六年级数学培优作业含详细答案

合集下载

六年级数学培优作业含答案

六年级数学培优作业含答案

六年级数学培优作业含答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.【答案】(1)解:如图所示:(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宫与商场之间的距离是500 m【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.3.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.4.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

最新六年级数学培优作业含答案

最新六年级数学培优作业含答案

最新六年级数学培优作业含答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.4.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.5.操作探究:已知在纸面上有一数轴(如图所示),(1)操作一:折叠纸面,使数字1表示的点与﹣1表示的点重合,则﹣3表示的点与________表示的点重合;(2)操作二:折叠纸面,使﹣1表示的点与5表示的点重合,回答以下问题:①10表示的点与数________表示的点重合;(3)②若数轴上A、B两点之间距离为15,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?【答案】(1)3(2)﹣6(3)解:由题意可得,A、B两点距离中心点的距离为15÷2=7.5,∵中心点是表示2的点,∴A、B两点表示的数分别是﹣5.5,9.5.【解析】【解答】解:(1)因为折叠纸面,使数字1表示的点与﹣1表示的点重合,可确定中心点是表示0的点,所以﹣3表示的点与3表示的点重合,故答案为:3;(2)①因为折叠纸面,使﹣1表示的点与5表示的点重合,可确定中心点是表示2的点,所以10表示的点与数﹣6表示的点重合,故答案为:﹣6;【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是7.5,即可求出答案.6.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。

最新六年级数学培优作业含答案

最新六年级数学培优作业含答案

最新六年级数学培优作业含答案一、培优题易错题1.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

(单位:km)(1)求收工时距A地多远?(2)在第________次纪录时距A地最远。

(3)若每千米耗油0.3升,问共耗油多少升?【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.答:收工时距A地1km,在A的东面(2)五(3)解:根据题意得检修小组走的路程为:|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.故答案为:五.【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.2.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.3.甲容器中有浓度为的盐水克,乙容器有浓度为的盐水克.分别从甲和乙中取出相同重量的盐水,把从甲中取出的倒入乙中,把从乙中取出的倒入甲中.现在甲、乙容器中盐水浓度相同.问:从甲(乙)容器取出多少克盐水倒入了另一个容器中?【答案】解:互换后盐水的浓度:(400×20%+600×10%)÷(400+600)=140÷1000=14%互换的质量:400×(20%-14%)÷(20%-10%)=400×0.06÷0.1=240(千克)答:从两个容器中各取出240千克盐水倒入另一个容器中。

六年级上册数学培优试题含详细答案

六年级上册数学培优试题含详细答案

六年级上册数学培优试题含详细答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.4.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.5.甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数天做完,若按乙、丙、甲的顺序轮流去做,则比计划多用半天;若按丙、甲、乙的顺序轮流去做,则也比原计划多用半天.已知甲单独做完这件工作要天,且三个人的工作效率各不相同,那么这项工作由甲、乙、丙三人一起做,要用多少天才能完成?【答案】解:===(天)答:要用天才能完成。

小学六年级数学培优专题训练含详细答案

小学六年级数学培优专题训练含详细答案

小学六年级数学培优专题训练含详细答案一、培优题易错题1.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?【答案】解:B盐水浓度:(14%×6-13%×3)÷(4-1)=(0.84-0.39)÷3=0.45÷3=15%A盐水浓度:14%×3-15×2=12%C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3=(0.51-0.27)÷3=0.24÷3=8%答:盐水C的浓度为8%。

【解析】【分析】与按数量之比为2:4混合时,浓度仍为14%,而这样的混合溶液也相当于A与B按数量之比为2:1混合后再混入(4-1)份B盐水,这样就能求出B盐水的浓度。

然后求出A盐水的浓度,再根据混合盐水的浓度计算C盐水的浓度即可。

2.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。

根据纯酒精的量可列方程:所以丙缸中纯酒精的量是:(千克)。

答:丙缸中纯酒精的量是12千克。

【解析】【分析】根据三缸酒精溶液的容量和与倍数关系可知,甲缸共有50千克,乙和丙共有50千克。

等量关系:甲缸纯酒精量+乙缸纯酒精量+丙缸纯酒精量=混合后纯酒精量,先设出未知数,再根据等量关系列出方程,解方程求出丙缸酒精溶液的量,进而求出丙缸中纯酒精的量。

3.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?【答案】解:列表如下:甲乙浓度溶液浓度溶液开始第一次第二次丙浓度溶液开始第一次第二次答:这时甲容器盐水浓度是27.5%,乙容器中浓度为15%,丙容器中浓度为17.5%。

小学六年级数学培优专题训练含答案

小学六年级数学培优专题训练含答案

小学六年级数学培优专题训练含答案一、培优题易错题1.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0所以小李最后回到出发点1楼.(2)解:54×2.8×0.1=15.12(度)所以小李办事时电梯需要耗电15.12度.【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.2.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.3.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.4.在浓度为的盐水中加入一定量的水,则变为浓度的新溶液.在这种新溶液中加入与前次加入的水量相等的盐,溶液浓度变为 .求 .【答案】解:设原来的盐水为100克,加入的水(或盐)重a克。

最新六年级数学培优作业含详细答案

最新六年级数学培优作业含详细答案

最新六年级数学培优作业含详细答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+10﹣1﹣2【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.4.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.5.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。

六年级上册数学培优试题含答案

六年级上册数学培优试题含答案

六年级上册数学培优试题含答案一、培优题易错题1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则种.填写空格,所有可能出现的结果共有________6 2;【答案】,或x=1x≠3,则x=2【解析】【解答】根据题意知,x<4且,∴x=2前面的数要比x小,∵x每一行从左到右、每一列从上到下分别依次增大,∵∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,种结果,2×3=6∴共有6,故答案为:2【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,.只能填右上角或左下角,得到结果只能填在右下角,5,得到x只能=29= ▲23=2 :a▲,b=﹣3;如:b2.对于实数a、,定义运算2]=________.(﹣2)4)]×[(﹣4)▲4▲2=4(﹣=16.照此定义的运算方式计算[2▲ 1 【答案】,(﹣4)▲(﹣2))【解析】【解答】解:根据题意得:2▲(﹣4=2=(﹣=﹣44)2,=16,]= 2)×16=1▲(﹣4)]×[(﹣4)(﹣▲则[21故答案为:【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两.个数的大小关系,根据其选择算式2-.比如:2”3.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数222就是智慧数.,则=4,则=33就是智慧数;2-041.________ 的智慧数共有200;不大于________ 个智慧数是7开始第0从151 8;【答案】)首先应该先找到智慧数的分布规律.【解答】解:(1【解析】22是智慧,∴-00=0,①∵02222=4③因为(n+2))-n-n ,所以所有的奇数都是智慧数,②因为2n+1=(n+1的偶数,都不是智慧数.2),所以所有4的倍数也都是智慧数,而被4除余(n+1,41,其次为3,由此可知,最小的智慧数是0,第2个智慧数是20…17,19,,,12;13,1516;起,依次是从55,7,8;9,11的倍数,三个一组地依次排列下去.即按2个奇数,一个4;开始第7个智慧数是:8∴从0;故答案为:8,2 )∵200÷4=50(.200的智慧数共有:50×3+1=151∴不大于.故答案为:151222n+1=因为【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a,-b222的倍数也都是智慧数,而被4除余,所以所有的奇数都是智慧数,所有(n+1)4-n,1,其次为3的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是8.7个智慧数是4,得到从0开始第辆,由于工人实行轮休,每天上班人数不同,实际.某工厂一周计划每天生产电动车804每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日四日期三一六二五-5增减数/辆-2+4+6-1-3+21)生产量最多的一天比生产量最少的一天多生产多少辆电动车?(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?(辆;)=6+5=116-(-5【答案】(1)解:生产量最多的一天比生产量最少的一天多生产辆,+80×7=561(-5))+6+(-3)+((2)解:总产量4+-1)+2+(-2辆.561-560=1比原计划增加了,增加了【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了.的值5.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出)秒。

数学六年级培优试卷答案

数学六年级培优试卷答案

一、选择题(每题2分,共20分)1. 下列各数中,是质数的是()A. 18B. 29C. 35D. 40答案:B2. 下列各式中,正确的是()A. 3^2 = 9B. 4^3 = 16C. 5^2 = 25D. 6^2 = 36答案:A3. 下列各数中,是偶数的是()A. 13B. 22C. 35D. 48答案:B4. 下列各图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形答案:A5. 小明今年12岁,他的爸爸比他大20岁,那么他的爸爸今年()A. 22岁B. 32岁C. 42岁D. 52岁答案:C6. 一个长方形的长是8厘米,宽是4厘米,那么它的周长是()A. 12厘米B. 16厘米C. 24厘米D. 32厘米答案:C7. 下列各数中,是正数的是()A. -3B. 0C. 1D. -1答案:C8. 一个圆的半径是5厘米,那么它的直径是()A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:B9. 下列各式中,正确的是()A. 5 + 3 = 8B. 5 - 3 = 8C. 5 × 3 = 8D. 5 ÷ 3 = 8答案:A10. 小华有20个苹果,他每天吃掉2个,那么他需要()天才能吃完这些苹果。

A. 10天B. 15天C. 20天D. 25天答案:C二、填空题(每题2分,共20分)11. 6 × 6 = _______,7 × 7 = _______,8 × 8 = _______。

答案:36,49,6412. 下列各数中,最小的数是 _______,最大的数是 _______。

答案:-5,813. 一个正方形的周长是24厘米,那么它的边长是 _______厘米。

答案:614. 下列各数中,是3的倍数的是 _______。

答案:6,9,1215. 一个长方形的面积是48平方厘米,长是8厘米,那么它的宽是 _______厘米。

六年级数学培优试题含答案

六年级数学培优试题含答案
2.如图,用相同的小正方形按照某种规律进行摆放,则第 6 个图形中小正方形的个数是 ________,第 n(n 为正整数)个图形中小正方形的个数是________(用含 n 的代数式表
示). 【答案】55;(n+1)2+n 【解析】【解答】第 1 个图形共有小正方形的个数为 2×2+1;第 2 个图形共有小正方形的 个数为 3×3+2; 第 3 个图形共有小正方形的个数为 4×4+3; …; 则第 n 个图形共有小正方形的个数为(n+1)2+n, 所以第 6 个图形共有小正方形的个数为:7×7+6=55. 故答案为:55;(n+1)2+n 【分析】观察图形规律,第 1 个图形共有小正方形的个数为 2×2+1;第 2 个图形共有小正 方形的个数为 3×3+2;则第 n 个图形共有小正方形的个数为(n+1)2+n,找出一般规律.
【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可; (2)根据所给的路线确定点的位置即可; (3)根据表示的路线确定长度相加可得结果; (4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.
4.股民老黄上星期五买进某股票 1000 股,每股 35 元,下表为本周内每日该股票的涨跌 情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)
(4)由(3)中的计算可得:

,,

7.有 、 、 三种盐水,按 与 数量之比为 混合,得到浓度为 的盐水;按
与 数量之比为 混合,得到浓度为 的盐水.如果 、 、 数量之比为

混合成的盐水浓度为
,问盐水 的浓度是多少?
【答案】 解:B 盐水浓度: (14%×6-13%×3)÷(4-1) =(0.84-0.39)÷3 =0.45÷3 =15% A 盐水浓度:14%×3-15×2=12% C 盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3 =(0.51-0.27)÷3

小学六年级数学培优题及答案

小学六年级数学培优题及答案

小学六年级数学培优题及答案一、选择题(每空1分,共20分)1、已知小圆的半径是2cm,大圆的直径是6cm,小圆和小圆的周长之比为( ),面积的比是( )。

2、12的因数有()个,选4个组成一个比例是( )。

3、一幅地图的比例尺是1:,把它改成线段比例尺是( ),已知AB两地的实际距离是24千米,在这幅地图上应画( )厘米。

4、3时整,分针和时针的夹角是()°,6时整,分针和时针的夹角是( )°。

5、一个比例的两个内项分别是4和7,那么这个比例的两个外项的积是( )。

6、用圆规画一个直径是8cm的圆,圆规两脚尖的距离是( )cm,这个圆的位置由()决定。

7、一个数,如果用2、3、5去除,正好都能被整除,这个数最小是( ),如果这个数是两位数,它最大是( )。

8、如果一个长方体,如果它的高增加2cm就成一个正方体,而且表面积增加24cm2,原来这个长方体的表面积是( )。

9、一个三位小数四舍五入取近似值是2.80,这个数最大是( ),最小是( )。

10、打一份稿件,甲单独做需要10小时,乙单独做需要12小时,那么甲、乙的工效之比是( ),时间比是( )。

11、一个正方体的棱长总和是24cm,这个正方体的表面积是( )cm2,体积是( )cm3。

二、判断题(每题1分,共10分)1、两根1米长的木料,第一根用米,第二根用去,剩下的木料同样长。

( )2、去掉小数0.50末尾的0后,小数的大小不变,计数单位也不变。

( )3、一个三角形中至少有2个锐角。

( )4、因为3a=5b(a、b不为0),所以a:b=5:3。

( )5、如果圆柱和圆锥的体积和高分别相等,那么圆锥与圆柱的底面积的比是3:1。

( )6、10吨煤,用去了一半,还剩50%吨煤。

( )7、一组数据中可能没有中位数,但一定有平均数和众数。

( )8、含有未知数的式子是方程。

( )9、一个数乘小数,积一定比这个数小。

( )10、把一个圆柱削成一个最大的圆锥,削去部分的体积是圆柱体积的。

六年级数学培优题含答案

六年级数学培优题含答案

六年级数学培优题含答案一、培优题易错题1.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.2.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.3.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.(1)写出图中格点四边形DEFG对应的S,N,L.(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.【答案】(1)解:根据图形可得:S=3,N=1,L=6(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a ,∴S=N+ L﹣1,将N=82,L=38代入可得S=82+ ×38﹣1=100【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.4.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.5.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.(1)用含的代数式表示点对应的数:________;(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.①用含的代数式表示点在由到过程中对应的数:________ ;②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);③当PQ=3 时,求 t的值.________【答案】(1)(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,【解析】(1)点所对应的数为:( 2 )①② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒当时,:,:,解之得当时,:,:,解之得【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.6.十字交叉法的证明过程:设甲、乙两瓶溶液的质量分别为和,浓度分别为和(),将两瓶溶液混合后所得的溶液浓度为,求证:.【答案】证明:甲溶液中溶质的质量为,乙溶液中的溶质质量为,则混和溶液中的溶质质量为,所以混合溶液的浓度为,所以,即,,可见。

最新六年级数学培优试题含详细答案

最新六年级数学培优试题含详细答案

最新六年级数学培优试题含详细答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.4.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.6.甲、乙两瓶盐水,甲瓶盐水的浓度是乙瓶盐水的倍.将克甲瓶盐水与克乙瓶盐水混合后得到浓度为的新盐水,那么甲瓶盐水的浓度是多少?【答案】解:设乙瓶盐水的浓度是x,甲瓶水的浓度是3x。

数学培优试卷答案六年级

数学培优试卷答案六年级

一、选择题1. 下列哪个数是质数?A. 10B. 17C. 25D. 30答案:B2. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 12B. 16C. 24D. 32答案:C3. 下列哪个分数是假分数?A. $\frac{3}{4}$B. $\frac{5}{3}$C. $\frac{7}{2}$D.$\frac{2}{5}$答案:C4. 一个圆柱的高是10厘米,底面半径是3厘米,它的体积是多少立方厘米?A. 75B. 90C. 100D. 120答案:A5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形答案:A二、填空题6. 3的平方是________,4的立方是________。

答案:9,647. 下列数中,最小的负数是________。

答案:-58. 下列分数中,分子与分母相等的是________。

答案:$\frac{2}{2}$9. 一个三角形的底是6厘米,高是4厘米,它的面积是________平方厘米。

答案:1210. 下列哪个数是奇数?A. 2B. 3C. 4D. 5答案:B三、解答题11. 计算下列各题。

(1)$12 \times 8 + 15 \div 3$答案:$109$(2)$\frac{3}{4} + \frac{5}{6} - \frac{1}{3}$答案:$\frac{11}{12}$12. 简化下列各题。

(1)$8 \times 7 - 6 \times 4$答案:$32$(2)$\frac{9}{12} + \frac{5}{6} - \frac{3}{4}$答案:$\frac{1}{4}$13. 解决下列问题。

(1)一个长方形的长是15厘米,宽是8厘米,求它的面积。

答案:120平方厘米(2)一个圆柱的高是10厘米,底面半径是5厘米,求它的体积。

答案:785立方厘米14. 画出一个轴对称图形,并写出它的对称轴。

答案:略(画出一个正方形,对称轴为对角线)15. 求下列各数的平方根。

六年级数学上册培优试卷含详细答案

六年级数学上册培优试卷含详细答案

六年级数学上册培优试卷含详细答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.4.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.5.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.(1)第5个“三角形数”是________,第n个“三角形数”是________,第5个“正方形数”是________,第n个“正方形数”是________.(2)除“1”以外,请再写一个既是“三角形数”,又是“正方形数”的数________.(3)经探究我们发现:任何一个大于1的“正方形数”都可以看做两个相邻“三角形数”之和. 例如:①4=1+3;②9=3+6;③16=6+10;④________;⑤________;…请写出上面第4个和第5个等式.(4)在(3)中,请探究n2=________+________。

六年级数学培优题含详细答案

六年级数学培优题含详细答案

(3)解:如图 2,
根据已知条件可知: A→B 表示为:(1,4),B→C 记为(2,0)C→D 记为(1,﹣2); 则该甲虫走过的路线长为:1+4+2+1+2=10 (4)解:由 M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2), 所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2, 所以,点 A 向右走 2 个格点,向上走 2 个格点到点 N, 所以,N→A 应记为(﹣2,﹣2) 【解析】【解答】解:(1)图中 A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2); 故答案为:(+3,+4),(+2,0),D; 【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可; (2)根据所给的路线确定点的位置即可; (3)根据表示的路线确定长度相加可得结果; (4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论. 3.如图,阶梯图的每个台阶上都标着一个数,从下到上的第 1 个至第 4 个台阶上依次标着 -5,-2,1,9,且任意相邻四个台阶上数的和都相等.
(1)图中 A→C(________,________),B→C(________,________),C→________ (+1,﹣2); (2)若这只甲虫从 A 处去甲虫 P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣ 2,+3),(﹣1,﹣2),请在图中标出 P 的位置; (3)若这只甲虫的行走路线为 A→B→C→D,请计算该甲虫走过的路程. (4)若图中另有两个格点 M、N,且 M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则 N→A 应记为什么? 【答案】(1)+3;+4;+2;0;D (2)解:P 点位置如图 1 所示;

六年级上册数学培优试题含详细答案

六年级上册数学培优试题含详细答案

六年级上册数学培优试题含详细答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):1日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.3.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.4.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.5.甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为的硫酸溶液600千克,乙容器中装有浓度为的硫酸溶液400千克.各取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样?【答案】解:甲容器硫酸:600×8%=48(千克),乙容器硫酸:400×40%=160(千克),混合后浓度:(48+160)÷(600+400)=20.8%,应交换溶液的量:600×(20.8%-8%)÷(40%-85)=600×0.128÷0.32=240(千克)答:各取240千克放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学培优作业含详细答案一、培优题易错题1.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.【答案】(1)解:如图所示:(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宫与商场之间的距离是500 m【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.3.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.4.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.5.炒股员小李上星期日买进某公司股票1000股,每股28元,下表为本周内该股票的涨跌情况(单位:元)(2)本周内最高价和最低价各是多少钱?(3)已知小李买进股票时付了1.5‰的手续费(a‰表示千分之a),卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:由上表可得:28+4-6-1-2.5=22.5元∴星期四收盘时,每股是22.5元(2)解:由题意得:星期一股价最高,为28+4=32元星期四股价最低,由(1)知22.5元∴本周内股价最高为32元,最低为22.5元(3)解:由题意得:买入时交易额为 28×1000=28000元买入手续费为 28000×1.5‰=42元卖出时交易额为29×1000=29000元卖出手续费和交易税共29000×(1.5‰+1‰)=72.5元总收益=29000-28000-(42+72.5)=885.5元因此,如果小李在周六收盘前将全部股票卖出,他将收益885.5元【解析】【分析】(1)由表格可知星期四收盘价格=28+4-6-1-2.5,计算可求得;(2)分别算出这几天的股市价格,比较可得答案;(3)分别算出买入时交易额、买入手续费、卖出时交易额、卖出手续费和交易税,则总收益=卖出时交易额-买入时交易额-买入手续费-卖出手续费和交易税,代入计算可得.6.、、三瓶盐水的浓度分别为、、,它们混合后得到克浓度为的盐水.如果瓶盐水比瓶盐水多克,那么瓶盐水有多少克?【答案】解:设C瓶盐水有x克,则B瓶盐水为(x+30)克,A瓶盐水为100-(x+x+30)=70-2x克。

(70-2x)×20%+(x+30)×18%+16%x=100×18.8%14-0.4x+0.18x+5.4+0.16x=18.80.06x=19.4-18.8x=0.6÷0.06x=1070-2×10=50(克)答:A瓶盐水有50克。

【解析】【分析】设C瓶盐水有x克,则B瓶盐水为(x+30)克,A瓶盐水为100-(x+x+30)=70-2x克。

等量关系:A瓶中盐的重量+B瓶中盐的重量+C瓶中盐的重量=混合后盐的总重量。

根据等量关系列方程求出x的值,进而求出A瓶盐水的重量。

7.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等?【答案】解:甲溶液中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克),0.3-0.1=0.2(千克);0.2÷40%=0.5(千克)答:需要加入0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等。

【解析】【分析】由于乙溶液中不含盐,所以只需要计算出甲溶液中酒精比盐少多少千克,用酒精少的重量除以乙溶液的酒精浓度即可求出需要加入乙溶液的质量。

8.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?【答案】解:甲的工作效率:,丙的工作效率:,乙的工作效率:,乙独做的时间:1÷=24(天)。

答:乙一人单独抄需要24天才能完成。

【解析】【分析】已知甲、乙、丙合抄一天完成书稿的,又已知甲每天抄写量等于乙、丙两人每天抄写量之和,因此甲两天抄写书稿的,即甲每天抄写书稿的;由于丙抄写5天相当于甲乙合抄一天,从而丙6天抄写书稿的,即丙每天抄写书稿的,这样用三人的工作效率和减去甲、丙的工作效率即可求出乙的工作效率,进而求出乙单独完成需要的时间。

9.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在仓库,乙在仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在仓库搬了多长时间?【答案】解:三人工作效率的比:;搬完一个大仓库需要的时间:16÷2=8(小时),搬大仓库甲的工作效率:,丙的工作效率:,甲16小时完成的工作量:,丙在A仓库搬的时间:(小时)。

答:丙在A仓库搬了6小时。

【解析】【分析】原来三人的工作效率不能用在搬两个大仓库中,所以根据原来三人的工作效率求出三人的工作效率的比。

然后把现在三人的工作效率和按照6:5:4的比分配后就可以求出搬大仓库时甲的工作效率和丙的工作效率。

用甲此时的工作效率乘16求出甲完成A仓库的工作量,进而求出丙完成A仓库的工作量,用这个工作量除以丙的工作效率即可求出丙在A仓库搬的时间。

10.几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?【答案】解:每人每天割草:,(名)。

相关文档
最新文档