运筹学 第五章 整数规划
运筹学 第05章 整数规划与分配问题
1
整数规划问题的提出
0 xj 1 表示项目j不被选中 表示项目j被选中 ( j 1,2,3,4,5)
解:决策变量:设
目标函数:期望收益最大
max z 10 x1 8 x 2 7 x3 6 x 4 9 x5
约束条件:投资额限制条件 6x1+4x2+2x3+4x4+5x515 项目A、C、E之间必须且只需选择一项:x1+x3+x5=1 项目B、D之间必须且只需选择一项:x2+x4=1 项目C的实施要以项目D的实施为前提条件: x3 x4 归纳起来,其数学模型为:
n
(i 1,2, , m) ( j 1,2, , n)
2
整数规划问题的分类
根据变量取整数的情况,将整数规划分为:
(1)纯整数规划,所有变量都取整数.
(2)混合整数规划,一部分变量取整数,一部分变量取实数 (3)0-1整数规划 ,所有变量均取0或1
2
整数规划问题的求解思考
1
整数规划问题与其松弛问题
2
匈牙利法
例:用匈牙利法求解下列指派问题,已知效率矩阵分别如下:
任务 A 2 10 9 7 B 15 4 14 8 C 13 14 16 11 D 4 15 13 9
人员
甲 乙 丙 丁
2
匈牙利法
2 10 9 7
15 4 14 8
13 14 16 11
4 15 13 9
例:其中(2,2)(3,1)点为最大值,Z=4。常用的求解整数规划的方法有: 割平面法和
分支定界法,对于0-1规划问题采用隐枚举法和匈牙利法。
3
分派问题与匈牙利法
1
运筹学课件第五章 整数规划
第一节 整数规划的数学模型
解的特点: 整数规划
松弛问题
max c x Ax b s .t . x 0, x为整数
max c x Ax b s .t . x 0
1、整数规划可行域是松弛问题可行域的子集
2、整数规划最优值小于等于松弛问题的最优值
第一节 整数规划的数学模型
P1 P2
P4
以上描述了目前解整数规划问题的一种思路。
第二节 分支定界法
思路:切割可行域,去掉非整数点。 解题步骤: 1、不考虑整数约束,解相应松弛问题。 2、检查是否符合整数要求,是,则得最优解,完毕。 否则,转下步。 3、任取一个非整数变量xi=bi,构造两个新的约束条 件:xi ≤[bi],xi≥[bi]+1,分别加入到上一个LP问 题,形成两个新的分枝问题。 4、不考虑整数要求,解分枝问题。若整数解的Z值 大于所有分枝末梢的Z值,则得最优解。否则, 取Z值最大的非整数解,继续分解,Go to 3。
序号 1 2 3 4 5 6 7
物品
重量 系数
食品
5 20
氧气
5 15
冰镐
2 18
绳索
6 14
帐篷
12 8
相机
2 4
设备
4 10
第三节
0-1型整数规划
解:令xi=1表示登山队员携带物品i,xi=0表示登 山队员不携带物品i,则得: Max Z=20x1+15x2+18x3+14x4+8x5+4x6+10x7
第三节
(x1,x2,x3) z值
0-1型整数规划
1 2 3 4 过滤条件
(0,0,0)
运筹学第五章整数规划
分解 ai0 , j和 bi0 成最大整数与正分数之和:
浙江理工大学 经济管理学院
管理运筹学
wxj
Page:21
xi0 ai0 , j x j bi0 xi0 ( Ni0 , j f i0 , j )x j Ni0 f i0 xi0 Ni0 , j x j Ni0 f i0 f i0 , j x j
S1
x2 2
B: x1=2,x2=23/9 Z=41/9
x2 3
D: S12 x1=33/14,x2=2 Z=61/14
S11
无可行解
浙江理工大学 经济管理学院
管理运筹学
wxj
Page:15
对S12分枝:
构造约束:
x1 3
X
2 5
4
和
x1 2
3
3 10 A( , ) 2 3
形成分枝问题S121 和S122,得解E和F
形成松弛问题2
浙江理工大学 经济管理学院
管理运筹学
wxj
Page:24
CB XB 3 x1 -1 0 0 x2 x4 x6
3 -1 0 0 x1 x2 x3 x4 1 0 1/7 0 0 0 0 0 1 -2/7 0
0 x5 2/7 3/7
0 x6 0 0 0 1 0
b 13/7 9/7 31/7 -6/7
首先不考虑变量的整数约束,求解相应的线性规划问题:
z0
Max z = CX AX = b X0
D
C
下界
O Ir
Max z = CX AX = b xr Ir X0 Max z = CX AX = b xr Ir+1 X0
西北农林科技大学运筹学课件第五章 整数规划
6 2 1 x x 7 3 7 5 7 6 2 1 x x x 6 7 3 7 5 7
二、解纯整数规划的割平面法
Cj 3 -1 0 0 0 0
第五章
CB
3 -1 0
XB
x1 x2 x4
b
13/7 9/7 31/7
x1
1 0 0
x2
0 1 0
x3
1/7
x4
0
x5
2/7 3/7 22/7
三、 分枝定界法
求解步骤:
第五章
1)设有最大整数规划问题A ,相应的松弛问题为B 。以Zb 表示问题A的目标函数的初始界。(下界) 2)解 B a) B没有可行解,则A也没有可行解. b) B有最优解且为整数解,则A的最优解即得。 c) B有最优解但非整数解,B的最优值 Za为z*的上界
3)分枝 : 在B的最优解中取xi(=bi) bi不为整数。
原问题的最优解z * :
x1 4 x1 5
0 z * 356
1 ) x1非整数,在原约束问题中分别添加两个子约束:
三、 分枝定界法
得到两个子问题:B1 ; B2
第五章
同样不考虑整数条件其最优解为: B1 B2 z1 349 x1 4.00 x2 2.10 z 341 x1 5.00 x2 1.57
-1/2 1/4 -1/4
x5 0 0
0 1 0
x6 1 -5/4
-11/2 -3/4 -17/4
x5 7/4 σj=cj-zj
增加约束条件:
3 1 1 x x 4 4 4 6 4
3 1 1 x x x 7 4 4 4 6 4
二、解纯整数规划的割平面法
运筹学 第五章整数规划
n xij ai s.t j 1
i 1,2, m
xij 0 yi 0,1
混合型整数规划
总结
整数规划的可行域包含在其对应的一般线性规划可
行域之内; 整数规划的最优解可能不是其对应的一般线性规划 的顶点; 整数规划的最优解不会优于其对应的线性规划的最
(0)
(4)修改上、下界:按照以下两点规则进行。 ①在各分枝问题中,找出目标函数值最小者作为新的下界; ②从已符合整数条件的分枝中,找出目标函数值最小者作为 新的上界。 (5)比较与剪枝 : 各分枝的目标函数值中,若有大于 者,则剪掉此枝,表 明此子问题已经探清,不必再分枝了;否则继续分枝。 如此反复进行,直到得到 即得最优解 X* 。 为止,
f
n
rj
x j fr
a rj
的小数部分
br 的小数部分
(3)将所得的割平面方程作为一个新的约束条件置于最优单 纯形表中(同时增加一个单位列向量),用单纯形法求出新的 最优解,返回1。
m ax Z x 2
例:用割平面法求解整数规划问题
3 x1 2 x 2 6 3 x1 2 x 2 0 x , x 0且为整数 1 2
子问题 L1 : 剪枝 1 、L1无最优解, 2、最优解 X *1 ( x *11 ,x *12 ,, x *1n ), 最优值 z1 (1) X *1 为整数解 , z1为下界 关闭
子问题 L2 :
(2) X *1 中至少有一个是分数: 继续分枝
割平面法 割平面法的基本思想:
若整数规划IP的松弛规划L0的最优解不是整数解,对L0增 加一个约束条件,得线性规划 L1 ,此过程缩小了松弛规划的 可行解域,在切去松弛规划的最优解的同时,保留松弛规划 的任一整数解,因此整数规划IP的解均在L1中,若L1的最优解
运筹学第五章 整数规划ppt课件
第二步:确定A的最优目标函数值z*的上下界,其上界即为 z ,再用观察法
找到A的一个整数可行解,求其目标函数值作为z*的下界,记为z。
第三步:判断 z 是否等于z 。若相等,则整数规划最优解即为其目标函
数值等于z的A的那个整数可行解;否则进行第四步。
2020/3/2
11
•割平面法,即通过添加约束条件,逐步切割可行区域的 边角余料,让其整数解逐步的露到边界或顶点上来,只要 整数解能曝露到顶点上来,则就可以利用单纯形法求出来。
•关键是通过添加什么样的约束条件,既能让整数解往边 界露,同时又不要切去整数解,这个条件就是Gomory约束 条件。 •Gomory约束只是割去线性规划可行域的一部分,保留了 全部整数解。
2020/3/2
7
7
第二节 割平面法
2x1 2x2 11
13/4,5/2
松弛问题 x1+x2≤5 第二次切割
2020/3/2
第一次切割 4,1
8
设纯整数规划
n
m a x Z c j x j j 1
s
.t
.
n j 1
aij x j
bi
x
j
0且
为
整
数
,
j
1,L
引入约束 xi ≤ M yi ,i =1,2,3,M充分大,以保证yi=0 xi=0 这样我们可建立如下的数学模型:
Max z = 4x1 + 5x2 + 6x3 - 100y1 - 150y2 - 200y3 s.t. 2x1 + 4x2 + 8x3 ≤ 500
运筹学 第四版 第五章 整数规划
货物/箱 甲 乙
托运限制/集 装箱
体积/米3 5 4
24
重量/百斤 2 5
13
利润/百元 20 10
表 3.1
货物/箱 甲 乙
托运限制/集 装箱
体积/米3 5 4
24
重量/百斤 2 5
13
利润/百元 20 10
解 设 x1,分x2 别为甲、乙两种货物的托运箱数.则这是一个
纯整数规划问题 .其数学模型为:
(pzreorgor-aomnme iinngte)ger linear
若不考虑整数条件,由余下的目标函数和约束条件构成
的规划问题称为该整数规划问题的松弛问题(slack
problem)
n
max Z (或 min Z ) c j x j j 1
整数线性规划数学
n
st. j1 aij x j
max Z 20 x1 10 x2
5x1 4x2 24 s.t 2x1 5x2 13
x1, x2 0, 整数
(1)
若暂且不考虑 x1, x取2 整数这一条件.则(1)就变为下列 线性规划 :
max Z 20 x1 10 x2
s.t
52xx11
4x2 5x2
24 13
x1, x2 0
目前,常用的求解整数规划的方法有: 分支定界法和割平面法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。
§2 解纯整数规划的割平面法
考虑纯整数规划问题
n
max Z cjxj j 1
n
aijxj bis.tj 1xj0
xj取整数
i 1, 2....m
j 1, 2...n j 1, 2,..n
n
max Z (或 min Z ) c j x j j 1
《运筹学》第5章 整数规划(割平面法)
第5章整数规划(割平面法)求解整数规划问题:Max Z=3x1+2x22x1+3x2≤144x1+2x2≤18x1,x2≥0,且为整数解:首先,将原问题的数学模型标准化,这里标准化有两层含义:(1)将不等式转化为等式约束,(2)将整数规划中所有非整数系数全部转化为整数,以便于构造切割平面。
从而有:Max Z=3x1+2x22x1+3x2+x3=142x1+x2+x4=9x1,x2≥0,且为整数利用单纯形法求解,得到最优单纯形表,见表1:表1最优解为:x1=13/4, x2=5/2, Z=59/4根据上表,写出非整数规划的约束方程,如:x2+1/2x3-1/2x4=5/2 (1)将该方程中所有变量的系数及右端常数项均改写成“整数与非负真分数之和”的形式,即:(1+0)x2+(0+1/2)x3+(-1+1/2)x4=2+1/2把整数及带有整数系数的变量移到方程左边,分数及带有分数系数的变量称到方程右边,得:x2 - x4-2 =1/2-(1/2x3+1/2x4) (2)由于原数学模型已经“标准化”,因此,在整数最优解中,x2和x4也必须取整数值,所以(2)式左端必为整数或零,因而其右端也必须是整数。
又因为x3,x4 0,所以必有:1/2-(1/2x3+1/2x4)<1由于(2)式右端必为整数,于是有:1/2-(1/2x3+1/2x4)≤0 (3)或x3+x4≥1 (4)这就是考虑整数约束的一个割平面约束方程,它是用非基变量表示的,如果用基变量来表示割平面约束方程,则有:2x1+2x2≤11 (5)从图1中可以看出,(5)式所表示的割平面约束仅割去线性规划可行域中不包含整数可行解的部分区域,使点E(3.5,2)成为可行域的一个极点。
图1在(3)式中加入松弛变量x5,得:-1/2x3-1/2x4+x5=-1/2 (6)将(6)式增添到问题的约束条件中,得到新的整数规划问题:Max Z=3x1+2x22x1+3x2+x3=142x1+x2+x4=9-1/2x3-1/2x4+x5=-1/2x i≥0,且为整数,i=1,2,…,5该问题的求解可以在表1中加入(6)式,然后运用对偶单纯形法求出最优解。
运筹学 第五章 整数规划
M是足够大的整数,y 是0-1变量
14
f(x)-5 0
f(x) 0
(1)
(2)
-f(x)+5 M(1-y)
f(x) My
(3)
(4)
当y=1时,(1)(3)无差别,(4)式显然成立;
当y=0时,(2)(4)无差别,(3)式显然成立。
以上方法可以处理绝对值形式的约束
f(x) a (a>0)
31
5.1 分枝定界法 (Branch and Bound Method)
原问题的松驰问题: 任何整数规划(IP),凡放弃某些约束 条件(如整数要求)后,所得到的问题 (P) 都称为(IP)的松驰问题。 最通常的松驰问题是放弃变量的整数性 要求后,(P)为线性规划问题。
32
去掉整数约束,用单纯形法 IP LP
23
解法概述
当人们开始接触整数规划问题时,常会有 如下两种初始想法: 因为可行方案数目有限,因此经过穷举 法一一比较后,总能求出最好方案,例如, 背包问题充其量有2n种方式,实际上这种 方法是不可行。
设想计算机每秒能比较1000000个方式,那 么比较完260种方式,大约需要360世纪。
24
先放弃变量的整数性要求,解一个 线性规划问题,然后用“四舍五入” 法取整数解,这种方法,只有在变量 的取值很大时,才有成功的可能性, 而当变量的取值较小时,特别是0-1规 划时,往往不能成功。
Yes xI* = xl*
xl*
判别是否整数解
No 去掉非整数域 多个LP ……
33
分枝定界法步骤
一般求解对应的松驰问题,可能会出现 下面几种情况:
若所得的最优解的各分量恰好是整数, 则这个解也是原整数规划的最优解,计 算结束。
运筹学[第五章整数规划]山东大学期末考试知识点复习
第五章整数规划1.整数规划的特点(1)整数规划:决策变量要求取整数的线性规划。
(2)整数规划可分为纯整数规划和混合整数规划。
(3)整数规划的可行域为离散点集。
2.整数规划的建模步骤整数规划模型的建立几乎与线性规划模型的建立完全一致,只是变量的部分或全体必须限制为整数。
3.求解整数规划的常用方法1)分支定界法没有最大化的整数规划问题A,与它相应的线性规划问题为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作,而A的任意可行解的目标函数值将是z*的一个下界 ,分支定界法就是将B的可行域分成子区域的方法,逐步减小和增大,最终求得z*。
将要求解的整数规划问题称为问题A,将与它相应的线性规划问题称为问题B。
(1)解与整数规划问题A相应的线性规划问题B,可能得到以下几种情况之一:①B没有可行解,A也没有可行解,停止计算。
②B有最优解,并符合问题A的整数条件,则此最优解即为A的最优解,停止计算。
③B有最优解,但不符合A的整数条件,记它的目标函数值为。
(2)用观察法找问题A的一个整数可行解,求得其目标函数值,并记作。
以z*表示问题A的最优目标数值,则≤z*≤。
下面进行迭代.分支,在B的最优解中任选一个不符合整数条件的变量xi ,其值为bi。
构造两个约束条件xj ≤[bj]①和xj ≥[bj]+1 ②其中[bj ]为不超过bj的最大整数。
将这两个约束条件分别加入问题B,求两个后继规划问题B1和B2。
不考虑整数约束条件求解这两个后继问题。
定界,以每个后继问题为一分支标明求解的结果。
第一步:先不考虑整数约束,变成一般的线性规划问题,用图解法或单纯形法求其最优解,记为 ) ;第二步:若求得的最优解,刚好就是整数解,则该整数就是原整数规划的最优解,否则转下步;第三步:对原问题进行分支寻求整数最优解。
第四步:对上面两个子问题按照线性规划方法求最优解。
若某个子问题的解是整数解,则停止该子问题的分支,并且把它的目标值与上一步求出的最优整数解相比较以决定取舍;否则,对该子问题继续进行分支。
运筹学第五章 整数规划
第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。
重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。
要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。
§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。
如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。
例1 求解下列整数规划问题211020max x x z += ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96max ,0,8.421===z x x 。
50用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。
由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。
下面介绍几种常用解法。
§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。
基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z;而A 的任意可行解的目标函数值是*z的一个下界z,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。
现举例说明: 例2 求解A219040max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82, =0z 356(见下图)。
运筹学第五章 整数规划
2、0-1型变量常用来表示是否处于某个特定状态
例5.6
有三种资源被用于生产三种产品,资源量、产 品单件可变费用及售价、资源单耗量及组织三种产品 生产的固定费用见下表。要求制定一个生产计划,使 总收益最大。
0-1型变量常用来表示两个选项中非此即彼的选择
例5.7 用4台机床加工3件产品。各产品的机床加工顺序,以及产品在机 床上的加工工时见下表,且要求工件二的总工时不超过d。现要求确定 各件产品在机床上的加工方案,使在最短的时间内加工完全部产品.
A 甲 15 B 17 C 21 D 24
乙
丙 丁
19
26 19
23
17 21
22
16 23
18
19 17
解:令 xij=
1 若指派第i 人做第j 事 (i, j=1, …, n) 0 若不指派第i 人做第j 事
每个人只能完 成一项任务
满足约束条件的可行解 也可写成矩阵形式,称 为解矩阵。如例5.9的一 个可行解矩阵是:
每行减该行最小数
0 1 10 2
2 5 1 4
6 4 0 6
9 0 3 0
每列减该列最小数
0 1 10 2
1 4 0 3
6 4 0 6
产品1
产品2
产品3
a11 机床1 a21 机床1
a22 机床2 a32 机床2
a13 机床3
a33 机床3
a14 机床4 a24 机床4
xij表示第i种产品在第j台机床上加工的开始时间。 同一件产品在下一台机床上加工的开始时间不得早 1 同一 于在上一台机床上加工的结束时间 件产品 产品1:x11+a11x13 及 x13+a13x14 在不同 机床上 产品2:x21+a21x22 及 x22+a22x24 的加工 产品3:x32+a32x33 顺序
运筹学课件 第5章:整数规划
依照决策变量取整要求的不同,整数规划可分为纯 整数规划/全整数规划、混合整数规划、0-1整数规划
整数规划解的性质
求解整数规划问题
max Z 3 x1 2 x2 2 x1 x2 9 ( IP)2 x1 3 x2 14 x1 , x2 0且为整数
分析:考虑对应的线性规划问题(LP)
b
x1
2
2 3
x2
1
3 2
x3
1
0 0
x4
0
1 0
b
x1
1
0 0
x2
0
1 0
x3
3/4
-1/2
x4
-1/4 1/2
0
0
x3 9 x4 14
9/2
14/2
3
2
x1 13/4 x2 5/2
-5/4
-1/4
初始表
最终表
可见,最优解为x1=3.25 x2=2.5 z(0) =59/4=14.75
选 x2 进行分枝,即增加两个约束x2≤2 和x2 ≥3 ,则
max Z 3 x1 2 x2 2 x1 x2 9 2 x 3 x 14 2 ( IP1) 1 x2 2 x1 , x2 0且为整数
max Z 3 x1 2 x2 2 x1 x2 9 2 x 3 x 14 2 ( IP2) 1 x2 3 x1 , x2 0且为整数
b
7/2 2 1 3 -29/2 7/2 2 1 -1/2 -29/2
x1
1 0 0 1 0 1 0 0 0 0
x2
0 1 0 0 0 0 1 0 0 0
x3
1/2 0 -1 0 -3/2 1/2 0 -1 -1/2 -3/2
运筹学 第五章 整数规划 2013-01-24
整数规划的数学模型实例
整数规划解的特点
• 某厂拟用集装箱托运甲乙两种货物,每箱的体 积、重量和可获得的利润及托运所受限制如表, 问两种货物各托运多少箱,使得利润最大? • 设甲乙两种货物各托运X1,X2箱
货物 甲
体积 5
重量 2
利润 20
乙 托运 限制
4 24
5 13
10
Max z=20x1+10x2 5x1+4x2≤24 2x1+5x2≤13 x1,x2≥0且为整数
B(5, 3)
012345678
4 3 2 1
A(2.6, 3.8)
B(5, 3)
0
1
2
3
4
5
6
7
8
线性规划的最优解A(x1, x2)=(2.6, 3.8)不是整数解,目标 函数值为z=17.8。整数规划的最优解B(x1, x2)=(5,3)目标函数值 为z=17。线性规划最优解A(2.6, 3.8)四舍五入得到的解为(3,4), 不是可行解;舍去尾数取整的解为(2,3),目标函数值z=14。 因此整数规划的最优解一般不能由线性规划的最优解通过 简单的取整得到。
5/6 -1/6 -2/3 1/3 -1/6 -1/6
CB
1
例(接上):
cj 1 1 0 0 0
XB
X1
b
5/3
x1
1
x2
0
x3
x4
x5
0
4 4 x 5 (x 3 x 4 2x 5 ) 5 5
cj 1 b 1 x1 1 0 0 0 4 2 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 x4 -1 1 1 0 -1 1 1 0 0 x5 1 0 x6 0 x2 x3
第05章 整数规划 《运筹学》PPT课件
︰︰ ︰
︰
xm+1 λ1 a1m+1 ︰
… … …[j0aim1xλa,1m2mjfm],++i+jjmj njf
…
im j
…1 …m
xn λn a1n
︰
︰
解
zb-1zb00i0 fi0
︰0 fi0 1
xi 0 … 1 … 0 aim+1
… aim+j
… ain
bi0
︰︰ ︰
︰︰
︰
︰
︰
非基
符号[*]表示不超过“*”的最大整数,f(*)表 示“*”的非负真分数。
对整数规划问题 IP:max z CX
s.t
AX b X 0
x j为整数
其松弛问题 L0 max z CX
s.t
AX X
b 0
设L0的最优解
X
不是整数解
0
不妨设
X 0 b10 ,bi0 ,bm0 ,0,0 其中bi0是分数
即x1,xi ,xm是基变量,xm1,, xn是非基变量
设L0的最优解 X 0 b10 ,bi0 ,bm0 ,0,0 ,bi0是分数
L0的最优单纯形表:
x1 … xi … xm xm+1 … xm+j … xn
解
检 0 … 0 … 0 λ1
… λm+j … λn
z-z0
x1 1 … 0 … 0 a1m+1 … a1m+j … a1n
个旅行包里。
物 品
1
2
3
4
5
6
7
8
9 10
体 积 200 350 500 430 320 120 700 420 250 100
运筹学 整数规划
问应如何选择使年利润最大?
相互排斥的约束条件
某厂用车运和船运两种方式运送甲乙两种 货物,每箱体积、重量、利润及限制条件 如下表:
加入约束: 3 x1-2 x2+5 x3 ≥5
x1 . x 2. x3 ( 0. ( 0. ( 0. ( 1. ( 0. ( 1. ( 1. ( 1. 0. 0. 1. 0. 1. 0. 1. 1. 0 ) 1) 0) 0) 1) 1) 0) 1) (0) 0 5 -2 3 3 8 1 4 0 2 (1) 0 -1 0 1
注:划分不影响原(IP)问题的最优解
LP1 的解
x2
先求(LP1),如图所示。 此时B 在点取得最优解。
3 ⑵ ⑴
B ⑶
x1=1, x2 =3, Z(1)=16 找到整数解,问题已探 明,此支停止计算
3
x1
LP2 的解
再求(LP2),如图所示。 此时C 在点取得最优解。 x1=2, x2 =10/3, Z(2) =56/3≈18.7 Z(2) > Z(1) x2 不是整数,加入条 件x2≤3,x2≥4 将(LP2)继续划分为 (LP3) ,(LP4)
1
C (1,1)
计算步骤
1.
用单纯形法求解(IP)对应的松弛问题(LP):
⑴.若(LP)没有可行解,则(IP)也没有可行解, 停止计算。 ⑵.若(LP)有最优解,并符合(IP)的整数条件,则 即为(IP)的最优解,停止计算。 ⑶.若(LP)有最优解,但不符合(IP)的整数条件, 转入下一步。
运筹学 第五章 整数规划
( Integer Programming )
本章主要内容:
整数规划的特点及应用 分支定界法 0-1 整数规划 指派问题
1 2022/1/24
在很多场合,我们建立最优化模型时,实际问题要求决 策变量只能取整数值而非连续取值。此时,这类最优化 模型就称为整数规划模型。
整数规划的求解往往比线性规划求解困难得多,而且, 一般来说不能简单地将相应的线性规划的解取整来获得。
现求整数解(最优解):如用舍
入取整法可得到4个点即(1,
x2
⑴
⑵
3),(2,3),(1,4),(2,4)。显然,
它们都不可能是整数规划的最优 3 解。
(3/2,10/3)
按整数规划约束条件,其可行 解肯定在线性规划问题的可行域 内且为整数点。故整数规划问题 的可行解集是一个有限集,如右
图所示。其中(2,2),(3,1)点的目 标函数值最大,即为Z=4。
x2
找到整数解,问题已探明,此
枝停止计算。
3
同理求LP2,如图所示。在C 点 取得最优解。即:
x1=2, x2 =10/3,
Z(2)=-56/3≈-18.7
1
∵Z(2)< Z(1)=-16
∴原问题有比-16更小的最优
解,但 x2 不是整数,故继续 分支20。22/1/24
⑵ ⑴
A(18/11,40/11)
5
x1
x1
6x2 30 4
LP
2022/1/24
x1 , x2 0
17
分支定界法
用图解法求松弛问题的最优解,如图所示。
x1=18/11, x2 =40/11 Z=-218/11≈(-19.8)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重要 20 15 18 14 8 系数
4 10
5
解:如果令xi=1表示登山队员携带物品i, xi=0表示登山队员不携带物品i,则问题表 示成0-1规划: Max Z= 20x1+15x2 +18x3 +14x4
+8x5 +4x6 +10x7 s.t. 5x1 + 5x2 +2x3 +6x4 +12x5 +2x6 +4x7
25 xi=1或xi=0 i=1,2,….7
6
例 背包问题( Knapsack Problem)
一个旅行者,为了准备旅行的必须用品,要 在背包内装一些最有用的东西,但有个限 制,最多只能装b公斤的物品,而每件物品只 能整个携带,这样旅行者给每件物品规定 了一个“价值”以表示其有用的程度,如 果共有n件物品,第j件物品aj公斤,其价值为 cj.问题变成:在携带的物品总重量不超过b 公斤条件下,携带哪些物品,可使总价值最 大?
f(x) a (a>0)
此时 f(x) a
(5)
f(x) -a
(6)
是矛盾约束。
15
f(x) a
(5)
f(x) -a
(6)
引入一个整数变量来处理
-f(x)+a M(1-y)
f(x)+a My
M是足够大整数,y 是0-1变量
注意:对 |f(x)| a (a>0) 不必引入0-1变 量,因为f(x) a和f(x) -a并不矛盾。
xj 0 且部分或全部是整数
12
特殊约束的处理(IP的应用)
➢互斥约束 ▪矛盾约束 在建立数学模型时,有时会遇到相 互矛盾的约束,模型只要求其中的 一个约束起作用。
13
例:下面两个约束相互矛盾
f(x)-5 0
(1)
f(x) 0
(2)
引入一个整数变量来处理
-f(x)+5 M(1-y) (3)
g (x) My
22
f (x) -M(1-y) (*)
g (x) My
如果f (x)<0成立,则y不能为1,否则与(*)矛 盾; 所以 y=0, g (x) 0 成立。 如果 f (x) 0(即f (x)<0不成立) 则y的取值已无关紧要,因为y取任何值(*)总 成立,所以y的取值不由(*)控制,因此g (x) 的取值不受任何限制。
7
解:如果令xj=1表示携带物品j,xj=0表 示不携带物品j,则问题表示成0-1规划:
Max Z = Σcjxj s.t. Σajxj b xj=0 或1
8
例 用集装箱托运货物 货物 m3/箱 百斤/箱 百元/箱
问:甲乙货物托运多少 箱,使总利润最大?
甲
5
2
20
乙4
5
10
限制 24
13
分析:设x1为甲货物托运箱数,x2为乙货物托运箱数。
(4,1)
0
1
2
3
4 4.8 x1
①
∴ x1* = 4 x2* = 1 zI* = 90
10
一般,整数规划的最优解不会优于相应 线性规划的最优解。 对于max问题, zI* ≤ zl* 对于min问题, zI* ≥ zl*
11
数学模型
整数规划(IP)的一般数学模型: Max Z = Σcjxj s.t. Σaijxj bi(i=1,2,…m)
20
➢逻辑关系约束
比较典型的逻辑关系是 if-then关系,也 称if-then约束,这类逻辑关系一般涉及 两个约束,如果第一个约束成立,则第 二个约束也必须成立,否则,如果第一 个约束不成立,则第二个约束也可以不 成立。可以描述如下:
21
如果f (x)<0成立,则g (x) 0必须成立; 如果f (x)<0不成立,则对g (x)无限制。 引入0-1变量: f (x) -M(1-y) (*)
16
例:两个约束条件 2x1+3x2 8 x1+ x2 2
只能有一个成立,试用0-1变量来表示这 个要求。 解:引入0-1变量y和足够大的正数M, 则
17
2x1+3x2 8 8-2x1-3x2 M(1-y) x1+ x2 2
x1+ x2 - 2 My 当y=0, x1+ x2 2 成立, 而 2x1+3x2 8-M 自然成立,从而是多余的; 当y=1, 2x1+3x2 8 成立, 而 x1+ x2 2+M 自然成立,从而是多余的。
第五章 整数规划
1
整数规划是一类要求变量取整数值 的数学规划,可分成线性和非线性两类 (本章讨论线性)。
根据变量的取值性质,又可以分为 纯 整 数 规 划 , 混 合 整 数 规 划 , 0-1 整 数 规划等。
2
整数规划是数学规划中一个较 弱的分支,目前只能解中等规模的线 性整数规划问题,而非线性整数规划 问题,还没有好的办法。
f(x) My
(4)
M是足够大的整数,y 是0-1变量
14
f(x)-5 0
(1) -f(x)+5 M(1-y) (3)
f(x) 0
(2)
f(x) My
(4)
当y=1时,(1)(3)无差别,(4)式显然成立;
当y=0时,(2)(4)无差别,(3)式显然成立。
以上方法可以处理绝对值形要携带的物品有:食品,氧气, 冰镐,绳索,帐篷,照相机和通 讯设备,每种物品的重要性系数 和重量如下,假定登山队员可携 带最大重量为25公斤。问:如何 装备?
4
序号 1 2 3 4 5 6 7
物品 食品 氧气 冰镐 绳索 帐篷 相机 设备
重量 5 5 2 6 12 2 4
18
▪多中选一的约束
例如:模型希望在下列n个约束中,只能 有一个约束有效, fi(x) 0 i=1,2,….n. 引入 n个0-1变量yi , i=1,2,…n,则上式可改 写为:
fi(x) M(1-yi) y1+ y2 + … + yn=1
19
如果希望有k个约束有效,则: fi(x) M(1-yi), y1+ y2 + … + yn= k 如果希望至多有k个约束成立,则: fi(x) M(1-yi), y1+ y2 + … + yn k 如果希望至少有k个约束成立,则: fi(x) M(1-yi), y1+ y2 + … + yn k
则 max z = 20x1 + 10x2
5x1 + 4x2 ≤ 24
①
2x1 + 5x2 ≤ 13
②
x1,x2 ≥ 0
x1,x2取整数
9
图解法:
② x2
2.6 2
1
max z = 20x1 + 10x2
5x1 + 4x2 ≤ 24
①
2x1 + 5x2 ≤ 13
②
x1,x2 ≥ 0
x1,x2取整数