双勾函数的图像与性质PPT课件
对勾函数
对勾函数是一种类似于反比例函数的一般双曲函数,是形如f(x)=ax+b/x(a>0)的函数。
中文名对勾函数别称耐克函数、双勾函数、对号函数、双飞燕函数表达式f(x)=ax+b/x (a>0)1定义定义所谓的对勾函数(双曲函数),是形如(a>0)的函数。
名称由图像得名,又被称为“双勾函数”、“勾函数”、"对号函数"、“双飞燕函数”等。
也被形象称为“耐克函数”或“耐克曲线”。
2性质图像对勾函数是数学中一种常见而又特殊的函数,见图示,在作图时最好画出渐近线最值当x>0时,有最小值(这里为了研究方便,规定a>0,b>0),也就是当时,f(x)取最小值。
奇偶性、单调性奇偶性双勾函数是奇函数。
单调性令k=,那么:增区间:{x|x≤-k}和{x|x≥k};减区间:{x|-k≤x<0}和{x|0<x≤k}变化趋势:在y轴左边先增后减,在y轴右边先减后增,是两个勾。
渐近线对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一对勾函数点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。
3对勾函数最小值与均值不等式对勾函数性质的研究离不开均值不等式。
说到均值不等式,其实也是根据二次函数得来的。
我们都知道展开,得,即两边同时加上2ab,整理得,两边开平方,就得到了均值定理的公式:将中看做a,看做b代入上式,得这里有个规定:当且仅当ax=b/x时取到最小值,解出x=sqrt(b/a),对应的f(x)=2sqrt(ab)。
我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab),前式大家都知道,是求平均数的公式。
那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。
4导数求解其实用导数也可以研究对勾函数的性质。
双勾函数的图像与性质课件
双勾函数的性质
总结词
双勾函数具有一些特殊的性质,如对 称性、周期性和最值等。
详细描述
双勾函数图像关于直线y=kx(k为常 数)对称,同时具有周期性,其最小 正周期为2π。此外,双勾函数在特定 点取得最大值和最小值。
双勾函数的图像
总结词
双勾函数的图像呈现双勾形状,具有特定的对称性和周期性 。
详细描述
连线
使用平滑的曲线将这些点 连接起来,形成双勾函数 的图像。
双勾函数图像的特性
对称性
双勾函数的图像关于直 线y=x对称。
形状
双勾函数的图像是一个 半圆弧形状,类似于两
个勾子相交的形状。
定义域和值域
双勾函数的定义域为[1,1],值域为[0,1]。
奇偶性
双勾函数是奇函数,即 f(-x)=-f(x)。
03
05
双勾函数与其他数学知 识的联系
与三角函数的联系
三角函数与双勾函数在图像上具有相似性,可以通过三角函数来理解双勾函数的图 像变化。
双勾函数的周期性与三角函数的周期性相呼应,可以通过三角函数的周期性来理解 双勾函数的周期性。
三角函数中的正弦、余弦函数与双勾函数中的f(x)=ax+b/x在特定条件下具有等价性 。
双勾函数的图像是一个类似于两个山峰和两个谷底的波形曲 线。图像关于直线y=kx(k为常数)对称,并且在特定点取 得最大值和最小值。通过调整参数a和b的值,可以改变双勾 函数的形状和大小。
02
双勾函数的图像绘制
使用数学软件绘制双勾函数图像
软件选择:选择合适的数学软件,如 GeoGebra、Desmos或Wolfram Alpha等,这些软件都支持双勾函数的 绘制。
在机械工程中,双勾函数可以用 于描述机械系统的振动和稳定性
双钩函数
对勾函数对勾函数是数学中一种常见而又特殊的函数,见图示。
重点(窍门):其实对勾函数的一般形式是: 一般地:函数),(00)(>>+=b a xb ax x f 叫做双钩函数。
该函数是奇函数,图象关于原点对称。
位于第一、三象限。
当0>x 时,由基本不等式可得:ab y 2≥。
当且仅当x b ax =,即ab x =时取等号。
故其顶点坐标为),(ab a b 2,图象在),(a b 0上单调递减的,在),(∞+ab 上单调递增。
同理:当0<x 时,由基本不等式可得:ab y 2-≤。
当且仅当x b ax =,即ab x -=时取等号。
故其顶点坐标为),(ab ab 2--, 图象在),(a b -∞-上是单调递增,在),(0ab -上是单调递减的。
答案:最小值:2.5 最大值: 4.25 最小值:6 最大值:10答案:a 大于等于3答案:0<a<=3答案: (1)3 (2) (3)2、练习 (1)已知函数[]2411.(3)y x x =+例求函数在上,的最值。
[]92.(1)15y x x=+例求函数在,上的最小值。
(]92.(2)0,6y x a x a =+例求函数在上的最小值为 求的取值范围。
(]092.(3),a y x x a =+例若函数在上是减函数, 求的取值范围。
()23.1(1) 0x x y x x ++=>例求下列函数的最小值: )2(2) y x R=∈()226(3) 11x x y x x ++=>-()7f x x x =+[]()(1).1,2,.x f x ∈求的值域[]()(2).2,4,.x f x ∈求的最小值[]()(3).7,3,.x f x ∈--求的值域(())(7:(),,,f x x x=++∞-∞-解函数在0递减 在递增[]().1,2(2)()(1)1()8 , 82x f f x f f x ∈∴≤≤⎡⎤≤≤∴⎢⎥⎣⎦1在是减函数 1 即 值域为2[][]().2,4, ()()2,4x f x f f x x =∴∈2分析知的最小值为 在最小值为[][](3).7,3(7)()(3)168()7,38,-3x f f x f f x x ∈--∴-≤≤-⎡⎤≤≤-∴∈---⎢⎥⎣⎦在是增函数 16 即- 值域为 32.已知函数,求f(x)的最小值,并求此时的x 值.()2f x =()[)()2min :,15y 2,220225, 02f x t t x f x x ===∴≥∞∴=+==∴=∴===解原函数化为1令y=t+,(t 2) 此函数在1+递增t此时 即时。
对勾函数的图像及其性质ppt课件
ab
值域
在- ,-
b a
和
b a
,
单调递减
在 -
b a
,0 和 0
,
b a
单调递增
y / y 2 ab 或 y 2 ab
12
4、当a 0 , b 0时,
定义域
(-∞,0) ∪(0 ,+∞)
奇偶性
b a
, 0
b a
, 0
奇函数
单调性 在- ,0 , 0, 单调递减
减函数
如果对于定义域内某个区间D上, 任意两个自变量 x1、x2,当 x1<x2 都 有 f(x1)>f(x2) ,就称函数f(x) 在区 间D上是减函数.
(6).用定义法(作差法)证明函数在定义域 区间D上是单调函数时,过程为:
任取自变量 x1、x2 D ,令 x1<x2;作差 f(x2)-f(x1); 分解因式;判断正负;下结论.
9
探究函数 f (x) ax bx的图像和性质.
1、当a 0 , b 0时,
定义域
(-∞,0) ∪(0 ,+∞)
b a
,2
ab
b a
,2
ab
奇偶性 单调性
值域
奇函数
在 - ,
b a
和
b a
,
单调递增
在 -
b a
,0
和
0
,
b a
单调递减
y / y 2 ab 或 y 2 ab
x
4
7
3. 值 域 , 4 3 (4 3 , )
4. 单调性
在
0
,
3 4
上
单调递减
f (x) 4x 3 x
双勾函数
下面分情况讨论
⑴当x1<x2<-根号a时,x1-x2<0,x1x2-a>0,x1x2>0,所以f(x1)-f(x2)<0,即
f(x1)<f(x2),所以函数在(-∞,-根号a)上是增函数
⑵当-根号a<x1<x2<0时,x1-x2<0,x1x2-a<0,x1x2>0,所以f(x1)-f(x2)>0,
值定理,就看你喜欢用那个了。不过注意均值定理最后的讨论,有时ax≠b/x,
就不能用均值定理了。
上述研究都是建立在x>0的基础上的,不过对勾函数是奇函数,所以研究出正半
轴图像的性质后,自然能补出对称的图像。如果出现平移了的问题(图像不再规
则),就先用平移公式或我总结出的平移规律还原以后再研究,这个能力非常重
简单,但要熟练掌握。举几个例子:1/x=x^-1,4/x^2=4x^-2。明白了吧,x为分
母的时候可以转化成负指数幂。那么就有f(x)=ax+b/x=ax+bx^-1,求导方法一样,
求得的导函数为a+(-b)x^-2,令f'(x)=0,计算得到b=ax2,结果仍然是
x=sqrt(b/a),如果需要的话算出f(x)就行了。平时做题的时候用导数还是均
=a(x1-x2)-b(x1-x2)/x1x2
=(x1-x2)(ax1x2-b)/x1x2
∵x1>x2,x1-x2>0
∴ 当x∈(0,√(b/a))时,x1x2<b/a, 则ax1x2-b<b-b=0
∴f(x1)-f(x2)<0,即x∈(0,√(b/a))时,f(x)=ax+b/x单调递减
(完整版)“双勾函数”的性质及应用
“双勾函数”的性质及应用问题引入:求函数2y =的最小值.问题分析:将问题采用分离常数法处理得,2y ==,此时如果利用均值不等式,即2y =,等式成立的条件为==显然无实数解,所以“=”不成立,因而最小值不是2,遇到这种问题应如何处理呢?这种形式的函数又具有何特征呢?是否与我们所熟知的函数具有相似的性质呢?带着种种疑问,我们来探究一下这种特殊类型函数的相关性质.一、利用“二次函数”的性质研究“双勾函数”的性质 1.“双勾函数”的定义我们把形如()kf x x x=+(k 为常数,0k >)的函数称为“双勾函数”.因为函数()kf x x x=+(k 为常数,0k >)在第一象限的图像如“√”,而该函数为奇函数,其图像关于原点成中心对称,故此而得名.2.类比“二次函数”与“双勾函数”的图像3.类比“二次函数”的性质探究“双勾函数”的性质 (1)“二次函数”的性质①当0a >时,在对称轴的左侧,y 随着x 的增大而减小;在对称轴的右侧,y 随着x二次函数图像“双勾函数”图像的增大而增大;当2bx a=-时,函数y 有最小值244ac b a - .②当0a <时,在对称轴的左侧,y 随着x 的增大而增大;在对称轴的右侧,y 随着x的增大而减小.当2bx a=-时,函数y 有最大值244ac b a -.(2)“双勾函数”性质的探究 ①当0x >时,在x =y 随着x的增大而减小;在x =y 随着x的增大而增大;当x =y有最小值.②当0x <时,在x =y 随着x 的增大而增大;在x =y 随着x的增大而减小.当x =y有最大值-综上知,函数()f x在(,-∞和)+∞上单调递增,在[和上单调递减.下面对“双勾函数”的性质作一证明.证明:定义法.设12,x x ∈R ,且12x x <,则1212121212121212()()()()()(1)x x x x k a k k f x f x x x x x x xx x x x ---=+--==--.以下我们怎样找到增减区间的分界点呢?首先0x ≠,∴0x =就是一个分界点,另外我们用“相等分界法”,令120x x x ==,2010kx -=可得到x =因此又找到两个分界点.这样就把()f x 的定义域分为(,-∞,[,,)+∞四个区间,再讨论它的单调性.设120x x <<120x x -<,120x x >,120x x k <<, ∴120x x k -<. ∴121212121212()()()()0x x x x k k k f x f xx x x x x x ---=+--=>,即12()()f x f x >. ∴()f x 在上单调递减.同理可得,()f x 在)+∞上单调递增;在(,-∞上单调递增;在[上单调递减.故函数()f x在(,-∞和)+∞上单调递增,在[和上单调递减.性质启发:由函数()(0)kf x x k x=+>的单调性及()f x 在其单调区间的端点处取值的趋势,可作出函数()y f x =的图像,反过来利用图像可形象地记忆该函数的单调性及有关性质.此性质是求解函数最值的强有力工具,特别是利用均值不等式而等号不成立时,更彰显其单调性的强大功能.4.“二次函数”与“双勾函数”在处理区间最值问题上的类比 (1)“二次函数”的区间最值设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值. 分析:将f x ()配方,得对称轴方程x ba=-2, ①当a >0时,抛物线开口向上.若-∈ba m n 2[],必在顶点取得最小值,离对称轴较远端点处取得最大值; 若-∉b a m n 2[],,此时函数在[]m n ,上具有单调性,故在离对称轴x b a=-2较远端点处取得最大值,较近端点处取得最小值. ②当0a <时,抛物线开口向下.若-∈ba m n 2[],必在顶点取得最大值,离对称轴较远端点处取得最小值; 若-∉b a m n 2[],,此时函数在[]m n ,上具有单调性,故在离对称轴x b a=-2较远端点处取得最小值,较近端点处取得最大值. 以上,作图可得结论. ①当a >0时,max121()()()22()1()()()22b f m m n a f x b f n m n a ⎧-+⎪⎪=⎨⎪-<+⎪⎩如图如图,≥,;min345()()2()()()22()()2b f n n a b b f x f m n a a b f m m a ⎧->⎪⎪⎪=--⎨⎪⎪-<⎪⎩如图如图如图,,≤≤,.图1 图2 图3 图4 图5②当a <0时,max678()()2()()()22()()2b f n n a b b f x f m n a a b f m m a ⎧->⎪⎪⎪=--⎨⎪⎪-<⎪⎩如图如图如图,,≤≤,;min9101()()()22()1()()()22b f m m n a f x b f n m n a ⎧-+⎪⎪=⎨⎪-<+⎪⎩如图如图,≥,.(2)“双勾函数”的区间最值 设()(0)kf x x k x=+>,求f x ()在x m n ∈[],上的最大值与最小值. 分析:①当0x >时,其图像为第一象限部分.[]m n ,,则函数必在界点x =函数值;[]m n ,,此时函数在[]m n ,上具有单调性,故在离直线x =得最大值,较近端点处取得最小值.②当0x <时,其图像为第三象限部分.若[]m n ,,则函数必在界点x =最小值需比较两个端点处的函数值;若[]m n ,,此时函数在[]m n ,上具有单调性,故在离直线x =处取得最小值,较近端点处取得最大值.以上,作图可得结论. ①当0x >时,图7 图9图10max()(,()max{(),([,](,()(.f m n f x f m f n m n f n m ⎧>⎪⎪=⎨⎪<⎪⎩如图11)如图12)如图13)min()(,()[,](,()(.f n n f x f m n f m m ⎧>⎪⎪=⎨⎪<⎪⎩如图11)如图12)如图13)②当0x <时,max()(,()([,](,()(.f n n f x f m n f m m ⎧>⎪⎪=⎨⎪<⎪⎩,如图14)如图15),如图16)min()(,()min{(),()},[,](,()(.f m n f x f m f n m n f n m ⎧>⎪⎪=⎨⎪<⎪⎩,如图14)如图15),如图16)二、实践平台例1某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式近似地表示为230400010x y x =-+.问:(1)年产量为多少吨时,每吨的平均成本最低?并求出最低成本;图11 图12图13图14图15图16(2)每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润.分析:将问题归结为“双勾函数”问题,利用“双勾函数”的性质,可使问题轻松获解.解:(1)由题意可知,每吨平均成本为yS x=万元. 即400014000030()301010y x S x x x x==+-=+-,因为函数在区间(0,200]上为减函数,在区间[200,)+∞上为增函数.所以当200x =时,函数400014000030()301010y x S x x x x==+-=+-有最小值为140000(200)301010200S =+-=最小(万元), 所以当年产量为200吨时,每吨的平均成本最低,最低成本为10万元.(2)设年获得总利润为Q 万元,则2211616304000(230)12901010x Q x y x x x =-=-+-=-+, 当230(150,250)x =∈,1290Q =最大,故当年产量为230吨时,可获得最大利润1290万元.评注:本题的关键是用年产量x 吨把每吨平均成本及利润表示出来,然后再求其最值,在求解最值时我们要用到“双勾函数”的单调性,记住这个结论可以简化计算过程.函数的单调性除一些理论上的应用外,它还可以灵活有效地解决现实生活中与之相关的实际问题.例2甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位),由可变部分和固定部分组成;可变部分与速度v (km/h)的平方成正比,比例系数为b ,固定部分为a 元.(1)把全程运输成本y (元)表示为v (km/h)的函数,并指出这个函数的定义域.(2)为了使全程运输成本最小,汽车应以多大的速度行驶. 分析:要计算全程的运输成本s bv vabv a v s y )()(2+=+=(v <0≤c ),而已知每小时的运输成本,只需计算全程的时间,由题意不难得到全程运输成本s bv v a bv a v s y )()(2+=+=(v <0≤c ),所要解决的问题是求bv va+何时取最小值,显然要对c 的大小进行讨论,讨论的标准也就是c 与ba的大小. 解:(1)依题意知:汽车从甲地匀速行驶到乙地所用时间为sv,因此全程运输成本为s bv vabv a v s y ⋅+=+⋅=)()(2,又据题意v <0≤c ,故所求函数及其定义域分别为: )(bv vas y +⋅=,],0(c v ∈.(2)设()()aab u f v bv b v v v==+=+,∴u 在],0(b a上是减函数,在)+∞上是增函数. ①若ba≤c ,结合“双勾函数”的性质知, 当bav =时运输成本y 最小. ②若c ba>,函数在],0(c 上单调递减,所以当c v =时,全程运输成本最小. 评注:解应用题时,首先要训练读题能力,成功地完成对数学文字语言、符号语言、图形语言的理解、接受和转换,继而对题中各元素的数量关系进行加工和提炼,分清主次,并建立数学模型解决实际问题.例3(2006安徽高考)已知函数()f x 在R 上有定义,对任意实数0a >和任意实数x ,都有()()f ax af x =.(Ⅰ)证明(0)0f =;(Ⅱ)证明0()0.kx x f x hx x ⎧=⎨<⎩,≥,,其中k 和h 均为常数;(Ⅲ)当(Ⅱ)中的0k >,设1()()(0)()g x f x x f x =+>,讨论()g x 在(0)+∞,内的单调性并求最值.分析:承接第(Ⅱ)问的结论,将问题归结为“双勾函数”的单调性与函数最值的求解问题.证明:(Ⅰ)令0x =,则()()00f af =,∵0a >,∴()00f =. (Ⅱ)①令x a =,∵0a >,∴0x >,则()()2f x xf x =.假设0x ≥时,()f x kx =(k ∈R ),则()22f x kx =,而()2xf x x kx kx =⋅=,∴()()2f x xf x =,即()f x kx =成立.②令x a =-,∵0a >,∴0x <,()()2f xxf x -=-假设0x <时,()f x hx =()h R ∈,则()22f x hx -=-,而()2xf x x hx hx-=-⋅=-,∴()()2f xxf x -=-,即()f x hx =成立.∴(),0,0kx x f x hx x ≥⎧=⎨<⎩成立.(Ⅲ)当0x >时,()()()2111()k g x f x kx k x f x kx x=+=+=+, 由“双勾函数”性质知在1(0,]k 上为减函数,在1[,)k+∞上为增函数, 所以当1x k=时,min [()]2g x =. 评注:数学高考试题注重“考基础、考能力、考思想”.所以熟悉数学化归的思想,有意识地运用数学变换的方法去灵活解决有关的数学问题,将有利于强化在解决数学问题中的应变能力,有利于提高解决数学问题的思维能力和技能、技巧. 适当进行化归、转化能给人带来思维的闪光点,找到解决问题的突破口,是分析问题中思维过程的主要组成部分. 本题就是转化思想应用的一个典型,通过转化将本来抽象的问题归结到“双勾函数”区间最值的求解,让我们有一种豁然开朗的感觉.例4(2001广东高考)设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为(1)λλ<,画面的上、下各留8cm 空白,左、右各留5cm 空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求23[,]34λ∈,那么λ为何值时,能使宣传画所用纸张面积最小?分析:设定变元x ,寻找它们之间的内在联系(等量关系),选用恰当的代数式表示问题中的这种联系,建立函数模型,将问题归结为“双勾函数”区间最值问题,并运用“双勾函数”性质进行求解.解:设画面高为x cm ,宽为x λcm ,则24840x λ= 设纸张面积为S cm 2,则有2(16)(10)(1610)160S x x x x λλλ=++=+++,将2210x λ=代入上式得,58500035210(S λλ=+,(0)t t λ=>,则58()500035210()(0)S t t t t=++>,函数S 在5]8上为减函数,在5[,)8+∞上为增函数, 所以当58t =S 取最小值, 此时55(1)88λ=<,高:484088x λ==cm ,宽:588558x λ=⨯=cm .如果23[,]34λ∈,则)t ∈⊆+∞,所以函数S 在上为增函数,故当t =S 取最小值,此时23λ=. 评注:函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种动态刻画. 要充分重视解题过程中的推理,注意运用推理来简化运算.充分利用题目给出的信息,抽象其数学特征,建立函数关系.很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,达到解决问题的目的.在高考中可以利用“双勾函数”考查均值不等式、函数的单调性、函数最值等问题,其应用相当广泛,应用效果相当明显.因此也是高考中的热点和难点,倍受命题者的青睐.但只要我们能熟知“双勾函数”的性质,便不难使此类问题获解.。
双勾函数的图像与性质PPT课件
(2) 0 x 1 时,求y的最小值 2
(3)
1 2
x
4
时,求y的值域
13
-
练习与巩固
(1) f (x) x 3 , (o x 1) x
x2 3x 2
(2) f (x)
, (2 x 5)
x
No Image
(3) f (x) Nx o3 , (x 3)
x 1
(4) f (x)Imx amge在0,1上的最小值
x
14
-
回顾一次函数与反比例函数
两个函数的主要性质 两个函数相加具有奇偶性吗?
15
-
链接对勾函数
形如y ax b (a 0,b 0)的函数图像 x
求定义域
函数的奇偶性如何
想象函数的图像的大致趋势
函数的图像可能出现的象限
y ax 直线
的图像与整体图像存在什么关系
16
-
观察图形,思考问题
思考1:函数f (x) x - 1 的奇偶性如何? x
思考2:函数f (x) x - 1 与y x的图像有什么关系? x
思考3:可以作出函数f (x) x - 1 的大致图像吗? x
思考4:可以作出函数f (x) x - a(a 0)的大致图像吗? x
6
-
7
-
函数 y x - a 的图像的主要性质(a>0)
(4)值域: y ,2 ab 2 ab,
17
-
x
(1)定义域: ,0 (0,)
(2)奇偶性: 奇函数 (3)渐近线: y x
(4)单调区间: - ,0和0, 单调增区间;
(5)值域: R
8
-
例2、判断函数f (x) 4x 1 在定义域上的单调性 x
双钩函数课件shuanggou
4.建筑一个容积为800米3,深8米的长方体 水池(无盖).池壁,池底造价分别为a元/米2 和2a元/ 米2.底面一边长为x米,总造价为y. 写出y与x的函数式,问底面边长x为何值时 总造价y最低,是多少?
解:长方体底面积S=100米 ,
2
100 底面另一边长为 x 200 池壁总面积为8 (2 x )米2 x
60 (1).C<60时,函数t=x 在x 0,C 递减 x 60 100(C 2 60) x C时,ymin 100(C ) C C
y
60 (2).C 60时,函数t=x ,对于x C包含最 x 1200 3600 小点,x 60时,y min 100(60 ) 12000 60
1 3.已知实数a, b R , a +b=1, ab 4 1 1 (1).试用a, b表示(a )(b ) a b 1 1 (2).求(a )(b )的最小值. a b
解: 1 1 b a 1 1 a b (1).(a )(b ) ab ab a b a b ab ab ab 2 2 2 2 a+b=1, a b +2ab=1 a b =1-2ab代入上式
0
答:C<60时,汽车以C速度行驶,C 60C Nhomakorabeax
C 60时,汽车以60速度行驶,运输成本最低.
四.小结:
上式中x2 x1 0,为使上式符号确定,
对任意x1x2 , x1 x2 a或x1 x2 <a都成立.
当x1 x2 >a时,由x1 ,x2是任意的,知x1 ,x2可 无限接近.而x1 ,x2在同一个区间取值, 知x1 ,x2 ( a,+)时,x1 x2 >a都成立. 此时,f(x2 )>f ( x1 ). 所以x ( a,+)时,f(x)是增函数. 同时可知,x (0, a )时,f(x)是减函数.
对勾函数的图像及其性质课件
在证明某些不等式时,可以利用对勾函数的单调性、奇偶性等性质进行推导。例如,在证明与根号相关的不等 式时,通过构造函数并利用对勾函数的性质,可以更加简洁地证明不等式。
数列求和与极限计算
数列求和
对勾函数在数列求和中也有广泛应用。例如,在某些含有根 号的数列求和问题中,可以通过对勾函数的变换将问题转化 为等比数列或等差数列求和,从而简化计算过程。
极限计算
在求解某些极限问题时ቤተ መጻሕፍቲ ባይዱ可以利用对勾函数的连续性、可导 性等性质进行推导。通过构造函数并利用洛必达法则等工具 ,可以更加便捷地求解极限问题。
积分变换与微分方程求解
积分变换
对勾函数在积分变换中也有重要作用。例如,在某些含有根号的积分问题中,可以通过对勾函数的变换将问题转 化为更易于求解的形式。此外,对勾函数还可以用于构建某些特殊的积分公式,为积分计算提供便利。
对勾函数拟合
利用对勾函数对需求数据 进行拟合,得到需求曲线 方程。
预测未来需求
基于拟合得到的需求曲线 方程,预测未来不同价格 水平下的需求量。
供给曲线建模与预测
供给分析
收集历史数据,分析生产 者在不同价格水平下愿意 提供的商品或服务的数量 。
对勾函数拟合
利用对勾函数对供给数据 进行拟合,得到供给曲线 方程。
单调性与增减性
单调性
对勾函数在其定义域内不是单调函数。它在某些区间内是增函数,而在另一些区 间内是减函数。
增减性
具体来说,当x从负无穷大增加到0时,对勾函数从0增加到正无穷大;当x从0增 加到正无穷大时,对勾函数从正无穷大减少到0。因此,对勾函数在x=0处达到 极大值。
凸凹性与拐点
凸凹性
对勾函数在其定义域内既不是凸函数也不是凹函数。它在某些区间内是凸函数 ,而在另一些区间内是凹函数。
对号函数的图像与性质(1)
对号函数的图像与性质1.定义:形如)0(>+=ab xbax y 的函数称为对号函数.又形象称为双勾函数、耐克函数. 2.函数图像}{()3.(b>0)00,by ax a a x x x x x =+≠⎡-∞-⋃+∞⎣∞∞性质函数的性质(只考虑、b 均大于0时的情况)(1)定义域:(2)值域:,(3)奇偶性:奇函数(4)单调性:当>0时,在区间(上为减函数;在区间+)上为增函数当<0时,在区间()上为减函数;在区间(-上为增函数(5)对称性:图像关于原点对称min max x x y x x y ax ====--(6)极值:当>0时,当当<0时,当(7)顶点坐标:、(8)渐近线:x=0和y=4.例题例1 已知函数xx x f 1)(+=,分别求函数在以下定义域上的值域. (1)]4,2(∈x ; (2)]32,1[--∈x ;(3)]4,21[∈x ;(4))21,0()0,2(⋃-∈x答案:(1)517,24⎛⎤ ⎥⎝⎦;(2)13,26⎡⎤--⎢⎥⎣⎦;(3)172,4⎡⎤⎢⎥⎣⎦;(4)55,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭例2 已知函数x ax x x f ++=2)(2在]3,0(是减函数,在),3[+∞是增函数,求a 的值.解:由函数()()0af x x a x =+>3,9a ==. 例3 已知函数xax y +=有如下性质:如果常数a >0,那么该函数在],0(a 上是减函数,在),[+∞a 上是增函数.(1)如果函数)0(2>+=x xx y b的值域为),6[+∞,求b 的值;(2)研究函数)0(22>+=c x cx y 常数在定义域内的单调性,并说明理由. 解:(1)由函数)0(>+=a xax y 的性质知,当x > 0时,a x =时函数取最小值.2a所以对于函数,222,2b b b x xx y 时取最小值当=+=故,92,622==b b ∴2 9.b log = (2)设c t tct y t x t ≥+=>=由条件知在则)0(,2时为单调增函数,c t ≤<0时为单调递减函数,而2t x =在()+∞,0为单调增函数,在()0,∞-上为单调减函数所以由复合函数单调性知在222200c x x y x x x x ⎧⎧≥≤⎪⎪=+⎨⎨><⎪⎪⎩⎩均单调递增,解得,044<≤-≥x c c x 和即))22.c y x x⎡=++∞⎣的单调增区间为和 当x cx y x c x x c x +=⎩⎨⎧<≥⎩⎨⎧>≤时和0022均单调递减,解得440c x c x ≤≤<和即函数((22,.c y x x=+-∞的单调减区间为和 例4 (06上海高考)已知函数y =x +xa有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数(1)如果函数y =x +xb2(x >0)的值域为[6,+∞),求b 的值;(2)研究函数y =2x +2xc(常数c >0)在定义域内的单调性,并说明理由; (3)对函数y =x +x a和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例 研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =n x x )1(2++n x x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论)[解](1)函数y =x +xb2(x >0)的最小值是2b 2,则2b 2=6, ∴29b log =(2)设0<x 1<x 2, 21y y =-1)((2221212221212222x x c x x x c x x c x ⋅--=--+12x x <<时, 21,y y > 函数y =22xcx +在[4c ,+∞)上是增函数; 当120x x <<<4c 时, 21y y <, 函数y =22xcx +在(0,4c ]上是减函数又y =22xcx +是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3) 可以把函数推广为y =nn x ax +(常数a >0),其中n 是正整数 当n 是奇数时,y =n n xax +在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-n a 2]上是增函数, 在[-n a 2,0)上是减函数; 当n 是偶数时,y =n n xax +在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数. 在(-∞,-n a 2]上是减函数, 在[-n a 2,0)上是增函数;)(x F =n x x )1(2++n x x)1(2+=)1()1()1()1(323232321220nn n n r n r n r n n n n n n n x x C x x C x x C x x C ++++++++---- 因此)(x F 在 [21,1]上是减函数,在[1,2]上是增函数当x =21或x =2时,)(x F 取得最大值9924n n⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当x =1时)(x F 取得最小值12n +作者:谢连清。
对勾函数(目前最全面的版本了吧)
对勾函数f(x)=ax+的图象与性质繁华分享对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。
当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x“叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二)对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,。
当x<0时,。
即对勾函数的定点坐标:(三)对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四)对勾函数的单调性(五)对勾函数的渐进线由图像我们不难得到:(六)对勾函数的奇偶性对勾函数在定义域内是奇函数,yXOy=ax。
双对勾函数
2x
2x
2x
2
∴由对勾函数的性质知函数 在区间
上的最小值为
.
(2)在区间
上,
设
,
,因为
∴当
时,
于是,当且仅当
, 时,函数
恒成立 在
恒成立,故
恒成立. 上递增,
对称轴
返回目录
板块一
板块二
板块三
对勾函数考察要点 1、对勾函数图像,通过数形结合的思想,简洁明了的展 现函数的单调性、奇偶性及最值情况
返回目录
当时于是当且仅当时函数恒成立故时等号成立即当且仅当222121221?????xxxxxxx对称轴返回目录板块一板块二板块三对勾函数考察要点1对勾函数图像通过数形结合的思想简洁明了的展现函数的单调性奇偶性及最值情况返回目录板块一板块二板块三对勾函数考察要点2学会求对勾函数的最值通过基本不等式可知对勾函数第一象限的最小值为又知道对勾函数是奇函数从而确定第三象限最大值时等号成立当且仅当babaabba????0200baxbaxy??ab2abx?返回目录板块一板块二板块三对勾函数考察难点复杂函数转化变形为对勾函数1234??????bxcaxxfcaxcbxaxxf??????002????????kkxakxxfkakxaxxf?????????00??????xbxaxbxaxfbabxaxxf???????2200????????????????smxtmxaxftamxtmxsmxaxfamxcbxaxxf???????????????00022二次项系数常数项都大于0返回目录板块一板块二板块三对勾函数考察难点对勾函数与分离常数辨析??????dcxxfacdcxbaxxf???????常数常数0??????bxcaxxfcaxcbx对勾函数考察难点——复杂函数转化变形为对勾函数
对勾函数绝对经典
对勾函数f(x)=ax+的图象与性子之相礼和热创作繁华分享对勾函数是数学中一种稀有而又特殊的函数.它在高中教材上不出现,但考试总喜欢考的函数,以是也要留意它和了解它.(一) 对勾函数的图像对勾函数是一品种似于反比例函数的一样平常函数,形如f(x)=ax+(接上去写作f(x)=ax+b/x).当a≠0,b≠0时,f(x)=ax+b/x是反比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数.这个观点,对于理解它的性子,绘制它的图象,非常紧张.当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,外形酷似双勾.故称“对勾函数”,也称“勾勾函数”、“海鸥函数”.如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变更.但是,我们仍然可以看作是两个函数“叠加”而成.(请本人在图上完成:他是怎样叠加而成的.)一样平常地,我们以为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的地位有所改变而已.接上去,为了研讨方便,我们规定a>0,b>0.之后当a<0,b<0时,根据对称就很容易得出结论了.(二)对勾函数的顶点对勾函数性子的研讨离不开均值不等式. 利用均值不等式可以得到: 当x>0时,. 当x<0时,.即对勾函数的定点坐标:(三)对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性子.(四) 对勾函数的单调性 (五)对勾函数的渐进线对勾函数的图像(ab 异号)yXOy=ax由图像我们不难过到:(六)对勾函数的奇偶性对勾函数在定义域内是奇函数,利用对号函数以上性子,在解某些数学题时很简便,上面举例阐明:1、求函数324222++++=x x x x y 的最小值.解:令322++=x x t ,则22)1(2≥++=x t根据对号函数t t y 1+=在(1,+∞)上是增函数及t 的取值范围,当2=t 时y 有最小值223.此时x=-1.2、求函数),(sin 2sin Z k k x x x y ∈≠+=π的单调区间,并求当),0(π∈x 时函数的最小值.解:令t=sinx,对号函数t t y 2+=在(0,2)上是减函数,故当]2,0(π∈x 时sinx 是增函数,以是xx y sin 2sin +=在]2,0(π上是减函数.同理,x x y sin 2sin +=在),2(ππ上是增函数,由于函数x x y sin 2sin +=是奇函数,以是函数x x y sin 2sin +=在)0,2(π-上是减函数,在)2,(ππ--上是增函数,由周期性,函数xx y sin 2sin +=在每一个区间))(2,22(Z k k k ∈-πππ上是减函数,在每一个区间))(22,2(Z k k k ∈+πππ上是减函数;函数xx y sin 2sin +=在每一个区间))(2,22(Z k k k ∈++ππππ上是增函数,在每一个区间))(232,2(Z k k k ∈++ππππ上是增函数.当),0(π∈x 时]1,0(∈t ,当t=1时即2π=x 时y 有最小值3.20 (本小题12分)已知函数f (x )=ax2+1x .(1)在a>0时求f(x)的单调区间(不必写过程); (2)若a >0,x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,|x i |>1a (i =1,2,3),求证:f (x 1)+f (x 2)+f (x 3)>2 a. 解:整理得:f (x )=ax +1x(1)当a 0时,f (x )的减区间为(−,0)和(0,+);当a >0时,f (x )的减区间为(−1a ,0)和(0,1a ),增区间为(−,−1a)和(1a,+)………5分(2)证明:由条件知:x 1,x 2,x 3中至少一个负数. ………6分(ⅰ)若x 1,x 2,x 3都为负数,由(1)可知|x i |>1a 时,f (|x i |)>f (1a )=2 a (i =1,2,3)f (x 1)+f (x 2)+f (x 3)>6a>2a ………9分 (ⅱ)若x 1,x 2,x 3中有一负数,不妨设x 3<0. ∵x 2+x 3>0且|x 3|>1a ,x 2>−x 3>1af (x 2)>f (−x 3)=−f (x 3)(∵f (x )为奇函数) f (x 2)+f (x 3)>0f(x1)+f(x2)+f(x3)>f(x1)>f(1a)=2a………12分综上,f(x1)+f(x2)+f(x3)>2a. ………13分。
对勾函数
对勾函数图象性质对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号) 对勾函数的图像(ab 异号)(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到: 当x>0时,。
当x<0时,。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线由图像我们不难得到:(六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、类耐克函数性质探讨 函数xbax y +=,在时或00==b a 为简单的单调函数,不予讨论。
数学 对勾函数知识讲解
图象二
ቤተ መጻሕፍቲ ባይዱ
图像三
图像 四
件下 载可 自行 编辑 修改, 仅供 参考! 感谢 您的 支持, 我们 努力 做得 更好!
性质简介
1.对号函数是双曲线旋转得到的,所以也有渐近线、 焦点、顶点等等
2.对号函数永远是奇函数,关于原点呈中心对称 3.对号函数的两条渐进线永远是y轴和y=ax 4.当a、b>0时,图像分布在第一、三象限两条渐近 线的锐角之间部分,由于其对称性,只讨论第一象 限中的情形。利用平均值不等式(a>0,b>0且ab 的值为定值时,a+b≥2√ab)可知最小值是2倍根号 ab,在x=根号下b/a的时候取得,所以在(0,负根 号下b/a)上单调递减,在(根号下b/a,正无穷) 上单调递增
性质一
➢ 函数y=ax+b/x的性质 ➢ Ⅰ当a、b均大于零时,性质 : ➢ ⑴定义域:x≠0 ➢ ⑵值 域:(-∞,-2 根号ab)∪(2根号ab ,
+∞) ⑶奇偶性:奇函数 ➢ ⑷单调性:当x﹥0时,当0﹤x﹤根号b/a 时,
y为减函数 当x﹥根号b/a 时,y为增函 数 当x﹤0时,当- 根号b/a﹤x﹤0时,y 为减函数 当x﹤根号b/a- 时,y为增函 数
简介
对勾函数:图像,性质,单调性 对勾函数是数学中一种常见而又特殊的函数,见 图示。
对勾函数是一种类似于反比例函数的一般函 数,又被称为“双勾函数”、"勾函数"等。也被 形象称为“耐克函数”
所谓的对勾函数(双曲线函数),是形如 f(x)=ax+b/x的函数。由图像得名。
当x>0时,f(x)=ax+b/x有最小值(这里为了研 究方便,规定a>0,b>0),也就是当x=sqrt(b/a) 的时候(sqrt表示求二次方根)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考:函数f (x) x 16 与函数y x的图像有什么关系? x
变式2、判断函数f (x) 4x 16 在定义域上的单调性 x
思考:函数f (x) 4x 16 与函数y 4x的图像有什么关系? x
9
-
变式3、判断函数f (x) ax b (a 0,b 0)在定义域上的单调性 x
思考:函数f (x) ax b 与函数y ax的图像有什么关系? x
4
-
函数 y x a 的图像的主要性质(a>0)
x
(1)定义域: ,0 (0,)
(2)奇偶性: 奇函数 (3)渐近线: y x
(4)单调区间: , a 和 a,单调增区间;
a,0和0,a 单调减区间
(5)值域: y ,2 a 2 a,
5
-
变式2、判断函数f (x) x - 1 在定义域上的单调性 x
x
14
-
回顾一次函数与反比例函数
两个函数的主要性质 两个函数相加具有奇偶性吗?
15
-
链接对勾函数
形如y ax b (a 0,b 0)的函数图像 x
求定义域
函数的奇偶性如何
想象函数的图像的大致趋势
函数的图像可能出现的象限
y ax 直线
的图像与整体图像存在什么关系
16
-
观察图形,思考问题
(2) 0 x 1 时,求y的最小值 2
(3)
13
-
练习与巩固
(1) f (x) x 3 , (o x 1) x
x2 3x 2
(2) f (x)
, (2 x 5)
x
No Image
(3) f (x) Nx o3 , (x 3)
x 1
(4) f (x)Imx amge在0,1上的最小值
(4)值域: y ,2 ab 2 ab,
17
-
2
-
3
-
变式1、已知函数f (x) x a(a 0),判断f (x)在 0,a 上 x
和 a, 上的单调性
思考1:函数f (x) x a 的奇偶性如何? x
思考2:函数f (x) x a 与函数y x的图像有什么关系? x
思考3:可以作出函数f (x) x a 的大致图像吗? x
x
(1)定义域: ,0 (0,)
(2)奇偶性: 奇函数 (3)渐近线: y x
(4)单调区间: - ,0和0, 单调增区间;
(5)值域: R
8
-
例2、判断函数f (x) 4x 1 在定义域上的单调性 x
思考:函数f (x) 4x 1 与函数y 4x的图像有什么关系? x
变式1、判断函数f (x) x 16 在定义域上的单调性 x
形如y ax b (a 0,b 0)的函数图像 x
1
-
例1、已知函数f (x) x 1 ,判断f (x)在0,1上和1, 上的单调性
x
思考1:函数f (x) x 1 的奇偶性如何? x
思考2:函数f (x) x 1 与函数y x以及y 1 的图像有什么关系?
x
x
思考3:可以作出函数f (x) x 1 的大致图像吗? x
思考1:函数f (x) x - 1 的奇偶性如何? x
思考2:函数f (x) x - 1 与y x的图像有什么关系? x
思考3:可以作出函数f (x) x - 1 的大致图像吗? x
思考4:可以作出函数f (x) x - a(a 0)的大致图像吗? x
6
-
7
-
函数 y x - a 的图像的主要性质(a>0)
x
(1)定义域: ,0 (0,)
(2)奇偶性: 奇函数 (3)渐近线: y ax
(4)单调区间: ,
b a
和
b a
,
单调增区间;
b a
,0
和
0,
b a
单调减区间
(5)值域:y ,2 ab 2 ab,
12
-
应用举例
例:已知函数 y x 1 x
(1) 对于x R ,求函数的值域
10
-
对勾函数:是一种类似于反比例函数的一般双
曲函数,是形如 f ( x) ax b ( a 0 , b 0 ) 的函
数。
x
由图像得名,又被称为“双勾函数”、“勾函 数”、"对号函数"、“双飞燕函数”等。
因函数图像和耐克商标相似,也被形象称为 “耐克函数”或“耐克曲线”。
11
-
函数 y ax b 的图像的主要性质(a>0,b>0)