重庆大学通信工程学院数字信号处理实验报告4
数字信号处理实验报告
《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。
如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。
取模|)(|k jw e X 可绘出幅频特性曲线。
重庆大学数字信号处理大作业报告
数字信号处理课外实验设计——音频采样和频谱混叠课程名称:数字信号处理院系:通信工程学院专业:通信01班年级: 2013级*名:***学号: ********指导教师:**实验时间: 2015.11.26重庆大学一、实验目的:1、熟悉MATLAB语言的基本用法;2、掌握MATLAB语言中音频数据与信息的读取与播放方法;3、掌握在MATLAB中设计滤波器的方法;4、掌握MATLAB语言中信号频谱的绘制方法。
5、对采样定理进行初步验证,体会频谱混叠现象,并大致确定音频信号的最低采样频率。
二、实验原理:现实当中遇到的绝大多数信号都是连续的,即所谓的连续信号。
如语音、图像、温度压力电流等都是模拟信号。
要利用数字信号处理技术实现对这些信号的处理,需要借助对这些信号的处理,需要借助A/D转换,先将模拟信号转变为数字信号后才能利用数字技术对其进行加工处理。
因此,采样是从连续到离散的桥梁。
如果选择的采样频率太低,及fs<2fm的采样频率太低,或者说是信号的最高频率fm 超过fs/2,则采样后的频谱按照采样率周期延拓时,各周期延拓分量产生频谱的交叠,这种现象叫频谱混叠。
三、实验内容:本实验通过MATLAB软件,完成以下四项任务1、用fs=44100HZ采集一段音乐。
2、改变采样频率,用fs=5512HZ采集一段音乐,体会混叠现象。
3、录制一段自己的声音,试验当fs=?时,发生混叠。
4、(选作)在噪声环境中录制一段自己的声音,试采用一种方法将噪声尽可能地消除。
四、实验步骤:仿真程序DSP_homework1.m:clc;clear;close all;%% 44100Hz和5512Hz采集音频文件[FileName,PathName] = uigetfile('*.wav','选择待处理音频文件');%获取处理音频文件位置path1=fullfile(PathName,FileName);[x,Fs1]=audioread(path1);%默认采样频率Fs为44100Hzx1=x(:,1);%1声道数据x2=x(:,2);%2声道数据%y1=x1(1:800000);%y1=x1(1:8:end);Fs2=5512;y1=resample(x1,5512,44100); %信号降采样处理,采样从44100Hz降到5512Hzy2=resample(x2,5512,44100);y=[y1 y2];t1=0:1/Fs1:(length(x1)-1)/Fs1;%取时域横轴tt2=0:1/Fs2:(length(y1)-1)/Fs2;N =5096; %fft点数,以频谱分辨率为10Hz,信号最高频率40kHz求出记录最小点数f=10^3;%取频率轴单位为KHzX1=fft(x1,N);X1=10*log(abs(fftshift(X1)));%用对数表示44100Hz音频信号的频谱Y1=fft(y1,N);Y1=10*log(abs(fftshift(Y1)));%用对数表示5512Hz音频信号的频谱PathName1=uigetdir(strcat(matlabroot,'\work' ),'加噪后音频文件另存为');FileName1='music_5512.wav'path2=fullfile(PathName1,FileName1);audiowrite(path2,y,Fs2);%生成5512Hz采样的wav格式音频文件,试听音乐效果%% 绘图figure(1);%44100Hz采集音频信号时域图、频谱图subplot(2,1,1);plot(t1,x1,'r');axis([0 95 -1 1]);%设置坐标轴范围set(gca,'XTick',0:5:95),grid on;%设置x坐标轴刻度,绘制方格线set(gca,'YTick',-0.8:0.2:0.8),grid on;%设置y坐标轴刻度,绘制方格线title('44100Hz采样音乐信号波形');xlabel('时间轴,单位s');subplot(2,1,2);plot((-N/2+1:N/2)*Fs1/N/f,X1,'b');axis([-25 25 -70 50]);set(gca,'XTick',-25:5:25),grid on;set(gca,'YTick',-70:20:50),grid on;title('44100Hz采样音乐信号频谱图');xlabel('频率轴,单位kHz');ylabel('单位:dB');figure(2)%5512Hz采集音频信号时域图、频谱图subplot(2,1,1);plot(t2,y1,'r');axis([0 95 -1 1]);%设置坐标轴范围set(gca,'XTick',0:5:95),grid on;%设置x坐标轴刻度,绘制方格线set(gca,'YTick',-0.8:0.2:0.8),grid on;%设置y坐标轴刻度,绘制方格线title('5512Hz采样音乐信号波形');xlabel('时间轴,单位s');subplot(2,1,2);plot((-N/2+1:N/2)*Fs2/N/f,Y1,'b');axis([-3 3 -70 50]);set(gca,'XTick',-3:1:3),grid on;set(gca,'YTick',-70:20:50),grid on;title('5512Hz采样音乐信号频谱图');xlabel('频率轴,单位kHz');ylabel('单位:dB');仿真程序DSP_homework2.m:clc;clear;close all;%% 录音测试多少采样频率时发生混叠Fs1=2205;%录音采样频率nBits=16;%音频位数nChannels=1;%声道数recording_time=1.5;%录音时间长度recObj = audiorecorder(Fs1,nBits,nChannels)disp('Start speaking.')recordblocking(recObj, recording_time);disp('End of Recording.');play(recObj);% 回放录音数据myRecording = getaudiodata(recObj);% 获取录音数据t1=0:1/Fs1:(length(myRecording)-1)/Fs1;%取时域横轴tN1=5096; %fft点数f=10^3;%取频率轴单位为KHzfft_myRecording=fft(myRecording,N1);fft_myRecording=20*log(abs(fftshift(fft_myRecording)));PathName1=uigetdir(strcat(matlabroot,'\work' ),'录音音频文件另存为'); FileName1='record_2205.wav'path=fullfile(PathName1,FileName1);audiowrite(path,myRecording,Fs1);%生成原始信号叠加噪声后的wav格式音频文件,试听叠加噪声效果%% 绘制录音数据波形figure(1)subplot(211)plot(t1,myRecording,'r');axis([0 1.5 -1 1]);%设置坐标轴范围set(gca,'XTick',0:0.1:1.5),grid on;%设置x坐标轴刻度,绘制方格线set(gca,'YTick',-0.8:0.2:0.8),grid on;%设置y坐标轴刻度,绘制方格线title('2205Hz录制人声信号波形');xlabel('时间轴,单位s');subplot(212)plot((-N1/2+1:N1/2)*Fs1/N1/f,fft_myRecording,'b');axis([-1.5 1.5 -120 80]);set(gca,'XTick',-1.5:0.5:1.5),grid on;set(gca,'YTick',-120:20:80),grid on;title('2202Hz录制人声信号频谱图');xlabel('频率轴,单位kHz');ylabel('单位:dB');仿真程序DSP_homework3.m:clc;clear;close all;%% 录入噪音[FileName,PathName] = uigetfile('*.wav','选择待处理录音文件');%获取处理音频文件位置path=fullfile(PathName,FileName);[audio,Fs]=audioread(path);%默认采样频率Fs为44100Hzt=0:1/Fs:(length(audio)-1)/Fs;%取时域横轴tN =5096; %fft点数f=10^3;%取频率轴单位为KHzfft_audio=fft(audio,N);fft_audio=20*log(abs(fftshift(fft_audio)));%% 绘制噪音数据波形figure(1)subplot(211)plot(t,audio,'r');axis([0 2 -1.1 1.1]);%设置坐标轴范围set(gca,'XTick',0:0.2:2),grid on;%设置x坐标轴刻度,绘制方格线set(gca,'YTick',-1.1:0.2:1.1),grid on;%设置y坐标轴刻度,绘制方格线title('噪声背景下声音信号波形');xlabel('时间轴,单位s');subplot(212)plot((-N/2+1:N/2)*Fs/N/f,fft_audio,'b');axis([-25 25 -220 -60]);set(gca,'XTick',-25:5:25),grid on;set(gca,'YTick',-220:20:-60),grid on;title('噪声背景下声音信号频谱图');xlabel('频率轴,单位kHz');ylabel('单位:dB');%% 进行加噪处理Ym=max(max(max(audio)),max(abs(min(audio))));%找出极值audio=audio/Ym;%% 设计低通滤波器wn=0.1;%滤波器归一化截止频率为0.15n=513;%滤波器阶数为512w=hamming(n)hh=fir1(n-1,wn,'low',w);figure(2);freqz(hh);%绘制滤波器的频率响应图%% 对加噪音频信号进行滤波处理filter_audio=filter(hh,1,audio);%使含有噪声的信号通过一个已设计的低通滤波器hhPathName2=uigetdir(strcat(matlabroot,'\work' ),'去噪后音频文件另存为'); FileName2='record_recover.wav'path2=fullfile(PathName2,FileName2);audiowrite(path2,filter_audio,Fs);%生成原始信号叠加噪声后又经滤波后的wav格式音频文件,试听滤波后效果fft_filter_audio=fft(filter_audio,N);fft_filter_audio=20*log(abs(fftshift(fft_filter_audio)));%用对数表示噪声信号的频谱%%figure(3)subplot(211)plot(t,filter_audio,'r');axis([0 2 -1.1 1.1]);%设置坐标轴范围set(gca,'XTick',0:0.2:2),grid on;%设置x坐标轴刻度,绘制方格线set(gca,'YTick',-1.1:0.2:1.1),grid on;%设置y坐标轴刻度,绘制方格线title('滤噪后声音信号波形');xlabel('时间轴,单位s');subplot(212)plot((-N/2+1:N/2)*Fs/N/f,fft_filter_audio,'b');axis([-5 5 -220 -60]);set(gca,'XTick',-5:1:5),grid on;set(gca,'YTick',-220:20:-60),grid on;title('滤噪后声音信号频谱图');xlabel('频率轴,单位kHz');ylabel('单位:dB');五、结果与分析:1.实验结果:Figure 1Figure2Figure3Figure4 Figure5Figure6 Figure7高斯白噪声背景下Figure8Figure9Figure10背景噪声下Figure11Figure12 Figure132.实验分析声音信号的采集与分析处理在工程应用中是经常需要解决的题,如何实时采集声音信号并对其分析处理,找出声音信号的特征在科学研究中是一项非常有意义的工作。
数字信号处理实验报告 (实验四)
实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。
2. 运用MA TLAB 验证离散时间傅立叶变换的性质。
二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。
由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。
在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。
为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。
例3.1 运用MA TLAB 画出以下系统的频率响应。
y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。
数字信号处理实验报告
数字信号处理实验报告黎美琪通信一、实验名称:(快速傅里叶变换)的探究二、实验目的.学习理解的基本实现原理(注:算法主要有基时间抽取法和基频域抽取法,此实验讨论的是基频率抽取算法,课本上主要讲解的是基时间抽取算法).编写代码实现基频率抽取算法三、实验条件机四、实验过程(一)基础知识储备.基频率抽取( )算法基本原理:输入[]前后分解,输出[]奇偶分解。
设序列的点数为^,为整数(公式中的、定义不一样,打印后统一改正)将输入的[]按照的顺序分成前后两段:对输出的[]进行奇偶分解()、()和()之间可以用下图所示的蝶形运算符表示:的一次分解流图:的二次分解流图:最后完整的分解流图(^一共分解了三次):的运算过程规律。
)^点的共进行级运算,每级由个蝶形运算组成。
同一级中,每个蝶形的两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数据结点又同在一条水平线上,也就是说计算完一个蝶形后,所得输出数据可立即存入原输入数据所占用的存储单元。
这样,经过级运算后,原来存放输入序列数据的个存储单元中便依次存放()的个值。
(注:这种利用同一存储单元存储蝶形计算输入、输出数据的方法称为原位计算。
原位计算可节省大量内存,从而使设备成本降低。
))旋转因子的变化规律 :以点的为例,第一级蝶形,,,,;第二级蝶形,;第三级的蝶形,。
依次类推,对于级蝶形,旋转因子的指数为∙^(−),,,,,……,^()这样就可以算出每一级的旋转因子。
)蝶形运算两节点之间的“距离” :第一级蝶形每个蝶形运算量节点的“距离”为,第二级每个蝶形运算另节点的“距离”为,第三级蝶形每个蝶形运算量节点的“距离”为。
依次类推:对于等于的次方的,可以得到第级蝶形每个蝶形运算量节点的“距离”为的次方。
.旋转因子 的性质1) 周期性 2) 对称性mk N N mk N W W -=+2 )可约性为整数/,//n N W W n mk n N mk N =.频率抽取()基算法和时间抽取()基算法比较:两种算法是等价的,其相同之处:()与两种算法均为原位运算。
数字信号处理实验报告
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
重邮课程实验报告
一、实验名称数字信号处理实验二、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握数字滤波器的设计方法及其应用。
3. 熟悉数字信号处理软件的使用,提高实验技能。
三、实验原理数字信号处理(Digital Signal Processing,DSP)是研究数字信号的产生、处理、分析和应用的科学。
本实验主要涉及以下几个方面:1. 数字滤波器的基本概念:数字滤波器是一种对数字信号进行频率选择的装置,可以用于信号的滤波、增强、抑制等。
2. 滤波器的设计方法:主要包括有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器的设计方法。
3. 数字信号处理软件的使用:利用MATLAB等软件进行数字信号处理实验,提高实验效率。
四、实验器材1. 实验计算机2. MATLAB软件3. 实验指导书五、实验步骤1. 实验一:FIR滤波器设计(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入FIR滤波器的参数,如滤波器的阶数、截止频率等。
(3)运行脚本文件,观察滤波器的频率响应曲线。
(4)根据实验结果,分析滤波器的性能。
2. 实验二:IIR滤波器设计(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入IIR滤波器的参数,如滤波器的阶数、截止频率等。
(3)运行脚本文件,观察滤波器的频率响应曲线。
(4)根据实验结果,分析滤波器的性能。
3. 实验三:数字信号处理软件的使用(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入信号处理的参数,如采样频率、滤波器类型等。
(3)运行脚本文件,观察信号处理的结果。
(4)根据实验结果,分析数字信号处理软件的应用。
六、实验结果与分析1. 实验一:FIR滤波器设计实验结果表明,所设计的FIR滤波器具有较好的频率选择性,滤波效果符合预期。
2. 实验二:IIR滤波器设计实验结果表明,所设计的IIR滤波器具有较好的频率选择性,滤波效果符合预期。
重庆大学通信学院数字信号处理实验第四次实验报告
0.511.522.5100150200250300Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.51 1.522.5-30-20-10010Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )0.51 1.522.5-100-50050100Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.51 1.522.5-80-60-40-200Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )0.51 1.522.5-1000-500500Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s)0.51 1.522.5-30-20-10010Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )图1 第一题的频率响应 图2 第二题的频率响应图3 第三题的频率响应图4 第四题的频率响应第五题:零、极点分布图-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.814Real PartI m a g i n a r y P a r t结果单位抽样响应:y =1.0000 0.2000 -0.4000 -0.2000 1.0000 0 012345678910-0.4-0.20.20.40.60.81单位抽样响应用filter 函数: b=[1 0.2 -0.4 -0.2 1];a=1; %注意此处分母的表示 x=zeros(1,10);x(1)=1;%单位抽样脉冲 y=filter(b,a,x) stem(y);title('单位抽样响应')用impz 函数:b=[1 0.2 -0.4 -0.2 1]; a=1;y=impz(b,a);单位阶跃响应:-11234567891000.20.40.60.811.21.41.6单位阶跃响应y =1.0000 1.2000 0.8000 0.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000程序:b=[1 0.2 -0.4 -0.2 1]; a=1;x=ones(1,20);x(1)=1;%单位阶跃信号 y=filter(b,a,x)第六题:零、极点分布图-1-0.50.511.5-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r tB=[0.3 -0.5 0];A=[1 -0.7 0.8];zplane(B,A) %零、极点分布图-101-1-0.500.51Real PartI m a g i n a r y P a r t系统函数极零点分布图-1-0.500.51-1-0.500.51Real PartI m a g i n a r y P a r t最小相移网络零点分布图-11-1-0.500.51Real PartI m a g i n a r y P a r t全通网络零点分布图-11-1-0.500.51Real PartI m a g i n a r y P a r t修正网络零点分布图B=[0.3 -0.5]; A=[1 -0.7 0.8]; subplot(2,2,1);zplane(B,A)title('系统函数极零点分布图') %最小相移网络: B=[1 -0.6];A=[1 -0.7 0.8]; subplot(2,2,2) zplane(B,A);title('最小相移网络零点分布图') %全通网络: B=[-0.6 1];A=[1 -0.6]; subplot(2,2,3); zplane(B,A);title('全通网络零点分布图') %修正网络: B=[-0.6 1]; A=[1 -0.7 0.8]; subplot(2,2,4); zplane(B,A);title('修正网络零点分布图')对比区别:0500100015002000123系统函数极频率响应0500100015002000-4-2024系统函数极频率相位响应500100015002000246修正网络频率响应0500100015002000-4-224修正网络频率相位响应B=[0.3 -0.5]; A=[1 -0.7 0.8]; w=0:0.01:6*pi; h=freqz(B,A,w) subplot(2,2,1); plot(abs(h));title('系统函数极频率响应') subplot(2,2,2); plot(angle(h));title('系统函数极频率相位响应')B=[-0.6 1]; A=[1 -0.7 0.8]; w=0:0.01:6*pi;[h,w]=freqz(B,A,w) subplot(2,2,3); plot(abs(h));title('修正网络频率响应') subplot(2,2,4); plot(angle(h));title('修正网络频率相位响应')第七题:说明grpdelay 的使用方法,计算1和5中的群延时0.51 1.522.53012345678910Normalized Frequency (⨯π rad/sample)G r o u p d e l a y (s a m p l e s )b=[0.2 0 -0.3]; a=[1 -0.4 0.8]; w=0:0.01:3*pi; grpdelay(b,a,w);第五题的群延时00.51 1.522.53-15-10-55101520Normalized Frequency (⨯π rad/sample)G r o u p d e l a y (s a m p l e s )b=[1 0.2 -0.4 -0.2 1]; a=[1];w=0:0.01:3*pi; grpdelay(b,a,w);群延时函数的使用方法: help grpdelayGRPDELAY Group delay of a digital filter.[Gd,W] = GRPDELAY(B,A,N) returns length N vectors Gd and W containing the group delay and the frequencies (in radians) at which it is evaluated. Group delay is -d{angle(w)}/dw. The frequencyresponse is evaluated at N points equally spaced around the upper half of the unit circle. For an FIR filter where N is a power of two, the computation is done faster using FFTs. If you don't specify N, it defaults to 512.GRPDELAY(B,A,N,'whole') uses N points around the whole unit circle.[Gd,F] = GRPDELAY(B,A,N,Fs) and [Gd,F] = GRPDELAY(B,A,N,'whole',Fs) given sampling frequency Fs in Hz return a vector F in Hz.Gd = GRPDELAY(B,A,W) and Gd = GRPDELAY(B,A,F,Fs) return the group delay evaluated at the points in W (in radians/sample) or F (in Hz).GRPDELAY(B,A,...) with no output arguments plots the group delay in the current figure window.提高1:级联后的频率响应0.51 1.522.5-800-600-400-200Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.51 1.522.5-200-150-100-500X: 0.2992Y: -2.991Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )b=0.175*[1 3 3 1]; a=[1];w=0:0.01:3*pi;freqz(b,a,w);最高的点x=0, y=0X=0.2992,y=-2.991Y*pi=0.9400计算的wc= 2*acos(2^(-1/6))=0.9430。
数字信号处理实验报告
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验报告
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理实验报告
数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。
在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。
在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。
通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。
接着,我们进行了数字信号滤波的实验。
滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。
在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。
除了滤波,我们还进行了数字信号变换的实验。
数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。
在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。
我们进行了数字信号解调的实验。
数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。
在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。
总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。
《数字信号处理》实验报告
《数字信号处理》实验报告年级:2011级班级:信通4班姓名:朱明贵学号:111100443老师:李娟福州大学2013 年11 月实验一快速傅里叶变换(FFT)及其应用一、实验目的1.在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。
2.熟悉应用FFT对典型信号进行频谱分析的方法。
3.了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
4.熟悉应用FFT实现两个序列的线性卷积和相关的方法。
二、实验类型演示型三、实验仪器装有MATLAB语言的计算机四、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:反变换为:有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。
FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。
它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。
常用的FFT 是以2为基数的,其长度。
它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。
(一)在运用DFT进行频谱分析的过程中可能的产生三种误差1.混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
数字信号处理实验报告4
专业: 学号: 姓名: 成绩: 实验题目: 窗函数法设计FIR 数字滤波器实验目的: 了解和掌握线性相位FIR 数字滤波器的设计方法实验原理与内容:1. 设计具有指标ωp =0.2π,R p =0.25dB,ωs =0.3π,A s =50dB 的低通数字滤波器2. 根据指标选择合适的窗函数,确定冲激响应,画出滤波器的频率响应3. 由于在设计过程中,并没有用到Rp=0.25dB 值,因此设计后必须对此进行校验实验结果:1. 绘出理想低通滤波器的冲激响应图12. 绘出Hamming 窗图2010203040506070-0.0500.050.10.150.20.250.3n h d (n )01020304050600.10.20.30.40.50.60.70.80.91n H a m (n )3. 绘出加窗后的滤波器冲激响应图34. 绘出该滤波器的幅频响应图4010203040506070-0.0500.050.10.150.20.250.3Actual Impulse Responsen h (n )00.20.31-100-90-80-70-60-50-40-30-20-10010Magnitude Response in dB w/pi 20l g |H g (w )|思考题:1如果没有给定h(n)的长度N,而是给定了通带边缘截止频率ωc和阻带临界频率ωp,以及相应的衰减,你能根据这些条件用窗函数法设计线性相位FIR低通滤波器吗?2窗函数的傅式变换W(e jω)的主瓣和旁瓣分别决定了H(e jω)的什么特性?程序附录:function hd=ideal_lp(wc,N)alpha=(N-1)/2;n=0:N-1;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);function [db,mag,pha,grd,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);pha=angle(H);db=20*log10((mag+eps)/max(mag));grd=grpdelay(b,a,w);clcwp=0.2*pi;ws=0.3*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width);N=0:M-1;wc=(4*ws+6*wp)/10;w_ham=(hamming(M))';hd=ideal_lp(wc,M);h=hd.*w_ham;[db,mag,pha,grd,w]=freqz_m(h,1);delta_w=2*pi/1000;subplot(2,2,1)stem(N,hd,'.');xlabel('n');ylabel('hd(n)');subplot(2,2,2)stem(N,w_ham,'.');axis([0 M-1 0.1 1])xlabel('n');ylabel('Ham(n)');subplot(2,2,3)stem(N,h,'.')title('Actual Impulse Response');xlabel('n');ylabel('h(n)');subplot(2,2,4)plot(w/pi,db)axis([0 1 -100 10])title('Magnitude Response in dB')xlabel('w/pi');ylabel('20lg|Hg(w)|');gridset(gca,'XTickMode','manual','XTick',[0,0.2,0.3 1]) Rp=-(min(db(1:1:wp/delta_w+1)))As=-round(max(db(ws/delta_w+1:1:501)))function hd=ideal_lp(wc,N)alpha=(N-1)/2;n=0:N-1;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);。
数字信号处理实验报告
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验报告
《数字信号处理》实验报告地点通信实验室学院计算机与通信工程学院专业班级通信082姓名颜晶学号 40850209指导教师杨欲亮2011年6月实验二 时域采样与频域采样一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理及方法时域采样定理的要点是: (a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T(b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt x a 和模拟信号)(t x a 之间的关系为:∑∞-∞=-=n a a nT t t x t x)()()(ˆδ对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdte nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nTj aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即Tj a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
数字信号处理 实验报告
数字信号处理实验报告实验一 信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。
二、实验原理与方法 1. 时域采样定理:对一个连续信号xa(t)进行理想采样的过程如下: xa1(t)=xa(t)p(t)其中xa1(t)为xa(t)的理想采样,p(t)为周期冲击脉冲。
xa1(t)的傅里叶变换Xa1(j Ω)为:11()[()]m Xa j Xa j m s T +∞=-∞Ω=Ω-Ω∑表明Xa1(j Ω)为Xa(j Ω)的周期延拓,其延拓周期为采样角频率(s Ω=2π/T )。
离散信号和系统在时域均可用序列来表示。
2. LTI 系统的输入输出关系: y(n)=x(n)*h(n)=()()m x m h n m +∞=-∞-∑()()()j j j Y e X e H e ωωω=三、实验内容1. 分析采样序列的特性。
1) 取模拟角频w=70.7*pi rad/s ,采样频率fs=1000Hz>2w ,发现无频谱混叠现象。
2) 改变采样频率, fs=300 Hz<2w ,频谱产生失真。
3) 改变采样频率, fs=200Hz<2w,频谱混叠,产生严重失真2. 时域离散信号、系统和系统响应分析。
1) 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
2) 观察系统ha(n)对信号xc(n)的响应特性。
可发现:信号通过系统,相当于x(n)与系统函数h(n)卷积,时域卷积即对应频域函数相乘。
数字信号处理第四次实验报告
数字信号处理第四次试验实验报告任务一 IIR 系统的特性某线性系统用差分方程表示为()()()()()10.910.812y n x n x n y n y n =+-+---1、求出系统函数,编程调用函数zplane 画出系统函数的零极图;2、调用函数freqz ,画出此系统的频率响应的幅度和相位。
3、能否用编写的DTFT 子函数无误差地计算此系统的频率响应特性?1.1.1原理及公式()()()()()10.910.812y n x n x n y n y n =+-+---两边进行Z 变化 ()()()()()1120.90.81Y z X z z X z z Y z z Y z ---=++-整理得:()()()12122110.90.810.90.81Y z z z zH z X z z z z z ---++===-+-+ 1.1.2程序脚本clear all ;b=[1 1 0];a=[1 -0.9 0.81]; zplane(b,a);1.1.3程序运行结果Real PartI m a g i n a r y P a r t1.2.1原理和思路在ω的一个周期()~ππ-内取1024个点,用freqz 函数求出系统的频率响应,用1.2.2程序脚本和注释clear all ; M=1024;w=-pi:2*pi/M:pi; b=[1 1 0]; a=[1 -0.9 0.81]; h=freqz(b,a,w); mag=abs(h);pha=phase(h); % 提取滤波器频率响应的幅度mag 和相位pha plot(w,mag); xlabel('w/rad'); ylabel('Magnitude'); title('Magnitude(幅度)'); figure; plot(w,pha); xlabel('w/rad'); ylabel('Phase'); title('Phase (相位)');1.2.3程序运行结果w/rad M a g n i t u d eMagnitude(幅度)w/radP h a s ePhase (相位)1.3不能用编写的DTFT 子函数无误差地计算此系统的频率响应特性。
数字信号处理实验报告
《数字信号处理》实验报告课程名称:《数字信号处理》学院:信息科学与工程学院专业班级:通信1502班学生姓名:侯子强学号:0905140322指导教师:李宏2017年5月28日实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号:ˆ()()()a a xt x t p t = 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即()()n P t t nT δ∞=-∞=-∑1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()|j a TX j X e ωω=ΩΩ=而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。