-,2四个数中,最小的数是( ) A .3 B .0 C .2- D .2 2.如图1所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个 3.若b a <,则下列各式中一定成立的是( )A .11-<-b aB .33ba >C . b a -<-D . bc ac <4.某学习小组7个男同学的身高(单位:米)为:1.66、1.65、1.72、1.58、1.64、1.66、1.70,那么这组数据的众数为( )A .1.65B .1.66C .1.67D .1.70 5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x6.一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( ) A .AB=CD B .AB ≤CD C .CD AB > D .AB ≥CDCD BA图1数 学二、填空题(本大题共10小题,每小题3分,满分30分. 请将答案直接填写在题中横线上的空白处)7.计算:2)5(0+-= .8.请写出一个是轴对称图形的图形名称.答: . 9.计算:312-= .10.在图2中,直线AB ∥CD ,直线EF 与AB 、CD 分别相交于点E 、F , 如果∠1=46°,那么∠2= °.11.一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,则再过 秒它的速度为15米/秒. 12.因式分解:22x x -= . 13.反比例函数 xm y 1+=的图象经过点(2,1),则m 的值是 . 14.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为31,那么袋中的球共有 个. 15.如图3,︒=∠30MAB ,P 为AB 上的点,且6=AP ,圆P与AM 相切,则圆P 的半径为 .16.矩形内有一点P 到各边的距离分别为1、3、5、7,则该矩形的最大面积为 平方单位. 三、解答题(本大题10小题,满分72分.解答应写出必要的文字说明、演算步骤或推理过程)17.(本题满分6分)先化简,再求值:)5()1(3---x x ,其中2=x .图3FED C BA2 1 图218.(本题满分6分)解不等式组⎩⎨⎧>+<+② 392① 31x x ,并把它的解集表示在数轴上.19.(本题满分6分)某学习小组对所在城区初中学生的视力情况进行抽样调查,图4是这些同学根据调查结果画出的条形统计图.请根据图中信息解决下列问题:(1)本次抽查活动中共抽查了多少名学生?(2)请估算该城区视力不低于4.8的学生所占的比例,用扇形统计图在图5中表示出来. (3)假设该城区八年级共有4000名学生,请估计这些学生中视力低于4.8的学生约有多少人?20.(本题满分6分)如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,3 ,6==AB BC ,求四边形ABCD 的周长.得 分 评卷员得 分 评卷员得 分 评卷员2图5图4AD CB图621.(本题满分6分)如图6,正方形网格中,△ABC 为格点三角形(顶点都是格点),将△ABC 绕点A 按逆时针方向旋转90°得到11AB C △.(1)在正方形网格中,作出11AB C △;(不要求写作法) (2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π)22.(本题满分6分)如图8,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈) 23.(本题满分8分)如图9, 直线l 与x 轴、y 轴分别交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 出发,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 出发,以每秒2个单位长度的速度沿O →M 的方向运动.已知点QP 、同时出发,当点Q到达点M 时,QP 、两点同时停止运动, 设运动时间为t 秒.(1)设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范围. (2)当t 为何值时,QP 与l 平行?得 分 评卷员得 分 评卷员得 分 评卷员N xyPC AB图8BCA 图724.(本题满分8分)某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1-分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.25.(本题满分10分) 如图10,AB 是⊙O 的直径,C 是弧BD 的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F .(1)求证:CF BF =;(2)若2AD =,⊙O 的半径为3,求BC 的长.得 分 评卷员得 分 评卷员B图1026.(本题满分10分)如图11,已知抛物线b ax ax y --=22(0>a )与x 轴的一个交点为(10)B -,,与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C . ①求抛物线的解析式;②点E 在抛物线的对称轴上,点F 在抛物线上,且以E F A B ,,,四点为顶点的四边形为平行四边形,求点F 的坐标.2009年柳州市初中毕业升学考试数学参考答案及评分标准第Ⅰ卷:一、选择题第Ⅱ卷:二、填空题得 分 评 卷 员图11三、解答题:17. 本小题满分6分.解:原式=533+--x x ·················································································· 2分=22+x ······················································································ 4分 当2=x 时,原式=222+⨯ ································································· 5分=6 ········································································ 6分(说明:如果直接求值,没有进行化简,结果正确扣1分) 18. 本小题满分6分.解: 由①得:13-<x ·············································································· 1分即2<x ··············································································· 2分 由②得:62->x ·········································································· 3分即3->x ·········································································· 4分 ∴原不等式的解集为23<<-x ····························································· 5分 在数轴上表示为:······················ 6分19. 本小题满分6分.解:(1)本次抽查活动中共抽查了2100名学生. ················································· 2分;(2)本次抽查中视力不低于4.8的学生人数为1400人,比例为32,约占67%.所以该城区视力不低于4.8的学生约占67%.扇形统计图表示为:………………………………4分(说明:图中只要标对扇形圆心角为240°,或标明所占比例正确的,都不扣分)(3)抽查知在八年级的学生中,视力低于4.8的学生所占比例为800300,则该城区八年级视力低于4.8的学生人数约为:150********300=⨯人. ························································· 6分 20、本小题满分6分.解法一: ∵AB CD ∥∴︒=∠+∠180C B ············································1分 又∵B D ∠=∠∴︒=∠+∠180D C ········································· 2分2图5阴影部分为视力不低于 4.8人数,占32,约67%AD CB图6∴AD ∥BC 即得ABCD 是平行四边形 ················· 4分 ∴36AB CD BC AD ====, ·························· 5分 ∴四边形ABCD 的周长183262=⨯+⨯= ·············· 6分 解法二: 连接AC ······················································ 1分∵AB CD ∥∴DCA BAC ∠=∠ ··········································· 2分 又∵B D AC CA ∠=∠=, ··································· 3分 ∴ABC △≌CDA △ ··········································· 4分 ∴36AB CD BC AD ====, ···························· 5分 ∴四边形ABCD 的周长183262=⨯+⨯= ·············· 6分 解法三: 连接BD ······················································ 1分∵AB CD ∥∴CDB ABD ∠=∠ ············································· 2分 又∵ABC CDA ∠=∠ ∴ADB CBD ∠=∠ ············································· 3分 ∴AD ∥BC 即ABCD 是平行四边形 ······················ 4分 ∴36AB CD BC AD ====, ····························· 5分 ∴四边形ABCD 的周长183262=⨯+⨯= ··············· 6分 (没有经过证明而直接写出结果的给2分,其它解法参照给分) 21. 本小题满分6分. 解:(1)作图如下:························· 2分(2) 线段BC 所扫过的图形如图所示. ················································· 4分 根据网格图知:43AB BC ==,,所以5=AC 线段BC 所扫过的图形的面积221π()4S AC AB =- ··································· 5分 =9π4(2cm ) ·········································· 6分22.本小题满分6分.解:如图8,过点A 作BC AD ⊥,垂足为D根据题意,可得︒=∠60BAD ,︒=∠30CAD ,66=AD ······························ 1分 在Rt △ADB 中,由ADBD BAD =∠tan DCAB图81C 1BBCA图7AD CB图6AD CB图6得36636660tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD . ···· 3分 在Rt △ADC 中,由ADCDCAD =∠tan 得322336630tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD . ·························· 5分∴152.2BC BD CD =+==. ···································· 6分 答:这栋楼高约为152.2 m . (其它解法参照给分) 23、本小题满分8分.解:(1)依题意,运动总时间为428==t 秒,要形成四边形MNPQ ,则运动时间为40<<t . 1分 当P 点在线段NO 上运动t 秒时,t OQ t OP 2 ,6=-=∴12POQ S OP OQ =⋅△=t t 62+- ············· 2分 此时四边形MNPQ 的面积MON POQ S S S =-△△=)6(68212t t +--⨯⨯ =2462+-t t ············································································ 4分∴S 关于t 的函数关系式为2624(04)S t t t =-+<<, ································ 5分(2)当PQ 与l 平行时,NOM △∽POQ △ ··················································· 6分PO NO QO MO = 即 tt -=6628 ································································· 7分 ∴2410=t ,即4.2=t∴当4.2=t 秒时, PQ 与l 平行. ··························································· 8分 (其它解法参照给分) 24、本小题满分8分.解: (1)设该班胜x 场,则该班负)10(x -场. ················································· 1分依题意得: 14)10(3=--x x ··························································· 2分 解之得: 6=x ········································································ 3分图9所以该班胜6场,负4场. ································································ 4分 (2)设甲班胜了x 场,乙班胜了y 场,依题意有:)]10(3[3)10(3y y x x --=-- ······················································· 5分 化简得:53+=x y 即35+=x y ·············································································· 6分 由于y x , 是非负整数,且05x ≤≤,y x >∴4=x ,3=y .所以甲班胜4场,乙班胜3场. ·························································· 8分 答:(1)该班胜6场,负4场.(2)甲班胜4场,乙班胜3场. (其它解法参照给分) 25、本小题满分10分.证明:(1) 连结AC ,如图10 ∵C 是弧BD 的中点∴∠BDC =∠DBC ····································· 1分又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB∴ ∠BCE=∠BAC ∠BCE =∠DBC ···································· 3分 ∴ CF =BF ··········································· 4分 因此,CF =BF .(2)证法一:作CG ⊥AD 于点G ,∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线. ·································· 5分 ∴ CE =CG ,AE =AG ········································································ 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG ∴BE =DG ······················································································ 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 ········································································ 8分又 △BCE ∽△BAC∴ 212BC BE AB ==· ··································································· 9分32±=BC (舍去负值)∴32=BC ·············································································· 10分 (2)证法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , ························· 5分B 图10在Rt ADB △与Rt FEB △中, ∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= ················ 6分 又∵CF BF =, ∴EF CF 3=利用勾股定理得:EF EF BF BE 2222=-= ······················································· 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=2·················································· 8分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF ··············································································· 9分 ∴3222=+=CE BE BC ·························································· 10分 26、本小题满分10分. 解:(1)对称轴是直线:1=x , 点A 的坐标是(3,0). ··················································· 2分 (说明:每写对1个给1分,“直线”两字没写不扣分) (2)如图11,连接AC 、AD ,过D 作轴 y DM ⊥于点M , 解法一:利用AOC CMD △∽△∵点A 、D 、C 的坐标分别是A (3,0),D (1,b a --)、 C (0,b -),∴AO =3,MD =1.由MD OC CM AO =得13ba = ∴03=-ab ·············································································· 3分又∵b a a --⋅--⋅=)1(2)1(02····················································· 4分∴由⎩⎨⎧=-=-0303b a ab 得⎩⎨⎧==31b a ······················································· 5分∴函数解析式为:322--=x x y ·············································· 6分 解法二:利用以AD 为直径的圆经过点C∵点A 、D 的坐标分别是A (3,0) 、D (1,b a --)、C (0,b -),图11∴29b AC +=,21a CD +=,2)(4b a AD --+=∵222AD CD AC =+∴03=-ab …① ··································································· 3分 又∵b a a --⋅--⋅=)1(2)1(02…② ············································ 4分 由①、②得13a b ==, ························································ 5分 ∴函数解析式为:322--=x x y ·················································· 6分(3)如图所示,当BAFE 为平行四边形时则BA ∥EF ,并且BA =EF .∵BA =4,∴EF =4由于对称为1=x ,∴点F 的横坐标为5. ······································· 7分将5=x 代入322--=x x y 得12=y ,∴F (5,12). ··············································· 8分 根据抛物线的对称性可知,在对称轴的左侧抛物线上也存在点F ,使得四边形BAEF 是平行四边形,此时点F 坐标为(3-,12). ················································································ 9分当四边形BEAF 是平行四边形时,点F 即为点D , 此时点F 的坐标为(1,4-). ····························· 10分 综上所述,点F 的坐标为(5,12), (3-,12)或(1,4-). (其它解法参照给分)图11。

广西南宁中考数学近五年真题

广西南宁中考数学近五年真题

2017年广西中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)1.化简:|﹣15|等于()A.15 B.﹣15 C.±15 D.2.多边形的外角和等于()A.180°B.360°C.720°D.(n﹣2)•180°3.在以下一列数3,3,5,6,7,8中,中位数是()A.3 B.5 C.5.5 D.64.下列计算正确的是()A.(﹣3x)3=﹣27x3B.(x﹣2)2=x4C.x2÷x﹣2=x2D.x﹣1•x﹣2=x25.如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAM C.∠BAM=2∠CAM D.2∠CAM=∠BAC6.5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为()A.4.4×108B.4.4×109C.4×109D.44×1087.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①②③B.②①③C.③①②D.①③②8.观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.1219.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45° B.60° C.72° D.120°10.如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1) C.200 D.30011.以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b的取值范围是()A.0≤b<2B.﹣2 C.﹣22D.﹣2<b<212.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.二、填空题(本大题共6小题,每小题3分,共18分)13.若分式有意义,则x的取值范围为.14.一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.15.下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有(填序号)16.如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC 沿着OB方向平移OB个单位,则点C的对应点坐标为.17.经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.18.阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= .三、解答题(本大题共8小题,共66分)19.计算: +()﹣1﹣(3﹣π)0﹣|1﹣4cos30°|20.已知a=b+2018,求代数式•÷的值.21.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.22.矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.23.甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):1 2 3 4 5运动员环数次数甲10 8 9 10 8乙10 9 9 a b某同学计算出了甲的成绩平均数是9,方差是S甲2= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙射击成绩平均数都一样,则a+b= ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a、b的所有可能取值,并说明理由.24.某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?25.已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.26.以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.2018广西中考数学真题一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣202.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3.00分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84° B.60° C.36° D.24°9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2= °.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是.15.(3.00分)不等式x+1≥0的解集是.16.(3.00分)一元二次方程x2﹣9=0的解是.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序1 2 3 4 5次成绩(m)10.5 10.2 10.3 10.6 10.4求该同学这五次投实心球的平均成绩.22.(8.00分)解方程=.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B (﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.2019年广西中考数学真题一、选择照(本大题共12小题,每小题3分,共6分,在每小题给出的四个选项中只有一项是符合要求的)1.(3分)三角形的内角和等于()A.90°B.180°C.270°D.360°2.(3分)如图,已知a∥b,∠1=58°,则∠2的大小是()A.122°B.85°C.58°D.323.(3分)一组数据2,6,4,10,8,12的中位数是()A.6 B.7 C.8 D.94.(3分)方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=15.(3分)下列几何体中,俯视图不是圆的是()A.四面体B.圆锥C.球D.圆柱6.(3分)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×1067.(3分)下列图形,既是轴对称图形又是中心对称图形的是()A.正三角形B.正五边形C.等腰直角三角形D.矩形8.(3分)不等式组的解集是()A.﹣4<x≤6 B.x≤﹣4或x>2 C.﹣4<x≤2 D.2≤x<49.(3分)抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位10.(3分)小韦和小黄进行射击比赛,各射击6次,根据成绩绘制的两幅折线统计图如下,以下判断正确的是()A.小黄的成绩比小韦的成绩更稳定B.两人成绩的众数相同C.小韦的成绩比小黄的成绩更稳定D.两人的平均成绩不相同11.(3分)下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①12.(3分)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=,y=.如图,已知点O为坐标原点,点A(﹣3,0),⊙O经过点A,点B为弦PA的中点.若点P(a,b),则有a,b满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是()A.m2+n2=9 B.()2+()2=9C.(2m+3)2+(2n)2=3 D.(2m+3)2+4n2=9二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)﹣16的相反数是.14.(3分)若式子在实数范围内有意义,则x的取值范围是.15.(3分)编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是.16.(3分)观察一列数:﹣3,0,3,6,9,12,…,按此规律,这一列数的第21个数是.17.(3分)如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A(2,2),B(3,4),C (6,1),B'(6,8),则△A'B'C'的面积为.18.(3分)四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:(﹣1)3+﹣(π﹣112)0﹣2tan60°20.(6分)求式子÷的值,其中m=﹣2019.21.(6分)如图,已如平行四边形OABC中,点O为坐标顶点,点A(3,0),C(1,2),函数y=(k≠0)的图象经过点C.(1)求k的值及直线OB的函数表达式:(2)求四边形OABC的周长.22.(8分)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.23.(8分)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:编号一二三四五人数a15 20 10 b已知前面两个小组的人数之比是1:5.解答下列问题:(1)a+b=.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)24.(10分)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?25.(10分)如图,已知AC、AD是⊙O的两条割线,AC与⊙O交于B、C两点,AD过圆心O且与⊙O交于E、D两点,OB平分∠AOC.(1)求证:△ACD∽△ABO;(2)过点E的切线交AC于F,若EF∥OC,OC=3,求EF的值.[提示:(+1)(﹣1)=1]26.(12分)已知抛物线y=mx2和直线y=﹣x+b都经过点M(﹣2,4),点O为坐标原点,点P为抛物线上的动点,直线y=﹣x+b与x轴、y轴分别交于A、B两点.(1)求m、b的值;(2)当△PAM是以AM为底边的等腰三角形时,求点P的坐标;(3)满足(2)的条件时,求sin∠BOP的值.2020年广西中考数学真题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.(3分)2的倒数是()A.B.C.2 D.﹣22.(3分)sin45°的值是()A.B.C.D.13.(3分)2019新型冠状病毒的直径是0.00012mm,将0.00012用科学记数法表示是()A.120×10﹣6B.12×10﹣3C.1.2×10﹣4D.1.2×10﹣54.(3分)如图是由4个完全相同的正方体搭成的几何体,则()A.三视图都相同B.俯视图与左视图相同C.主视图与俯视图相同D.主视图与左视图相同5.(3分)下列计算正确的是()A.8a﹣a=7 B.a2+a2=2a4C.2a•3a=6a2D.a6÷a2=a36.(3分)下列命题中,其逆命题是真命题的是()A.对顶角相等B.两直线平行,同位角相等C.全等三角形的对应角相等D.正方形的四个角都相等7.(3分)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3C.样本的众数是3 D.样本的平均数是3.58.(3分)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④9.(3分)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形10.(3分)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于()A.499 B.500 C.501 D.100211.(3分)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种12.(3分)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a (x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4 B.0 C.2 D.6二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上.13.(3分)计算:0﹣(﹣6)=.14.(3分)分解因式:a3﹣a=.15.(3分)如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD菱形(填“是”或“不是”).16.(3分)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是.17.(3分)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是.18.(3分)已知:函数y1=|x|与函数y2的部分图象如图所示,有以下结论:①当x<0时,y1,y2都随x的增大而增大;②当x<﹣1时,y1>y2;③y1与y2的图象的两个交点之间的距离是2;④函数y=y1+y2的最小值是2.则所有正确结论的序号是.三、解答题:本大题共8小题,满分共66分.解答应写出证明过程成演算步骤(含相应的文字说明).将解答写在答题卡上.19.(6分)计算:•(π﹣3.14)0﹣|1|+()2.20.(6分)解方程组:.21.(8分)已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求的值.22.(8分)在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图图①和图②两个尚不完整的统计图中.(1)种植B品种果树苗有棵;(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?23.(8分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.24.(8分)南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?25.(10分)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.26.(12分)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.2021年广西百色中考数学真题一、选择题(本大题共12小题,每小题3分,共36分。

2009年南宁市中考试题

2009年南宁市中考试题
/ 2一 ‘ .
第 五行
● ● ● ● ● ●
l 解 4 +一 l 5 +一 1计 3 2 … O 答 算 题 2 一 2 . 2 一 2 一 2 5 4‘ 一 3 2 1 每 1 小 要 题 ∞ 、




题 一

Sn 60 i 。




Y 册
中考 汇编
l . 知 二 次 函 数 — 1已
n +b x+ c n 0) ( ≠ 的

到 达 位 于 灯 塔 P 的 南 偏

图像 如 图 所 示 , 下 有
列 四个 结 论 : < O ①6 ,


3 /


东 3 方 向上 的 B处 , O。 则
字 ) ( ) .
A .1 c 。 0 m C. m 4O c

( 7题 图 ) 第
B.2 m 0c D.8 m Oc
A . 3× 1 2. 0。 B. .2× 1 2 00
C. 26× 1 。 2. O
D.0 3× 1 .2 0
8把 多 项 式 2 一 8 . x+ 8 分 解 因 式 , 果 正 确 结 ) .
5 l O 1 … 7
2 3
1 . 2 3 4 5这 四 个 数 中 , 取 两 个 数 P和 q P 2从 , ,, 任 ( ≠ q , 成 函数 —p 一 2和 — +q 并 使 这 两 个 函 )构 ,
数 图像 的交 点 在 直 线 一 2的 右 侧 , 这 样 的 有 序 则 数对( q共有( P,)


1— 2
、 /

精编版-2009年广西梧州市中考数学真题及答案

精编版-2009年广西梧州市中考数学真题及答案

2009年广西梧州市中考数学真题及答案说明:1.本试卷共8页(试题卷4页,答题卷4页),满分120分,考试时间120分钟. 2.答卷前,将准考证号、姓名写在答题卷密封线内,答案请写在答题卷相应的区域内,在试题卷上答题无效..........一、填空题(本大题共10小题,每小题3分,共30分.) 1.6的相反数是 ★ .2.比较大小:-3 ★ -4.(用“>”“=”或“<”表示) 3.一组数据为1,2,3,4,5,6,则这组数据的中位数是 ★ . 4.因式分解:1822-x = ★ .5.如图(1),△ABC 中,∠A =60°,∠C =40°,延长CB 到D ,则∠ABD = ★ 度.6.将点A (1,-3)向右平移2个单位,再向下平移2个单位后得到点B (a ,b ),则ab = ★ . 7.某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 ★ m .8.在△ABC 中,∠C =90°, BC =6 cm ,53sin =A , 则AB 的长是 ★ cm .9.一个扇形所在圆的半径为3c m ,扇形的圆心角为120°,则扇形的面积 是 ★ cm 2. (结果保留π)10.图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为s ,则s = ★ . (用n 的代数式表示s )二、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.) 11.在函数21-=x y 中,自变量x 的取值范围是( ) A .2-≠x B .2≠x C .x ≤2 D .x ≥212.下列运算正确的是( )DBAO C图(2)图(3)……n =1n =2n =3ABCD图(1)A .632a a a =⋅B .422a a a =+C .632)(a a -=-D .a a a =÷313.一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是( ) A .43 B .41 C .32 D .31 14.不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为( )A .B .C .D .15.在下列对称图形中,对称轴的条数最少的图形是( ) A .圆B .等边三角形C .正方形(D )正六边形16.在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图(4),则这堆货箱共有( )A .6个B .5个C .4个D .3个17.已知点A (11x y ,)、B (22x y ,)是反比例函数xky =(0>k )图象上的两点, 若210x x <<,则有( ) A .210y y <<B .120y y <<C .021<<y yD .012<<y y18.如图(5),正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DOAO等于( ) A .352 B .31C .32D .21三、解答题(本大题共8小题,满分66分.)19.(本题满分6112sin 602-⎛⎫- ⎪⎝⎭20.(本题满分6分)解方程: 0)3(2)3(2=-+-x x x21.(本题满分6分)为了解全市太阳能热水器的销售情况,某调查公司对人口为100万人的某县进行调查,对调查所得的数据整理后绘制成如图(6)所示的统计图.请据图解答下列问题:图(4)主视图 左视图 俯视图 1 2 30 -2 1 2 3-10 -2 1 2 3 -10 -2 1 2 3 0 -2 图(5)AB FC DE O(1)2008年该县销售中档..太阳能热水器 ★ 台. (2)若2007年销售太阳能热水器的台数是2005年的1.5倍,请补全图(6)-2的条形图. (3)若该县所在市的总人口约为500万人,估计2008年全市销售多少台高档太阳能热水器.22.(本题满分8分)某工厂要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元. (1)设招聘甲种工种工人x 人,工厂付给甲、乙两种工种的工人工资共y 元,写出y (元)与x (人)的函数关系式;(2)现要求招聘的乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种 各招聘多少人时,可使得每月所付的工资最少?23.(本题满分8分)如图(7),△ABC 中,AC 的垂直平分线MN 交AB 于 点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD . (1)求证:AD =CE ;(2)填空:四边形ADCE 的形状是 ★ .24.(本题满分10分)2005-2008年该县销售太 阳能热水器的数量统计图图(6)-年2005 2006 2007 2008 DBCA ENMO 图(7)30%高档占2008年该县销售高、中、低 档太阳能热水器的数量统计图图(6)-1 图(6)O EDBAC·由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若 按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?25.(本题满分10分)如图(8)所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD . (1)求证:DC =BC ;(2)若AB =5,AC =4,求tan∠DCE 的值.26.(本题满分12分)如图(9)-1,抛物线23y ax ax b =-+经过A (1-,0),C (3,2-)两点,与y 轴交于点D ,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若直线)0(1≠+=k kx y 将四边形ABCD 面积二等分,求k 的值;(3)如图(9)-2,过点E (1,1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°得△MNQ (点M 、N 、Q 分别与点A 、E 、F 对应),使点M 、N 在抛物线上,作MG ⊥x 轴于点G ,若线段MG ︰AG =1︰2,求点M ,N的坐标.图(8)y=kx +1图(9)-1图(9)-22009年梧州市初中毕业升学考试数学参考答案及评分标准一、填空题(本大题共10小题,每小题3分,共30分.)二、选择题(本大题共8小题,每小题3分,共24分.)三、解答题(本大题共8小题,满分66分.) 19.解:原式=232232⨯-+ ······················ 3分 =3232-+ ························ 4分 =23+ ··························· 6分 20.解:0)23)(3(=+--x x x ······················· 2分 0)33)(3(=--x x ························· 3分 03=-x 或033=-x ························ 4分 即31=x 或12=x ························· 6分 21.解:(1) 600 ·························· 2分 (2)在右图上补全条形图如图. ····················· 4分(3)500÷100×1000×10%=500 ······················ 6分22.解:(1))150(1000600x x y -+= ··················· 2分150000400+-=x y ····················· 3分(2)依题意得,1502x x -≥ ···················· 5分 50x ≤ ························· 6分 因为-400<0,由一次函数的性质知,当x =50时,y 有最小值 ······ 7分所以150-50=100答: 甲工种招聘50人,乙工种招聘100人时可使得每月所付的工资最少. (8分) 23.(1)证明:∵MN 是AC 的垂直平分线 ········ 1分题号 12 3 45答案 6- > 3.5 2(x +3)(x -3) 100 题号 6 7 8 910答案 15-4103π2(1)n n + 题号11 12 1314 1516 17 18答案BCA DB CAD图(6)-21000 700600年2005200620072008DAENMO∴OA =OC ∠AOD =∠EOC =90° ······ 3分∵CE ∥AB∴∠DAO =∠ECO ··········· 4分 ∴△ADO ≌△CEO ··········· 5分 ∴AD =CE ············· 6分(2)四边形ADCE 是菱形. ··········· 8分 (填写平行四边形给1分)24.解:(1)设甲队单独完成此项工程需x 天,由题意得 ············ 1分13266=+x x ···························· 3分 解之得15=x ···························· 4分经检验,15=x 是原方程的解. ···················· 5分所以甲队单独完成此项工程需15天, 乙队单独完成此项工程需15×32=10(天) ··············· 6分 (2)甲队所得报酬:8000615120000=⨯⨯(元) ·············· 8分 乙队所得报酬:12000610120000=⨯⨯(元) ················ 10分 25.(1)证明:连接OC ··························· 1分 ∵OA =OC∴∠OAC =∠OCA ∵CE 是⊙O 的切线∴∠OCE =90° ············· 2分 ∵AE ⊥CE∴∠AEC =∠OCE =90°∴OC ∥AE ··············· 3分 ∴∠OCA =∠CAD∴∠CAD =∠BAC ············ 4分 ∴DC BC =∴DC =BC ······························ 5分 (2)∵AB 是⊙O 的直径 ∴∠ACB =90° ∴3452222=-=-=AC AB BC ················6分 ∵∠CAE =∠BAC ∠AEC =∠ACB =90°∴△ACE ∽△ABC ·························· 7分 ∴ABACBC EC = O EDBAC·图(8)∴543=EC 512=EC ······················· 8分 ∵DC =BC =3 ∴59)512(32222=-=-=CE DC ED ················9分 ∴4351259tan ===∠EC ED DCE ··················· 10分26.(1)解:把A (1-,0),C (3,2-)代入抛物线 23y ax ax b =-+ 得⎩⎨⎧-=+-=+-⨯--2990)1(3)1(2b a a b a a ······················ 1分整理得⎩⎨⎧-==+204b b a ……………… 2分 解得⎪⎩⎪⎨⎧-==221b a ………………3分∴抛物线的解析式为 223212--=x x y ··················· 4分(2)令0223212=--x x 解得 1214x x =-=,∴ B 点坐标为(4,0)又∵D 点坐标为(0,2-) ∴AB ∥CD ∴四边形ABCD 是梯形. ∴S 梯形ABCD =82)35(21=⨯+ ········ 5分 设直线)0(1≠+=k kx y 与x 轴的交点为H ,与CD 的交点为T ,则H (k 1-,0), T (k3-,2-) ···· 6分 ∵直线)0(1≠+=k kx y 将四边形ABCD 面积二等分∴S 梯形AHTD =21S 梯形ABCD =4∴42)311(21=⨯-+-kk ·········· 7分 ∴34-=k ················ 8分(3)∵MG ⊥x 轴于点G ,线段MG ︰AG =1︰2∴设M (m ,21+-m ), ··········· 9分∵点M 在抛物线上 ∴22321212--=+-m m m 解得1231m m ==-,(舍去) ······· 10分∴M 点坐标为(3,2-) ························ 11分图(9)-2y=kx +1图(9) -1根据中心对称图形性质知,MQ∥AF,MQ=AF,NQ=EF,)······················· 12分∴N点坐标为(1,3。

2009年广西桂林、百色市中考数学试题(含参考答案和评分标准)-推荐下载

2009年广西桂林、百色市中考数学试题(含参考答案和评分标准)-推荐下载

6、二次函数 y=(x+1)2 +2 的最小值是( )
A、 2
B、1

1
C、
8
B、∠1 和∠3

C、、3
B、(- ab)2 =a2b2
7、右图是一张卡通图,图中两圆的位置关系是( )
A、相交 B、外离
8、已知
x 2

y
则 a b 的值为( )
A、 1

1
B、-1
是二元一次方程组
C、- 3
2x
(2) 设 D 是弧 AC 的中点,连结 BD 交 AC 于 G,过 D 作 DE⊥AB 于 E,交 AC 于 F,求证: FD=FG。
A、(3 , 1) B、(3 , 2) C、(2 , 3) D、(1 , 3)
2 C、
5

D、24
5 D、
8
12、如图,正方形 ABCD 的边长为 2, 将长为 2 的线段 QR 的两端放在正方形的相邻的两边上同时滑动。
如果点 Q 从点 A 出发,沿图中所示方向按 A→B→C→D→A 滑动到 A 止,同时点 R 从点 B 出发,沿图中
C、内切
C、2
ax by 7

ax

by
D、 1 8
D 1 5
) C、∠1 和∠4 )
D、3

D、内含
1
C、a2 Aa2 =2a2
2 D、
3
的解,
9、有 20 张背面完全一样的卡片,其中 8 张正面印有桂林山水,7 张正面印有百色风光,5 张正面印有北
海海景,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是桂林山水卡片的概率是(

2009年中考数学试题汇编之1-有理数试题及答案

2009年中考数学试题汇编之1-有理数试题及答案

全国免费客户服务电话:400-715-6688地址:西安经济技术开发区凤城一路8号御道华城A 座10层2009年中考试题专题之1-有理数试题及答案 一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ). A .1 B .0 C .-1 D .-5 【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12- C .2- D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156³10-5B .0.156³105C .1.56³10-6D .1.56³106【答案】C6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21 D .-21【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( )A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( )A .2B .12C .12- D .2-【答案】D 11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0a b >B .0a b +<C .1a b <D .0a b -<【答案】C 13.(2009年枣庄市)-12的相反数是( )A .2B .2-C .12D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( )A 、1.196³108立方米B 、1.196³107立方米C 、11.96³107立方米D 、0.1196³109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6【答案】B17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( ) A .8.1³190-米 B .8.1³18-米 C .81³19-米 D .0.81³17-米【答案】Bab 018.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A .32B .23C .23- D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

2009年广西桂林市中考数学试题及答案(纯word版)

2009年广西桂林市中考数学试题及答案(纯word版)

23.(本题满分8分)在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).
(1)设初三(1)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示).(2)初三(1)班至少有多少名同学?最多有多少名
24.(本题满分8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?。

2009年广西桂林市中考数学试卷及答案-(word整理版)

2009年广西桂林市中考数学试卷及答案-(word整理版)

2009年广西桂林市中考数学试卷-(word 整理版)一、选择题(共12小题,每小题3分,共36分 1. 的相反数是( ).A .B .8C .D .2.下面的几个有理数中,最大的数是( ).A .2B .C .-3D .3.如图,在所标识的角中,同位角是( ).A .和B .和C .和D .和 4.右图是一正四棱锥,它的俯视图是( ).A .B .C .D . 5.下列运算正确的是( ).A .B .C .·=D . 6.二次函数的最小值是( ).A .2B .1C .-3D . 7.右图是一张卡通图,图中两圆的位置关系是( ). A .相交 B .外离 C .内切 D .内含8.已知是二元一次方程组的解,则的值为( ).A .1B .-1C . 2D .39.有20张背面完全一样的卡片,其中8张正面印有桂林山水,7张正面印有百色风光,5张正面印有北海海景;把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是桂林山水卡片的概率是( ).A .B .C .D .10.如图,□ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积是( ) A .3 B .6 C .12 D .2411.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得,则点的坐标为( ). A .(3,1) B .(3,2)C .(2,3) D .(1,3)12.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如 果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所 示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的 面积为( ).A .2B .C .D . 二.填空题(共6道小题,每小题3分,共18分) 13.因式分解: .14.据统计,去年我国粮食产量达10570亿斤,用科学记数法表示为 亿斤.15.如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.16.在函数中,自变量的取值范围是 .17.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为 .18.如图,在△ABC 中,∠A =.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; ……;∠A 2008BC 与∠A 2008CD 的平分线相交于点A 2009,得∠A 2009 .则∠A 2009= .三、解答题(本大题共8题,共66分)19.(6分)计算:º-8-8-1818-1315-1∠2∠1∠3∠1∠4∠2∠3∠22a b ab +=222()ab a b -=2a 2a 22a 422a a ÷=2(1)2y x =++2321x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩a b -147202558A B O ''△A '4π-ππ1-23x x +=y =x α101()(20094sin 302---+2-1 2 3 4 (第3题图) (第4题图)(第7题图) B图10xy1 2 430 ---12 3AB第11题第12题图第15题图x第17题图BACD第18题图 A 1A 220.(6分)先化简,再求值:,其中.21.(8分)如图:在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O . (1)图中共有 对全等三角形;(2)写出你认为全等的一对三角形,并证明.22. (8分)2008年11月28日,为扩大内需,国务院决定在全国实施“家电下乡”政策.第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品.某县一家家电商场,今年一季度对以上四种产品的销售情况进行了统计,绘制了如下的统计图,请你根据图中信息解答下列问题:(1)该商场一季度彩电销售的数量是 台.(2) 请补全条形统计图和扇形统计图.2211()22x yx y x x y x+--++3x y == A D O CB 第21题图数量(台23.(8分)在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有名同学,则这批树苗有多少棵?(用含的代数式表示).(2)初三(1)班至少有多少名同学?最多有多少名24.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?x x25. (10分)如图,△ABC 内接于半圆,AB 是直径,过A 作直线MN ,若∠MAC=∠ABC . (1)求证:MN 是半圆的切线;(2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE ⊥AB 于E ,交AC 于F . 求证:FD =FG .(3)若△DFG 的面积为4.5,且DG =3,GC =4,试求△BCG 的面积.26.(12分)如图,已知直线,它与轴、轴的交点分别为A 、B 两点. (1)求点A 、点B 的坐标;(2)设F 是轴上一动点,用尺规作图作出⊙P ,使⊙P 经过点B 且与轴相切于点F (不写作法和证明,保留作图痕迹);(3)设(2)中所作的⊙P 的圆心坐标为P (),求与的函数关系式;4)是否存在这样的⊙P ,既与轴相切又与直线相切于点B ,若存在,求出圆心P 的坐标;若不存在,请说明理由.3:34l y x =+x y x x x y ,y x x l第26题图MN A E D CG B 第25题图 F2009年广西桂林市中考数学试卷答案13. 14.1.057×104 15.16.≥ 17.或 18.19.解:原式=2-1+4×-2 4分 =1 ····························································································································· 6分 20.解:原式 ···················································· 2分 ··········································································································· 3分 ························································································································· 4分 ································································································································ 5分 把 ································································· 6分21.解:(1)3 …………………………………………………………………………………3分(写1对、2对均不给分)(2)△ABC ≌△DCB ······································································································ 4分 证明:∵四边形ABCD 是等腰梯形∴AB =DC ,∠ABC =∠DCB ············································································· 6分又BC =CB∴△ABC ≌△DCB ·························································································· 8分(注:选其它两对证明的,按以上相应步骤给分,全等三角形对应点不对应不扣分) 22.解(1)150 ················································································································· (2分) (2)10% ···················································································································· (2分) (3)每正确补全一个图形给2分,其中扇形统计图每补全一个扇形给1分.23.解(1)这批树苗有()棵 ·················································································· 1分 (2)根据题意,得 ·································································· 5分(每列对一个不等式给2分)解这个不等式组,得40<≤44 ···················································································· 7分答:初三(1)班至少有41名同学,最多有44名同学. ····················································· 8分 24.解:(1)设乙队单独完成需天 ······················································································· 1分根据题意,得························································· 3分 解这个方程,得=90 ··························································································· 4分 经检验,=90是原方程的解∴乙队单独完成需90天 ······················································································· 5分 (2)设甲、乙合作完成需天,则有 解得(天) ········································································································· 6分 甲单独完成需付工程款为60×3.5=210(万元)乙单独完成超过计划天数不符题意(若不写此行不扣分). 甲、乙合作完成需付工程款为36(3.5+2)=198(万元) ········································· 7分 答:在不超过计划天数的前提下,由甲、乙合作完成最省钱. ······························ 8分 25.证明(1):∵AB 是直径∴∠ACB =90º ,∴∠CAB +∠ABC =90º ······························································ 1分∵∠MAC =∠ABC∴∠MAC +∠CAB =90º,即MA ⊥AB∴M N 是半圆的切线. ····································· 2分(2)证法1:∵D 是弧AC 的中点, ∴∠DBC =∠2 ·············· 3分 ∵AB 是直径,∴∠CBG +∠CGB =90º ∵DE ⊥AB ,∴∠FDG +∠2=90º ······················· 4分 ∵∠DBC =∠2,∴∠FDG =∠CGB =∠FGD ∴FD =FG ······························································ 5分证法2:连结AD ,则∠1=∠2 ······························· 3分∵AB 是直径,∴∠ADB =90º ∴∠1+∠DGF =90º又∵DE ⊥AB ∴∠2+∠FDG =90º ·········································································· 4分 ∴∠FDG =∠FGD , ∴FD =FG ············································································· 5分(3)解法1:过点F 作FH ⊥DG 于H , ········································································ 6分又∵DF =FG ∴S △FGH =S △DFG =×4.5= ························································ 7分 ∵AB 是直径,FH ⊥DG ∴∠C =∠FHG =90º ····················································· 8分∵∠HGF =∠CGB ,∴△FGH ∽△BGC ∴···································································· 9分 ∴S △BCG = ························································································· 10分解法2:∵∠ADB =90º,DE ⊥AB ,∴∠3=∠2 ····························································· 6分∵∠1=∠2, ∴∠1=∠3 ∴AF =DF =FG ···································································································· 7分(3)x x +x 222y x =--2(1)y x =-+20092α12111()()22x yx y x y x x y x y x+=-+--⋅++1122x y x x=---()()x y =--y x =-3x y ==代入上式,得原式=3242x +2423(1)52423(1)1x x x x +--<⎧⎨+--⎩≥x x 11120()2416060x ⨯++⨯=x x y 11()16090y +=36y =121294221.59()()464FGH BGC S HG S CG ∆∆===9641649⨯=数量(台MN AE D CGB 2 FH 31∴S △ADG =2S △DFG =9 ······························································································ 8分 ∵∠ADG =∠BCG ,∠DGA =∠CGB ∴△ADG ∽△BCG ··························································································· 9分 ∴∴S △BCG =························································································ 10分 解法3:连结AD ,过点F 作FH ⊥DG 于H ,∵S △FDG =DG ×FH =×3FH =4.5 ∴FH =3 ················································································································· 6分∵H 是DG 的中点,FH ∥AD ∴AD =2FH =6 ········································································································ 7分∴S △ADG = ·································································· 8分(以下与解法2同)26.解(1)A (,0),B (0,3) ·················································· 2分(每对一个给1分) (2)满分3分.其中过F 作出垂线1分,作出BF 中垂线1分,找出圆心并画出⊙P 给1分. (注:画垂线PF 不用尺规作图的不扣分)(3)过点P 作PD ⊥轴于D ,则PD =,BD =,··············· 6分PB =PF =,∵△BDP 为直角三形, ∴∴ ································ 7分即 即 ∴与的函数关系为 ··················································································· 8分 (4)存在解法1:∵⊙P 与轴相切于点F ,且与直线相切于点B ∴ ······························································································································ 9分 ∵ ∴∵AF = , ∴ ······················································································ 10分 ∴······················································································································ 11分 把代入,得 ∴点P 的坐标为(1,)或(9,15)··········································································· 12分22416()()39BCG ADG S CG S DG ===△△169169⨯=12121163922AD DG ⋅=⨯⨯=4-y x 3y -y 222PB PD BD =+222BP PD BD =+2223y x y =+-222(3)y x y =+-y x 21362y x =+x l AB AF =22225AB OA OB =+=225AF =4x +22(4)5x +=19x x ==-或19x x ==-或21362y x =+5153y y ==或53-。

2009年广西桂林中考数学试卷

2009年广西桂林中考数学试卷

2009年广西桂林中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣8的相反数是()A.8B.﹣8C.D.2.(3分)下面几个有理数最大的是()A.2B.C.﹣3D.3.(3分)如图,在所标识的角中,同位角是()A.∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠3 4.(3分)如图是一正四棱锥,它是俯视图是()A.B.C.D.5.(3分)下列运算正确的是()A.2a+b=2ab B.(﹣ab)2=a2b2C.a2•a2=2a2D.a4÷a2=26.(3分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2B.2C.﹣1D.17.(3分)如图是一张卡通图,图中两圆的位置关系是()A.相交B.外离C.内切D.内含8.(3分)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.39.(3分)有20张背面完全一样的卡片,其中8张正面印有桂林山水,7张正面印有百色风光,5张正面印有北海海景,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是桂林山水卡片的概率是()A.B.C.D.10.(3分)如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12D.2411.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90度,得到△A′B′O,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)12.(3分)如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A⇒B⇒C⇒D⇒A滑动到A 止,同时点R从点B出发,沿图中所示方向按B⇒C⇒D⇒A⇒B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为()A.2B.4﹣πC.πD.π﹣1二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:x2+3x=.14.(3分)据统计,去年我国粮食产量达10 570亿斤,用科学记数法表示为亿斤.15.(3分)如图,在一次数学课外活动中,测得电线杆底部B与钢缆固定点C的距离为4米,钢缆与地面的夹角为60度,则这条钢缆在电线杆上的固定点A到地面的距离AB是米.(结果保留根号)16.(3分)在函数y中,自变量x的取值范围是.17.(3分)如图,是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的解析式为.18.(3分)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=.三、解答题(共8小题,满分66分)19.(6分)计算:()﹣1﹣(2009)0+4sin30°﹣|﹣2|.20.(6分)先化简,再求值:(x2﹣y2),其中x,y=3.21.(8分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.(1)图中共有对全等三角形;(2)写出你认为全等的一对三角形,并证明.22.(8分)2008年11月28日,为扩大内需,国务院决定在全国实施“家电下乡”政策.第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品,某县一家家电商场,今年一季度对以上四种产品的销售情况进行了统计,绘制了如下的统计图,请你根据统计图中的信息解答下列问题:(1)该商场一季度彩电销售的数量是台;(2)请补全条形统计图和扇形统计图.23.(8分)在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种,如果每人分2棵,还剩42棵,如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有x名同学,则这批树苗有多少棵(用含x的代数式表示);(2)初三(1)班至少有多少名同学?最多有多少名同学?24.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?25.(10分)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线.(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.26.(12分)如图已知直线L:y x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标.(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F (不写作法,保留作图痕迹).(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式.(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B?若存在,求出圆心P 的坐标;若不存在,请说明理由.2009年广西桂林中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣8的相反数是()A.8B.﹣8C.D.【解答】解:根据概念可知﹣8+(﹣8的相反数)=0,所以﹣8的相反数是8.故选:A.2.(3分)下面几个有理数最大的是()A.2B.C.﹣3D.【解答】解:∵﹣3<<<2,∴四个数中,最大的数是2.故选:A.3.(3分)如图,在所标识的角中,同位角是()A.∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠3【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是邻补角,故A错误;B、∠1和∠3是邻补角,故B错误;C、∠1和∠4是同位角,故C正确;D、∠2和∠3是对顶角,故D错误.故选:C.4.(3分)如图是一正四棱锥,它是俯视图是()A.B.C.D.【解答】解:本题的俯视图是一个矩形,因为还有四条看得见的棱,所以矩形里面还有四条表示棱的线段,故选C.5.(3分)下列运算正确的是()A.2a+b=2ab B.(﹣ab)2=a2b2C.a2•a2=2a2D.a4÷a2=2【解答】解:A、错误,2a与b不是同类项,不能合并;B、(﹣ab)2=a2b2,正确;C、错误,应为a2•a2=a4;D、错误,应为a4÷a2=a4﹣2=a2.故选:B.6.(3分)二次函数y=(x﹣1)2+2的最小值是()A.﹣2B.2C.﹣1D.1【解答】解:根据二次函数的性质,当x=1时,二次函数y=(x﹣1)2+2的最小值是2.故选:B.7.(3分)如图是一张卡通图,图中两圆的位置关系是()A.相交B.外离C.内切D.内含【解答】解:此题两圆没有交点,小圆在外圆内,因此两圆的关系为内含,故选D.8.(3分)已知是二元一次方程组的解,则a﹣b的值为()A.﹣1B.1C.2D.3【解答】解:∵已知是二元一次方程组的解,∴,①,由①+,得a=2,由①﹣,得b=3,∴a﹣b=﹣1;故选:A.9.(3分)有20张背面完全一样的卡片,其中8张正面印有桂林山水,7张正面印有百色风光,5张正面印有北海海景,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是桂林山水卡片的概率是()A.B.C.D.【解答】解:根据题意,20张卡抽到的可能性相同,8张印有桂林山水,抽到桂林山水的概率为.故选:C.10.(3分)如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12D.24【解答】解:通过观察结合平行四边形性质得:S阴影6×4=12.故选:C.11.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90度,得到△A′B′O,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)【解答】解:由图知A点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选:D.12.(3分)如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A⇒B⇒C⇒D⇒A滑动到A 止,同时点R从点B出发,沿图中所示方向按B⇒C⇒D⇒A⇒B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为()A.2B.4﹣πC.πD.π﹣1【解答】解:根据题意得在QR运动到四边时,点M到正方形各顶点的距离都为1,点M所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.而正方形ABCD的面积为2×2=4,4个扇形的面积为4 π∴点M所经过的路线围成的图形的面积为4﹣π.故选:B.二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).14.(3分)据统计,去年我国粮食产量达10 570亿斤,用科学记数法表示为 1.057×104亿斤.【解答】解:10 570亿斤,用科学记数法表示为1.057×104亿斤.15.(3分)如图,在一次数学课外活动中,测得电线杆底部B与钢缆固定点C的距离为4米,钢缆与地面的夹角为60度,则这条钢缆在电线杆上的固定点A到地面的距离AB是4米.(结果保留根号)【解答】解:在Rt△ABC中,∵tan C,∴AB=BC•4(米).故答案为:4.16.(3分)在函数y中,自变量x的取值范围是x.【解答】解:根据题意得:2x﹣1≥0,解得,x.17.(3分)如图,是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的解析式为y=﹣2x﹣2.【解答】解:可从正比例函数上找两点:(0,0)、(﹣1,2),这两个点左平移一个单位长度,得(﹣1,0)(﹣2,2),那么这两个点在向左平移一个单位长度得到的函数图象的解析式y=kx+b上,则﹣k+b=0,﹣2k+b=2解得:k=﹣2,b=﹣2.∴得到的解析式为:y=﹣2x﹣2.18.(3分)如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=.【解答】解:∵∠ACA1=∠A1CD∠ACD(∠A+∠ABC),又∵∠ABA1=∠A1BD∠ABD,∠A1CD=∠A1BD+∠A1,∴∠A1∠Aα.同理∠A2∠A1,…即每次作图后,角度变为原来的.故∠A2009.三、解答题(共8小题,满分66分)19.(6分)计算:()﹣1﹣(2009)0+4sin30°﹣|﹣2|.【解答】解:原式=2﹣1+42=1.20.(6分)先化简,再求值:(x2﹣y2),其中x,y=3.【解答】解:原式(x+y)(x﹣y)(2分)(x﹣y)(3分)=﹣(x﹣y)(4分)=y﹣x(5分)当x,y=3时,原式=3.(6分)21.(8分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.(1)图中共有对全等三角形;(2)写出你认为全等的一对三角形,并证明.【解答】解:(1)3;(3分)(写1对、2对均不给分)(2)△ABC≌△DCB.(4分)证明:∵四边形ABCD是等腰梯形,∴AB=DC,∠ABC=∠DCB.(6分)又BC=CB,∴△ABC≌△DCB.(8分)(注:选其它两对证明的,按以上相应步骤给分,全等三角形对应点不对应不扣分)22.(8分)2008年11月28日,为扩大内需,国务院决定在全国实施“家电下乡”政策.第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品,某县一家家电商场,今年一季度对以上四种产品的销售情况进行了统计,绘制了如下的统计图,请你根据统计图中的信息解答下列问题:(1)该商场一季度彩电销售的数量是150台;(2)请补全条形统计图和扇形统计图.【解答】解:(1)读条形统计图可得:商场一季度彩电销售的数量是150台;(2分)(2)根据题意可得:手机有200台,占40%;则销售总量为200÷40%=500台.进而求得冰箱有100台.可补全条形图.进而计算出彩电占30%,洗衣机占10%,据此可补全扇形图.每正确补全一个图形给(2分),其中扇形统计图每补全一个扇形给(1分).23.(8分)在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种,如果每人分2棵,还剩42棵,如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有x名同学,则这批树苗有多少棵(用含x的代数式表示);(2)初三(1)班至少有多少名同学?最多有多少名同学?【解答】解:(1)这批树苗有(2x+42)棵;<(2)根据题意,得解这个不等式组,得40<x≤44(7分)答:初三(1)班至少有41名同学,最多有44名同学.(8分)24.(8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【解答】解:(1)设乙队单独完成需x天.根据题意,得:20+()×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有()×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.25.(10分)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线.(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.(3)在(2)的条件下,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.【解答】(1)证明:∵AB是直径,∴∠ACB=90°.∴∠CAB+∠ABC=90°.∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°.即MA⊥AB.∴MN是半圆的切线.(2)证明:证法1:∵D是弧AC的中点,∴∠DBC=∠2.∵AB是直径,∴∠CBG+∠CGB=90°.∵DE⊥AB,∴∠FDG+∠2=90°.∵∠DBC=∠2,∴∠FDG=∠CGB=∠FGD.∴FD=FG.证法2:连接AD,则∠1=∠2,∵AB是直径,∴∠ADB=90°.∴∠1+∠DGF=90°.又∵DE⊥AB,∴∠2+∠FDG=90°.∴∠FDG=∠FGD.∴FD=FG.(3)解:解法1:过点F作FH⊥DG于H,又∵DF=FG,∴S△FGH S△DFG 4.5.∵AB是直径,FH⊥DG,∴∠C=∠FHG=90°.∵∠HGF=∠CGB,∴△FGH∽△BGC.∴.∴S△BCG16.解法2:∵∠ADB=90°,DE⊥AB,∴∠3=∠2.∵∠1=∠2,∴∠1=∠3.∴AF=DF=FG.∴S△ADG=9.∵∠ADG=∠BCG,∠DGA=∠CGB.∴△ADG∽△BCG.(9分)∴.∴S△BCG.解法3:连接AD,过点F作FH⊥DG于H.∵S FDG DG×FH3FH=4.5,∴FH=3.∵H是DG的中点,FH∥AD,∴AD=2FH=6∴S△ADG.∵∠ADG=∠BCG,∠DGA=∠CGB.∴△ADG∽△BCG.∵DG=3,GC=4,∴()2,∴()2,∴S△BCG=16.26.(12分)如图已知直线L:y x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标.(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F (不写作法,保留作图痕迹).(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式.(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B?若存在,求出圆心P 的坐标;若不存在,请说明理由.【解答】解:(1)令y=0得x=﹣4,令x=0得,y=3,∴A(﹣4,0),B(0,3);(2)如图:(3)过点P作PD⊥y轴于D,则PD=|x|,BD=|3﹣y|,PB=PF=y,∵△BDP为直角三角形,∴BP2=PD2+BD2,即|y|2=|x|2+|3﹣y|2,y2=x2+(3﹣y)2,∴y与x的函数关系为y x2;(4)存在.解:∵⊙P与x轴相切于点F,且与直线l相切于点B,∴AB=AF,∵AB2=OA2+OB2=52,∴AF2=52,∵AF=|x+4|,∴(x+4)2=52,∴x=1或x=﹣9,把x=1或x=﹣9代入y x2,得y或y=15,∴点P的坐标为(1,)或(﹣9,15).。

初中数学中考真题精编-2009年答案及评分标准

初中数学中考真题精编-2009年答案及评分标准

2009年来宾市初中毕业升学统一考试试题数学参考答案及评分标准一、填空题:本大题共10小题,每小题3分,共30分.1.-237; 2.10; 3.(x +2)(x -2); 4.25; 5.⎩⎨⎧==11y x ; 6.x y 2-=;7.1.30×105; 8.65; 9.2; 10.答案不唯一,只要符合题意均给分.二、选择题:本大题共8小题,每小题3分,共24分.题号 11 12 13 14 15 16 17 18 答案DBCDACCB三、解答题:本大题共8小题,满分66分. 19.解:原式=222919⨯+-+ …………4分(每对一个值给1分)=1+1=2……………………5分20.解:设该镇这两年中财政净收入的平均年增长率为x , ……………………1分依题意可得:5000(1+x )2=2×5000 ………………………………4分解得 21=+x ,或021<-=+x (舍去) ……………………5分∴%4.41414.012=≈-=x……………………………………6分答:该镇这两年中财政净收入的平均年增长率约为41.4﹪.…………7分21.解:(1)502;(2)23.71;(3)图略,值为150(图、值各1分);(4)80—99.(每小题各2分)22.证明:∵四边形ABCD 是平行四边形∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2分 又∵△ADE 和△CBF 都是等边三角形 ∴DE =BF ,AE =CF∠DAE =∠BCF =60° ………………4分∵∠DCF =∠BCD -∠BCF ∠BAE =∠DAB -∠DAE ∴∠DCF =∠BAE……………………6分∴△DCF ≌△BAE (SAS ) ………………7分∴DF =BE∴四边形BEDF 是平行四边形. …………8分23.解:(1)见参考图 ……………………………3分(不用尺规作图,一律不给分。

2009年 全国 117个地区中考试卷及答案

2009年 全国 117个地区中考试卷及答案

2009年全国各地中考试题及答案112份下载地址(截止到7月11日)(7月7日前的为红色)2009年安徽省初中毕业学业考试数学试题及答案2009年安徽省芜湖市初中毕业学业考试题及答案2009年北京高级中学中等学校招生考试数学试题及答案2009年福建省福州市课改实验区中考试卷及参考答案2009年福建省龙岩市初中毕业、升学考试试题及答案2009年福建省宁德市初中毕业、升学考试试题及答案2009年福建省莆田市初中毕业、升学考试试卷及答案2009年福建省泉州市初中毕业、升学考试试题及答案2009年福建省漳州市初中毕业暨高中阶段招生题及答案2009年甘肃省定西市中考数学试卷及答案2009年甘肃省兰州市初中毕业生学业考试试卷及答案2009年甘肃省庆阳市高中阶段学校招生考试题及答案2009年广东省佛山市高中阶段学校招生考试题及答案2009年广东省茂名市高中阶段招生考试试题及答案2009年广东省梅州市初中毕业生学业考试试题及答案2009年广东省清远市初中毕业生学业考试试题及答案2009年广东省深圳市初中毕业生学业考试试卷及答案2009年广东省肇庆市初中毕业生学业考试试题及答案2009年广西省崇左市初中毕业升学考试数学试题及答案2009年广西省桂林市百色市初中毕业暨升学试卷及答案2009年广西省河池市初中毕业暨升学统一考试卷及答案2009年广西省贺州市初中毕业升学考试试卷及答案2009年广西省柳州市初中毕业升学考试数学试卷及答案2009年广西省南宁市中等学校招生考试题及答案2009年广西省钦州市初中毕业升学考试试题卷及答案2009年广西省梧州市初中毕业升学考试卷及答案2009年贵州省安顺市初中毕业、升学招生考试题及答案2009年贵州省黔东南州初中毕业升学统一考试题及答案2009年河北省初中毕业生升学文化课考试试卷及答案2009年河南省初中学业水平暨高级中等学校招生卷及答2009年黑龙江省哈尔滨市初中升学考试题及答案2009年黑龙江省牡丹江市初中毕业学业考试题及答案2009年黑龙江省齐齐哈尔市初中毕业学业考试题及答案2009年黑龙江省绥化市初中毕业学业考试卷及答案(答案为扫描版)2009年湖北省鄂州市初中毕业及高中阶段招生题及答案2009年湖北省恩施自治州初中毕业生学业考试题及答案2009年湖北省黄冈市初中毕业生升学考试试卷及答案2009年湖北省黄石市初中毕业生学业考试联考卷及答案2009年湖北省黄石市初中毕业生学业考试试题及答案2009年湖北省十堰市初中毕业生学业考试试题及答案2009年湖北省武汉市初中毕业生学业考试试题及答案2009年湖北省襄樊市初中毕业、升学统一考试题及答案2009年湖北省孝感市初中毕业生学业考试试题及答案2009年湖北省宜昌市初中毕业生学业考试试题及答案2009年湖南省长沙市初中毕业学业考试试卷及答案2009年湖南省常德市初中毕业学业考试试题及答案2009年湖南省郴州市初中毕业考试数学试题及答案2009年湖南省衡阳市初中毕业学业考试试卷及参考答案2009年湖南省怀化市初中毕业学业考试卷及答案2009年湖南省娄底市初中毕业学业考试试题及答案2009年湖南省邵阳市初中毕业学业水平考试卷及答案2009年湖南省湘西自治州初中毕业学业考试卷及答案2009年湖南省益阳市普通初中毕业学业考试试卷及答2009年湖南省株洲市初中毕业学业考试数学试题及答案2009年吉林省长春市初中毕业生学业考试试题及答案2009年吉林省初中毕业生学业考试数学试题及答案2009年江苏省苏州市中考数学试题及答案(答案为扫描版)2009年江苏省中考数学试卷及参考答案2009年江西省中等学校招生考试数学试题及参考答案2009年辽宁省本溪市初中毕业生学业考试试题及答案2009年辽宁省朝阳市初中升学考试数学试题及答案2009年辽宁省抚顺市初中毕业生学业考试试卷及答案2009年辽宁省锦州市中考数学试题及答案2009年辽宁省铁岭市初中毕业生学业考试试题及答案2009年内蒙古赤峰市初中毕业、升学统一考试题及答案(答案为扫描版)2009年内蒙古自治区包头市高中招生考试试卷及答案2009年宁夏回族自治区初中毕业暨高中阶段招生题及答案2009年山东省德州市中等学校招生考试数学试题及答案2009年山东省东营市中等学校招生考试试题及答案2009年山东省济南市高中阶段学校招生考试试题及答案2009年山东省济宁市高中阶段学校招生考试试题及答案2009年山东省临沂市中考数学试题及参考答案2009年山东省日照市中等学校招生考试试题及参考答案2009年山东省泰安市高中段学校招生考试试题及答案2009年山东省威海市初中升学考试数学试卷及参考答案2009年山东省潍坊市初中学业水平考试数学试题及答案2009年山东省烟台市初中学生学业考试试题及答案2009年山东省枣庄市中等学校招生考试数学试题及答案2009年山东省中等学校招生考试数学试题及参考答案2009年山东省淄博市中等学校招生考试试题及答案2009年山西省初中毕业学业考试数学试卷及答案2009年山西省太原市初中毕业学业考试试卷及答案2009年陕西省初中毕业学业考试数学试题及答案2009年上海市初中毕业统一学业考试数学试卷及答案2009年四川省成都市高中学校统一招生考试试卷及答案2009年四川省达州市高中招生统一考试题及答案2009年四川省高中阶段教育学校招生统一考试题及答案2009年四川省泸州市高中阶段学校招生统一考试题及答(答案为扫描版)2009年四川省眉山市高中阶段教育学校招生试题及答案2009年四川省南充市高中阶段学校招生统一考试卷及答2009年四川省遂宁市初中毕业生学业考试试题及答案2009年台湾第一次中考数学科试题及答案2009年天津市初中毕业生学业考试数学试题及答案2009年新疆维吾尔自治区初中毕业生学业考试题及答案2009年云南省高中(中专)招生统一考试试题及答案2009年浙江省杭州市各类高中招生文化考试试题与答案2009年浙江省湖州市初中毕业生学业考试试题及答案2009年浙江省嘉兴市初中毕业生学业考试试卷及答案2009年浙江省金华市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试题及答案2009年浙江省宁波市初中毕业生学业考试试题及答案2009年浙江省衢州市初中毕业生学业考试数学卷及答案2009年浙江省台州市初中学业考试数学试题及参考答案2009年浙江省温州市初中毕业生学业考试试题及答案(答案为扫描版)2009年浙江省义乌市初中毕业生学业考试题及参考答案2009年浙江省舟山市初中毕业生学业考试数学卷及答案2009年重庆市初中毕业暨高中招生考试数学试题及答案2009年重庆市江津市初中毕业学业暨高中招生试题及答2009年重庆市綦江县初中毕业暨高中招生考试题及答案。

广西南宁市中考数学试题(含解析)

广西南宁市中考数学试题(含解析)

2012年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.4的倒数是(D)A.4B.4C.14D.14【考点】倒数.【专题】计算题.【分析】根据倒数的定义:乘积是1的两个数,即可求解.【解答】解:4的倒数是14.故选D.【点评】本题主要考查了倒数的定义,正确理解定义是解题关键.2.如图是由六个小正方体组合而成的一个立体图形,它的主视图是(B)A.B.C.D.【考点】考点:简单组合体的三视图.【专题】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有2个正方形.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.考查了学生们的空间想象能力.3.芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为(A)A.2.01×10-6千克B.0.201×10-5千克C.20.1×10-7千克D.2.01×10-7千克【考点】科学记数法—表示较小的数.【专题】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 00201=2.01×10-6;故选A.【点评】此题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列图形中,既是轴对称图形又是中心对称图形的是(A)A.B.C.D.【考点】考点:中心对称图形;轴对称图形.【专题】常规题型.【分析】根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形是中心对称图形,也是轴对称图形,故此选项正确;B、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,解题关键是找出图形的对称中心与对称轴,属于基础题,比较容易解答.5.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是(B)A.①②B.①③C.②④D.②③【考点】全面调查与抽样调查.【专题】【分析】本题需要根据具体情况正确选择普查或抽样调查等方法,并理解有些调查是不适合使用普查方法的.【解答】解:①调查一批灯泡的使用寿命,适合抽样调查;②调查全班同学的身高,适合全面调查;③调查市场上某种食品的色素含量是否符合国家标准,适合抽样调查;④企业招聘,对应聘人员进行面试,适合全面调查;故选B.【点评】本题主要考查了全面调查和抽样调查,在解题时选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是本题的关键.6.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是(C)A.2cm<OA<5cm B.2cm<OA<8cmC.1cm<OA<4cm D.3cm<OA<8cm【考点】平行四边形的性质;三角形三边关系.【专题】【分析】由在平行四边形ABCD中,AB=3cm,BC=5cm,根据平行四边形对角线互相平分与三角形三边关系,即可求得OA=OC=12AC,2cm<AC<8cm,继而求得OA的取值范围.【解答】解:∵平行四边形ABCD中,AB=3cm,BC=5cm,∴OA=OC=12AC,2cm<AC<8cm,∴1cm<OA<4cm.故选C.【点评】此题考查了平行四边形的性质与三角形三边关系.此题比较简单,注意数形结合思想的应用,注意掌握平行四边形对角线互相平分定理的应用.7.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是(A)A.(1,1)B.(-1,1)C.(-2,-2)D.(2,-2)【考点】一次函数图象上点的坐标特征.【专题】探究型.【分析】将点A(2,4)代入函数解析式求出k的值,再把各点的坐标代入解析式,逐一检验即可.【解答】解:∵点A(2,4)在函数y=kx-2的图象上,∴2k-2=4,解得k=3,∴此函数的解析式为:y=3x-2,A、∵3×1-2=1,∴此点在函数图象上,故本选项正确;B、∵3×(-1)-2=-5≠1,∴此点在不函数图象上,故本选项错误;C、∵3×(-2)-2=-7≠-2,∴此点在不函数图象上,故本选项错误;D、∵3×2-2=4≠-2,∴此点在不函数图象上,故本选项错误.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.8.下列计算正确的是(C)A.(m-n)2=m2-n2B.(2ab3)2=2a2b6C.2xy+3xy=5xy D.324aa a【考点】二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;完全平方公式.【专题】推理填空题.【分析】根据完全平方公式即可判断A;根据积的乘方和幂的乘方,求出式子的结果,即可判断B;根据合并同类项法则求出后即可判断C;根据二次根式的性质求出后即可判断D.【解答】解:A、(m-n)2=m2-2mn+n2,故本选项错误;B、(2ab3)2=4a2b6,故本选项错误;C、2xy+3xy=5xy,故本选项正确;D、342a aa,故本选项错误;故选C.【点评】本题考查了二次根式的性质,合并同类项,幂的乘方和积的乘方,完全平方公式的应用,题目比较典型,但是一道比较容易出错的题目.主要考查学生的辨析能力和计算能力.9.如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是(A)A.k=n B.h=m C.k<n D.h<0,k<0【考点】二次函数的性质.【专题】【分析】借助图象找出顶点的位置,判断顶点横坐标、纵坐标大小关系.【解答】解:根据二次函数解析式确定抛物线的顶点坐标分别为(h,k),(m,n),因为点(h,k)在点(m,n)的下方,所以k=n不正确.故选A.【点评】本题是抛物线的顶点式定义在图形中的应用.能直接根据函数的解析式说出其顶点坐标是解决此题的关键.10.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有(C)A.7队B.6队C.5队D.4队【考点】一元二次方程的应用.【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打(x-1)场球,第二个球队和其他球队打(x-2)场,以此类推可以知道共打(1+2+3+…+x-1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=10,即(1)102x x,∴x2-x-20=0,∴x=5或x=-4(不合题意,舍去).故选C.【点评】此题和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确的列出方程是解决问题的关键.此题还要判断所求的解是否符合题意,舍去不合题意的解.11.如图,在等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为(D)A.8B.6 C.5 D.4【考点】切线的性质;等腰直角三角形.【专题】【分析】首先连接OA,OD,由AB,AC都与⊙O相切,根据切线长定理与切线的性质,即可得∠BAO=∠CAO,OD⊥AB,又由在等腰直角三角形ABC中,AB=AC=8,易得∠B=45°,OA⊥BC,继而利用三角函数,即可求得⊙O的半径.【解答】解:连接OA,OD,∵AB,AC都与⊙O相切,∴∠BAO=∠CAO,OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=8,∴AO⊥BC,∴∠B=∠BAO=45°,∴OB=AB?cos∠B=8×2422,∴在Rt△OBD中,OD=OB?sin∠B=24242.故选D.【点评】此题考查了切线的性质、切线长定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.12.已知二次函数y=ax2+bx+1,一次函数y=k(x-1)-k2 4 ,若它们的图象对于任意的非零实数k都只有一个公共点,则a,b的值分别为(B)A.a=1,b=2B.a=1,b=-2C.a=-1,b=2D.a=-1,b=-2 【考点】二次函数的性质;根的判别式.【专题】【分析】根据题意由y=ax2+bx+c①,y=k(x-1)-24k②,组成的方程组只有一组解,消去y,整理得,ax2+(b-k)x+1+24k=0,则△=(b-k)2-4a(1+k+24k)=0,整理得到(1-a)k2-2(2a+b)k+b2-4a=0,由于对于任意的实数k都成立,所以有1-a=0,2a+b=0,b2-4a=0,求出a,b即可.【解答】解:根据题意得,y=ax2+bx+1①,y=k(x-1)-24k②,解由①②组成的方程组,消去y,整理得,ax2+(b-k)x+1+k+24k=0,∵它们的图象对于任意的实数k都只有一个公共点,则方程组只有一组解,∴x有两相等的值,即△=(b-k)2-4a(1+k+24k)=0,∴(1-a)k2-2(2a+b)k+b2-4a=0,由于对于任意的实数k都成立,所以有1-a=0,2a+b=0,b2-4a=0,∴a=1,b=-2,故选B.【点评】本题考查了用待定系数法求抛物线的解析式.二次函数的一般式:y=ax2+bx+c(a ≠0);也考查了利用方程组的解的情况确定函数图象交点的问题,而方程组的解的情况转化为一元二次方程根的情况.二、填空题(共6小题,每小题3分,满分18分)13.如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为AB∥CD.【考点】平行线的判定.【专题】【分析】根据同位角相等,两直线平行判断.【解答】解:根据题意,∠1与∠2是三角尺的同一个角,所以∠1=∠2,所以,AB∥CD(同位角相等,两直线平行).故答案为:AB∥CD.【点评】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.14.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是S甲2=1.5,S乙2=2.5,那么身高更整齐的是甲队(填“甲”或“乙”).【考点】方差.【专题】【分析】方差是用来衡量一组数据波动大小的量,故由甲乙的方差可作出判断.【解答】解:由于S甲2<S乙2,则甲队中身高更整齐.∴两队中身高更整齐的是甲队.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定15.分解因式:ax2-4ax+4a= a(x-2)2.【考点】提公因式法与公式法的综合运用.【专题】【分析】先提取公因式a,再利用完全平方公式进行二次分解.【解答】解:ax2-4ax+4a,=a(x2-4x+4),=a(x-2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.16.如图,点B,A,C,D在⊙O上,OA⊥BC,∠AOB=50°,则∠ADC=25°.【考点】圆周角定理;垂径定理.【专题】【分析】由OA⊥BC,利用垂径定理,即可求得AB AC,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【解答】解:∵OA⊥BC,∴AB AC,∴∠ADC=12∠AOB=12×50°=25°.故答案为:25.【点评】此题考查了圆周角定理与垂径定理.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半与平分弦的直径平分这条弦,并且平分弦所对的两条弧定理的应用.17.如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组221x yx y的解是11xy.【考点】一次函数与二元一次方程(组).【专题】推理填空题.【分析】先由图象得出两函数的交点坐标,根据交点坐标即可得出方程组的解.【解答】解:∵由图象可知:函数y=x-2和y=-2x+1的图象的交点P的坐标是(1,-1),又∵由y=x-2,移项后得出x-y=2,由y=-2x+1,移项后得出2x+y=1,∴方程组221x yx y的解是11xy,故答案为:11 xy.【点评】本题考查了一次函数与二元一次方程组的应用,主要考查学生的观察图形的能力和理解能力,题目具有一定的代表性,是一道比较好但又比较容易出错的题目.18.有若干张边长都是2的四边形纸片和三角形纸片,从中取一些纸片按如图所示的顺序拼接起来(排在第一位的是四边形),可以组成一个大的平行四边形或一个大的梯形.如果所取的四边形与三角形纸片数的和是5时,那么组成的大平行四边形或梯形的周长是20;如果所取的四边形与三角形纸片数的和是n,那么组成的大平行四边形或梯形的周长是3n+5或3n+4.【考点】规律型:图形的变化类.【专题】【分析】第1张纸片的周长为8,由2张纸片所组成的图形的周长比第1张纸片的周长增加了2.由3张纸片所组成的图形的周长比前2张纸片所组成的图形的周长增加了4,按此规律可知:①纸张张数为1,图片周长为8=3×1+5;纸张张数为3,图片周长为8+2+4=3×3+5;纸张张数为5,图片周长为8+2+4+2+4=3×5+5;…;当n为奇数时,组成的大平行四边形或梯形的周长为3n+5;②纸张张数为1,图片周长为8+2=3×2+4;纸张张数为4,图片周长为8+2+4+2=3×4+4;纸张张数为6,图片周长为8+2+4+2+4+2=3×6+4;…;当n为偶数时,组成的大平行四边形或梯形的周长为3n+4.【解答】解:从图形可推断:纸张张数为5,图片周长为8+2+4+2+4=3×5+5=20;当n为奇数时,组成的大平行四边形或梯形的周长为:8+2+4+…+2+4=3n+5;当n为偶数时,组成的大平行四边形或梯形的周长为:8+2+…+4+2=3n+4.综上,组成的大平行四边形或梯形的周长为3n+5或3n+4.故答案为:20,3n+5或3n+4.【点评】本题考查了规律型:图形的变化,解题的关键是将纸片的张数分奇偶两种情况进行讨论,得出组成的大平行四边形或梯形的周长.三、解答题(共8小题,满分66分)19.计算:02012684sin45(1).【考点】实数的运算;特殊角的三角函数值.【专题】计算题.【分析】分别运算绝对值、二次根式的化简,然后代入sin45°的值,继而合并运算即可.【解答】解:原式26224172.【点评】此题考查了实数的运算及特殊角的三角函数值,属于基础题,特殊角的三角函数值是需要我们熟练记忆的内容.20.解不等式组2132(1)4x xx x,并把解集在数轴上表示出来.【考点】解一元一次不等式组;不等式的性质;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:2132(1)4x xx x①②,∵解不等式①得:x>-1,解不等式②得:x≤2,∴不等式组的解集为:-1<x≤2,在数轴上表示不等式组的解集为:.【点评】本题考查了不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集的应用,关键是能根据不等式的解集找出不等式组的解集,题型较好,难度适中.21.2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).(1)分数段在85~90范围的人数最多;(2)全校共有多少人参加比赛?(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.【考点】频数(率)分布直方图;列表法与树状图法.【专题】【分析】(1)由条形图可直接得出人数最多的分数段;(2)把各小组人数相加,得出全校参加比赛的人数;(3)利用“树形图法”,画出搭配方案,由此可求上衣和裤子能搭配成同一种颜色的概率.【解答】解:(1)由条形图可知,分数段在85~90范围的人数最多为10人,故答案为:85~90;(2)全校参加比赛的人数=5+10+6+3=24人;(3)上衣和裤子搭配的所有可能出现的结果如图所示,共有9总搭配方案,其中,上衣和裤子能搭配成同一种颜色的有3种,上衣和裤子能搭配成同一种颜色的概率为:31 93.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22.如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.](1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.【考点】全等三角形的判定与性质.【专题】【分析】(1)根据全等三角形的定义可以得到:△ABC≌△BAD,△AOE≌△BOE,△AOC ≌△BOD;(2)首先证得:△ABC≌△BAD,则OA=OB,利用等腰三角形中:等边对等角即可证得OE⊥AB.【解答】解:(1)△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)OE⊥AB.理由如下:∵在Rt△ABC和Rt△BAD中,AC=BD,∠BAC=∠ABD,AB=BA,∴△ABC≌△BAD,∴∠DAB=∠CBA,∴OA=OB,∵点E是AB的中点,∴OE⊥AB.【点评】本题考查了全等三角形的判定与性质,以及三线合一定理,正确证明△ABC≌△BAD是关键.23.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【专题】【分析】首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高.【解答】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC?cos30°=36392米,∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF?tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为 6.4米.【点评】本题考查了解直角三角形的应用,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.24.南宁市某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.(1)列出原计划种植亩数y(亩)与平均每亩产量x(万斤)之间的函数关系式,并写出自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的 1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?【考点】反比例函数的应用.【专题】【分析】(1)直接根据亩产量、亩数及总产量之间的关系得到函数关系式即可;(2)根据题意列出36369201.5x x后求解即可.【解答】解:(1)由题意知:xy=36,故36yx(310≤x≤25)(2)根据题意得:36369201.5x x解得:x=0.3经检验:0.3x是原方程的根1.5x=0.45答:改良前亩产0.3万斤,改良后亩产0.45万斤.【点评】本题考查了反比例函数的应用,解题的关键是从复杂的实际问题中整理出反比例函数模型,并利用其解决实际问题.25.如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E 重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;(2)如图2,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;(3)如图2,在(2)的条件下,求折痕FG的长.【考点】翻折变换(折叠问题);菱形的判定.【专题】综合题.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,则ON⊥BC,从而判断出ON是梯形ABCE的中位线,继而可得出结论.(3)根据(1)可得出AE=AB,继而在RT△ADE中,可判断出∠AED为30°,在RT△EFO中求出FO,继而可得出FG的长度.【解答】解:(1)由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)连接ON,∵△AED是直角三角形,AE是斜边,点O是AE的中点,△AED的外接圆与BC 相切于点N,∴ON⊥BC,∵点O是AE的中点,∴ON是梯形ABCE的中位线,∴点N是线段BC的中点.(3)∵OE、ON均是△AED的外接圆的半径,∴OE=OA=ON=2,故可得AE=AB=4,在RT△ADE中,AD=2,AE=4,∴∠AED=30°,在RT△OEF中,OE=2,∠AED=30°,∴233 OF,故可得FG=4323 OF.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,难点在第三问,关键在于得出ON、OE均是△AED的外接圆,然后判断出AE=AB,难度较大.26.已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF 在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.【考点】一次函数综合题.【专题】【分析】(1)过点A 作AE ⊥x 轴于点E ,先证明△BCD ≌△CAE ,再根据相似三角形对应边成比例即可求出y 与x 之间的函数关系式;(2)先运用配方法将2113424yx x 写成顶点式,再根据自变量x 的取值范围即可求解;(3)欲使四边形ABEF 的周长最小,由于线段AB 与EF 是定长,所以只需BE+AF 最小.为此,先确定点E 、F 的位置:过点A 作x 轴的平行线,并且在这条平行线上截取线段AA ′,使AA ′=1,作点B 关于x 轴的对称点B ′,连接A ′B ′,交x 轴于点E ,在x 轴上截取线段EF=1,则点E 、F 的位置确定.再根据待定系数法求出直线A ′B ′的解析式,然后令y=0,即可求出点E 的横坐标,进而得出点E 的坐标.【解答】解:(1)如图1,过点A 作AE ⊥x 轴于点E .在△BCD 与△CAE 中,∵∠BCD=∠CAE=90°-∠ACE ,∠BDC=∠CEA=90°,∴△BCD ≌△CAE ,∴BD :CE=CD :AE ,∵A (3,4),B (-1,y ),C (x ,0)且-1<x <3,∴y :(3-x )=(x+1):4,∴2113424yxx(-1<x <3);(2)y 没有最大值.理由如下:∵222113131(2)(1)1424444yx x x x x 又∵-1<x <3,∴y 没有最大值;(3)如图2,过点A 作x 轴的平行线,并且在这条平行线上截取线段AA ′,使AA ′=1,作点B 关于x 轴的对称点B ′,连接A ′B ′,交x 轴于点E ,在x 轴上截取线段EF=1,则此时四边形ABEF 的周长最小.∵A(3,4),∴A′(2,4),∵B(-1,1),∴B′(-1,-1).设直线A′B′的解析式为y=kx+b,则241 k bk b,解得5323kb.∴直线A′B′的解析式为5233y x,当y=0时,5233x,解得25x.故线段EF平移至如图2所示位置时,四边形ABEF的周长最小,此时点E的坐标为(25,0).【点评】本题考查了相似三角形的性质与判定,待定系数法求一次函数的解析式,轴对称-最短路线问题,综合性较强,有一定难度.(1)中通过作辅助线证明△BCD≌△CAE是解题的关键,(3)中根据“两点之间,线段最短”确定点E、F的位置是关键,也是难点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年南宁市中等学校招生考试数 学本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回.第Ⅰ卷(选择题 共36分)一、选择题:(本大题共12小题,每小题3分,共36分)每小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.使用机改卷的考生........,请用2B 铅笔在答题卷上将选定的答案标号涂黑;使用非机改卷的六县考生...........,请用黑(蓝黑)墨水笔将每小题选定的答案的序号填写在答题卷相应的表格内.1.13的相反数是( ) A .3 B .13C .3-D .13-2.图1是一个五边形木架,它的内角和是( )A .720°B .540°C .360°D .180°3.今年6月,南宁市举行了第五届泛珠三角区域经贸合作洽谈会.据估算,本届大会合同投资总额达2260亿元.将2260用科学记数法表示为(结果保留2个有效数字)( ) A .32.310⨯B .32.210⨯C .32.2610⨯D .40.2310⨯4.与左边三视图所对应的直观图是( )5.不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )6.要使式子x有意义,x 的取值范围是( ) A .1x ≠ B .0x ≠ C .10x x >-≠且 D .10x x ≠≥-且7.如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )图1A .B .C .D .A .B .C .D .A .210cm B .220cmC .240cmD .280cm8.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +9.在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0C .1D .210.如图3,AB O 是⊙的直径,弦30CD AB E CDB O ⊥∠=于点,°,⊙, 则弦CD 的长为( ) A .3cm 2B .3cm C. D .9cm11.已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个12.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对B .6对C .5对D .3对A CD图2图3CABOE D图4第Ⅱ卷(非选择题,共84分)二、填空题:(本大题共6小题,每小题2分,共12分)13.如图5,直线a 、b 被c 所截,且11202a b ∠=∠=∥,°,则 °. 14.计算:()22a ba ÷ .15.三角尺在灯泡O 的照射下在墙上形成影子(如图6所示).现测得20c m 50c m O A O A '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .16.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是 .17.如图7,一艘海轮位于灯塔P 的东北方向,距离灯塔A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶的路程AB 为 _____________海里(结果保留根号).18.正整数按图8的规律排列.请写出第20行,第21列的数字 .考生注意:第三至第八大题为解答题,要求在答题卷...上写出解答过程. 三、(本大题共2小题,每小题满分6分,共12分) 19.计算:()1200911sin 602-⎛⎫-+-- ⎪⎝⎭°20.先化简,再求值:cab 12 图5 图6 A A O 灯 三角尺 投影 图7 BAC P 东北45° 30° 第一行第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 13 20 … 25 24 23 22 21 … ……图8()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭,其中x =四、(本大题共2小题,每小题满分10分,共20分)21.为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整请根据以上图表提供的信息,解答下列问题:(1)表中m n 和所表示的数分别为:__________m n ==,__________; (2)请在图9中,补全频数分布直方图; (3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?22.已知ABC △在平面直角坐标系中的位置如图10所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点C 按顺时针方向旋转90A B C '''°后的△; (3)求点A 旋转到点A '所经过的路线长(结果保留π).图9 频数分数(分)图1023.如图11,PA 、PB 是半径为1的O ⊙的两条切线,点A 、B 分别为切点,60APB OP AB C O D ∠=°,与弦交于点,与⊙交于点.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形; (2)求阴影部分的面积(结果保留π).六、(本大题满分10分)24.南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系如图12所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积()2m x 满足函数关系式:y kx =乙.(1)根据图12写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系式;(2)如果狮山公园铺设广场砖的面积为21600m ,那么公园应选择哪个工程队施工更合算?七、(本大题满分10分)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.图11图12)2图13-1ADC BE图13-2BC E DAF PF26.如图14,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?图142009年南宁市中等学校招生考试 数学试题参考答案与评分标准二、填空题(本大题共6小题,每小题2分,共12分)13.60 14.32a b 15.25 16.4517.()40 18.420 三、(本大题共2小题,每小题满分6分,共 12分)19.解:()1200911sin 602-⎛⎫-+- ⎪⎝⎭°=()12-+- ············································································································ 4分 =12-- ··································································································································· 5分3=- ········································································································································ 6分 20.解:()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭ =()()11211x x x x x +--+-· ································································································· 3分 22x =+ ·································································································································· 4分当x =22=+ ··························································································· 5分 4= ········································································································ 6分四、(本大题共2小题,每小题满分10分,共20分)21.解:(1)900.3m n ==,; ························································································ 4分 (2)图略. ···························································································································· 6分 (3)比赛成绩的中位数落在:70分~80分. ······································································· 8分 (4)获奖率为:6020100200+⨯%=40%(或0.3+0.1=0.4) ··············································· 10分 22.解:(1)()04A ,、()31C ,; ······················································································ 2分 (2)图略. ···························································································································· 6分(3)AC =··················································································································· 7分90π180AA ⨯'=·························································································································· 9分π2=···········································································································································10分 五、(本大题满分10分)23.解:(1)ACO BCO APC BPC PAO PBO △≌△,△≌△,△≌△ ························ 3分(写出一个全等式子得1分)(2)PA 、PB 为O ⊙的切线PO ∴平分90APB PA PB PAO ∠=∠=,,° ······················ 5分PO AB ∴⊥············································································· 6分∴由圆的对称性可知:AOD S S =阴影扇形 ······························ 7分 在Rt PAO △中,11603022APO APB ∠=∠=⨯=︒°90903060AOP APO ∴∠=-∠=-︒=︒°° ········································································ 8分260π1360AODS S ⨯⨯∴==阴影扇形 ····························································································· 9分π6=········································································································· 10分 六、(本大题满分10分)24.解:(1)当0500x ≤≤时,设1y k x =甲,把()50028000,代入上式得:11280002800050056500k k =∴==, 56y x ∴=甲 ····························································································································· 2分 当500x ≥时,设2y k x b =+甲,把()50028000,、()100048000,代入上式得:2250028000100048000k b k b +=⎧⎨+=⎩ ············································································································ 3分 解得:2408000k b =⎧⎨=⎩··················································································································· 4分408000y x ∴=+甲()()560500408000500x x y x x <⎧⎪∴=⎨+⎪⎩甲≤≥ ···························································································· 5分 (2)当1600x =时,401600800072000y =⨯+=甲 ······················································ 6分1600y k =乙 ····················································································· 7分 ①当y y <乙甲时,即:720001600k <得:45k > ····························································································································· 8分②当y y >乙甲时,即:720001600k >得:045k << ······················································································································· 9分③当y y =乙甲时,即720001600k =,45k ∴=答:当45k >时,选择甲工程队更合算,当045k <<时,选择乙工程队更合算,当45k =时,选择两个工程队的花费一样. ······················································································ 10分 七、(本大题满分10分) 25.解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形 90B C ∴∠=∠=°1390∴∠+∠=°12∠=∠ ·········································································· 1分 90DAM ABE DA AB ∠=∠== °, DAM ABE ∴△≌△ DM AE ∴= ·························································································································· 9分AE EP = DM PE ∴=∴四边形DMEP 是平行四边形. ······················································································· 10分 (备注:作平行四边形DMEP ,并计算出AM 或BM 的长度,但没有证明点M 在AB 边上的扣1分)解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形 ································ 8分 证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP . 90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠, ········································· 9分1590∠+∠= ° 4590∴∠+∠=°AE DM ∴⊥AE EP ⊥DM EP ∴⊥∴四边形DMEP 为平行四边形 ··························································································· 10分 (备注:此小题若有其他的证明方法,只要证出判定平行四边形的一个条件,即可得1分)八、(本大题满分10分)26.解:(1)横向甬道的面积为:()2120180150m 2x x += ··········································· 2分 (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯ ·················································· 4分整理得:21557500x x -+=F A D C B E 13 2B C E D A FP5 41M125150x x ==,(不符合题意,舍去) ·············································································· 6分 ∴甬道的宽为5米.(3)设建设花坛的总费用为y 万元.()21201800.028******** 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦ ················································ 7分 20.040.5240x x =-+当0.5 6.25220.04b x a =-==⨯时,y 的值最小. ································································ 8分 因为根据设计的要求,甬道的宽不能超过6米,6x ∴=当米时,总费用最少. ····························································································· 9分最少费用为:20.0460.56240238.44⨯-⨯+=万元 ······················································· 10分。

相关文档
最新文档