三年高考(2017-2019)各地文科数学高考真题分类汇总:导数的计算与导数的几何意义

合集下载

(25套)2019高考数学三年高考适合全国真题分项版汇总.docx

(25套)2019高考数学三年高考适合全国真题分项版汇总.docx

(25套)2019高考数学三年高考真题分项版汇总岂专题01集合和常用逻辑用语一三年高考(2015-2017 )数字(文)真题分项版解析(原卷版).doc幽专题02函数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc凶专题03导数的几何意义与运算一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc回专题04导数与函数的单调性一三年高考(2016-2018 )数字(文)真题分项版解析(原卷版).doc回专题06导数与函数的零点等综合问题一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc 电专题07三角函数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc也专题08三角"三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc也专题09平面向量一三年高考(2016-2018)数学(文)真题分项版解析(原卷版).doc亠专题10 裁数列許比数列一三年高考(2016-2018 )数学(文)頁题分析(原卷版).doc"专题11数列通项公式与求和一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc电专题12不等式一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc场专题13直线与圍一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc场专题14椭圆及冥相关的综合问题一三年高考(2016-2018 )数学(文)頁題分项版解析(原卷版).doc电专题15双曲线一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc场专题16抛物线一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc3专题17立休几何中线面位置关系一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc 呵专题18立休几何中一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc3专题19立休几何中休积与表面积一三年高考(2016-2018)数学(文)真題分项版解析(原卷版).doc电专题20概率一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc岂专题21统计一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc岂专题22算法一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc岂专题23复数一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc岂专题24推理与证明一三年高考(2016-2018 )数学(文)真题分项版解析(原卷版).doc巴]专题25选修部分一三年高考(2016-2018 )数学(文)真題分项版解析(原卷版).doc第一章集合与常用逻辑用语[2018年咼考试题】1. [2018课标1,文1】己知集合A={A|X<2},B二{兄3-2兀>0},则A.A B二{朮<寸》B. A 8=0C. A jx|x<|jD. A B=R2. 【2018 课标II,文1】设集合A = {1,2,3}, B = {2,3,4}则 A B =A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,3,4}3. [2018课标3,文1】已知集合A二{1,2,3,4}, B二{2,4,6,8},则A B中元素的个数为( )A. 1B. 2C. 3D. 44. [2018 天津,文1】设集合A = {1,2,6},B = {2,4},C = {1,2,3,4},则(A B) C(A) {2) (B) {1,2,4} (C) {1,2,4,6} (D) {1,2,3,4,6}5. [2018 北京,文1】已知 = 集合A = {x\x<-2^x>2} f则0A =(A) (-2,2)(B) (―—2) (2,+<x))(C) [-2,2](D) (YO,—2] [2, +co)6. [2018浙江,1】已知P二= {x|-l<x<l}, 2 = {0<x<2},则P\JQ =A. (—1,2)B. (0,1)C. (-1,0)D. (1,2)7. [2018 天津,文2】设xeR ,贝9 “ 2 —兀》0 ” 是x —1 1 ” 的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件8. [2018 111 东,文1】设集合M = {x||x-1| < 1}, AT = {x|x < 2},则M N =A.(-l,l)B. (-1,2)C.(0,2)D. (1,2)9. [2018山东,文5】已知命题p:F-x + lnO;命题q:若a2 </?2 JiJ a<h.下列命题为真命题的是A. /? A <7B. /? A—C.—ip A qD.-i/? A—10. 【2018北京,文13】能够说明“设G, b, c是任意实数.若a>b>c,则xb>c“是假命题的一组整数a,b,c的值依次为_______________________________ .11. (2018江苏,1】已知集合4 = {1,2}, B = {a,/+3},若A 〃 = {?则实数d的值为_________ .12.12018江苏,1】已知集合A = {1,2}, B={Q,/+3},若A B = 则实数a的值为_____________ .第二章函数[2018年高考试题】sin1. [2018课标「文8】函数——的部分图像大致为1 一COSX3. [2018浙江,5】若函数Xx)=/+ ax+b 在区间[0,4.与G 有关,且与方有关 B.与d 有关,但与方无关C.与a 无关,且与b 无关D.与d 无关,但与/?有关4.【2018北京,文5】已知函数/U) = 3r -(|)\则/(兀)(A) 是偶函数,且在R 上是增函数 (B) 是奇函数,且在R 上是增函数2.的部分图像大致为( 1]上的最大值是M,最小值是加,则Mcin Y[2018课标3,文7】函数y = l + x +巴二)(C) 是偶函数,且在R 上是减两数 (D) 是奇函数,且在R 上是增函数5.【2018北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3⑹,而可观测 宇宙屮普通物质的原子总数"约为1O 80.则下列各数中与理■最接近的是N(参考数据:lg3=0.48)(B) IO 53 (D) 10937. 【2018天津,文6 ]已知奇函数/(x)在R 上是增函数•若Cl = -/(log 2 -),/? = /(log 2 4」),c = /(20-8),则 a,b,c 的大小关系为(A) a <h < c (B) h <a <c (C) c <b < a (D) c < a <b 8. [2018课标II,文8】函数/(x) = ln(x 2-2x-8)的单调递增区间是 A. (-co,-2) B. (-oo,-l) C. (1,-boo) D. (4,+oo)9. [2018课标1,文9】己知函数/(x) = lnx + ln(2-x),则C. 3-/U)的图像关于直线戸1对称D. y= f(x)的图像关于点(1, 0)对称10. [2018山东,文10]若函数eV(x)(e=2.71828 ,是自然对数的底数)在/(兀)的定义域上单调递增,则称函数/(X )具有M 性质,下列函数屮具有M 性质的是A. /(x) = 2~vB. /(x) = x 2C. /(x) = 3"vD. /(x) = cosx| x\ + 2^c< 111. [2018天津,文8]已知函数f(x) = \2设owR ,若关于X 的不等式X H --- , X 1 •. 兀Xf(x)>\-+a\^R 上恒成立,则d 的取值范围是(A) 1033 (C) IO 736. [2018山东,文9】设/(x) =y[x,O<X<\2(x-l),x> 1 ,若于⑷= /(a+l),则/卫丿A. 2B. 4C. 6D.A. /⑴在((),2)单调递增B. /(兀)在(0, 2)单调递减(A) [-2,21 (B) [-2A/3,2] (C) [-2,2^3] (D) [-273,2^3]12. [2018课标II,文14]已知函数/(x)是定义在R上的奇函数,当xe(-oo,0)时,/(x) = 2x3 + x2,则,/'(2) = _________ •13. 【2018北京,文门】已知兀\(), y>0f且兀+)=1,则_? +),2的取值范围是 ___________ .兀 + ] Y v 0 114. [2018课标3,文16】设函数f(x) = 9~ '则满足f(x) + f(x——)>1的兀的取值2 爲x>0, 2范围是 _________ •15 [2018山东,文14】己知人兀)是定义在R上的偶函数,且几汁4)=心・2).若当"[-3,0]时,/'(兀)=6:则./(9⑼二_.16. [2018江苏,11】已知函数f(x) = x3-2x + e x-丄,其中e是自然对数的底数.若e A/(Q -1) + /(2/)w o,则实数a的取值范围是________ .2 门1712018江苏,14】设/(兀)是定义在R且周期为1的函数,在区间[0,1)上,/(兀)=厂英中集合D = «x\x = -~ ,n G N* »,则方程f(x)-\gx = O的解的个数是_______ .n[2017, 2016, 2014 高考题】1. 【2017高考新课标1文数】若d>b>0,0vcvl,则()(A) log a c<log/?c (B) log^vlogrb (C) d<b c (D) c a>c b2. [2014高考北京文第2题】下列函数中,定义域是尺且为增函数的是( )A.y = e~xB. y = x3C. y = \nxD.y= x3. [2014高考北京文第8题】加工爆米花时,爆开月.不糊的粒数占加工总粒数的百分比称为“可食用率” •在特定条件下,可食用率卩与加工吋间/(单位:分钟)满足的函数关系p = at2^bt + c (。

(2017-2019)高考文数真题分类汇编专题03 导数及其应用(选择题、填空题)(学生版)

(2017-2019)高考文数真题分类汇编专题03 导数及其应用(选择题、填空题)(学生版)

专题03 导数及其应用(选择题、填空题)1.【2019年高考全国Ⅱ卷文数】曲线y =2sin+cos 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2+b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-3.【2018年高考全国Ⅰ卷文数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x =D .y x =4.【2017年高考浙江】函数y=f ()的导函数()y f x '=的图象如图所示,则函数y=f ()的图象可能是5.【2018年高考全国Ⅱ卷文数】函数()2e e x xf x x--=的图像大致为6.【2018年高考全国Ⅲ卷文数】函数422y x x =-++的图像大致为7.【2017年高考山东文数】若函数e ()xf x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中具有M 性质的是 A .()2xf x -= B .2()f x x = C .()3x f x -=D .()cos f x x =8.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0D .a >–1,b >09.【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 10.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 11.【2018年高考天津文数】已知函数f ()=eln ,f ′()为f ()的导函数,则f ′(1)的值为__________. 12.【2018年高考全国Ⅱ卷文数】曲线2ln y x =在点(1,0)处的切线方程为__________.13.【2017年高考全国Ⅰ卷文数】曲线21y x x=+在点(1,2)处的切线方程为______________. 14.【2017年高考天津文数】已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为___________.15.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .16.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .17.【2018年高考江苏】若函数在有且只有一个零点,则在[−1,1]上的最大值与最小值的和为________. 18.【2017年高考江苏】已知函数31()2e exx f x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 ▲ .。

(2017-2019)高考文数真题分类汇编专题04 导数及其应用(解答题)(学生版)

(2017-2019)高考文数真题分类汇编专题04 导数及其应用(解答题)(学生版)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f ()=2sin -cos -,f ′()为f ()的导数. (1)证明:f ′()在区间(0,π)存在唯一零点;(2)若∈[0,π]时,f ()≥a ,求a 的取值范围.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;(Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +> (1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f ()的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f ()和()f 'x 的零点均在集合{3,1,3}-中,求f ()的极小值;(3)若0,01,1a b c =<=…,且f ()的极大值为M ,求证M ≤427.8.【2018年高考全国Ⅲ卷文数】已知函数21()ex ax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--. (1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1e a ≥时,()0f x ≥.10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ;(Ⅰ)若()f x 在1x =处取得极小值,求a 的取值范围.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程;(II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()y x t =---d 的取值范围.13.【2018年高考浙江】已知函数f.(Ⅰ)若f()在=1,2(1≠2)处导数相等,证明:f(1)+f(2)>8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意>0,直线y=+a与曲线y=f()有唯一公共点.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,A B均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP△的面积,并确定sinθ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”;(2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值; (3)已知函数2()f x x a =-+,e ()xb g x x =.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e(e−a )−a 2.(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++. (1)讨论()f x 的单调性;(2)当a ﹤0时,证明3()24f x a≤--.19.【2017年高考浙江】已知函数f ()=(e x -(12x ≥). (1)求f ()的导函数;(2)求f ()在区间1[+)2∞,上的取值范围.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.。

三年高考(2017-2019)各地文科数学高考真题分类汇总:三角函数的图象与性质

三年高考(2017-2019)各地文科数学高考真题分类汇总:三角函数的图象与性质

三角函数的图象与性质1.(2019浙江18)设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++ 的值域. 2.(全国Ⅰ文15)函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 3.(全国Ⅱ文8)若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32 C .1 D .124.(2019天津文7)已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若(A )-2(B )(C(D )25.(2018全国卷Ⅰ)已知函数22()2cos sin 2=-+f x x x ,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为46.(2018全国卷Ⅱ)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π7.(2018全国卷Ⅲ)函数2tan ()1tan xf x x=+的最小正周期为A .4π B .2πC .πD .2π8.(2018天津)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函()sin()(0,0,||)f x A x A ωϕωϕπ=+>><()f x π()y f x =()g x 4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭数A .在区间[,]44ππ-上单调递增B .在区间[,0]4π上单调递减 C .在区间[,]42ππ上单调递增 D .在区间[,]2ππ上单调递减9.(2017新课标Ⅰ)函数sin 21cos xy x=-的部分图像大致为10.(2017新课标Ⅱ)函数()sin(2)3f x x π=+的最小正周期为A .4πB .2πC .πD .2π11.(2017新课标Ⅲ)函数1()sin()cos()536f x x x ππ=++-的最大值为 A .65 B .1 C .35 D .1512.(2017天津)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||πϕ<.若5π()28f =,11π()08f =,且()f x 的最小正周期大于2π,则 A .2π,312ωϕ== B .211π,312ωϕ==-C .111π,324ωϕ==-D .17π,324ωϕ==13.(2017山东)函数2cos 2y x x =+最小正周期为A .π2 B .2π3C .πD .2π14.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 .15.(2017新课标Ⅱ)函数()2cos sin f x x x =+的最大值为 .16.(2018北京)已知函数2()sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 17.(2018上海)设常数a R ∈,函数2()sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-ππ-[,]上的解.18.(2017北京)已知函数())2sin cos 3f x x x x π=--.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求证:当[,]44x ππ∈-时,()12f x -≥.19.(2017浙江)已知函数22()sin cos cos f x x x x x =--()x ∈R .(Ⅰ)求2()3f π的值; (Ⅱ)求()f x 的最小正周期及单调递增区间.20.(2017江苏)已知向量(cos ,sin )x x =a ,(3,=b ,[0,]x π∈.(1)若∥a b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.答案1.解析(I )因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+,即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (Ⅱ)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2136212sin 22222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎫⎝⎭⎝⎭=+=--⎪⎪⎝⎭π1cos 223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[1+. 2.解析 ()3πsin 23cos cos 23cos 2f x x x x x ⎛⎫=+-=-- ⎪⎝⎭22319172cos 3cos 12cos cos 2168x x x x ⎛⎫=--+=-+++ ⎪⎝⎭=23172cos 48x ⎛⎫-++ ⎪⎝⎭.因为[]cos 1,1x ∈-,当cos 1x =时,()f x 取得最小值,()()min 14f x f ==-. 3.解析 因为x 1=π4,x 2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,所以T =2(3π4−π4)=π=2πω所以ω=2, 故选A .4.解析 因为(f x 0=,又()f x 的最小正周期为π, 所以2ωπ=π,得2ω=,所以()sin 2f x A x =.将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,则()sin g x A x =.若4g π⎛⎫=⎪⎝⎭sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =, 所以()2sin 2f x x =,则332sin 22sin 28842f ππ3π⎛⎫⎛⎫=⨯==⨯=⎪ ⎪⎝⎭⎝⎭故选C .5.B 【解析】易知222233()2cos sin 23cos 1(2cos 1)122f x x x x x =-+=+=-++ 35cos 222x =+,则()f x 的最小正周期为π,当x k π=()k ∈Z 时,()f x 取得最大值,最大值为4.6.C 【解析】解法一()cos sin )4πf x x x x =-+,当[0,]x a ∈时,[,]444x a πππ+∈+,所以结合题意可知4a ππ+≤,即34a π≤,故所求a 的最大值是34π,故选C . 解法二()sin cos )4f x x x x π'=--=+,由题设得()0f x '≤,即sin()04x π+≥在区间[0,]a 上恒成立,当[0,]x a ∈时,[,]444x a πππ+∈+, 所以4a ππ+≤,即34a π≤,故所求a 的最大值是34π,故选C . 7.C 【解析】22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan cos sin 21cos x x x x x f x x x x x x x x x =====+++, 所以()f x 的最小正周期22T ππ==.故选C .8.A 【解析】把函数sin(2)5y x π=+的图象向右平移10π个单位长度得函数 ()sin[2()]sin 2105g x x x ππ=-+=的图象, 由22222k x k ππππ-++≤≤(k ∈Z ),得44k x k ππππ-++≤≤(k ∈Z ),令0k =,得44x ππ-≤≤,即函数()sin 2g x x =的一个单调递增区间为[,]44ππ,故选A .9.C 【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 21cos 2y =-,因为22ππ<<,所以sin20>,cos20<,故0y >,排除A .故选C .10.C 【解析】由222T πππω===,选C . 11.A 【解析】∵cos()cos[()]sin()6233x x x ππππ-=-+=+, 则 16()sin()sin()sin()53353f x x x x πππ=+++=+,函数的最大值为65.12.A 【解析】由题意5π8x =取最大值,11π8x =与x 相交,设()f x 周期为T ,所以11538844T πππ-==或34T ,所以3T π=或T π=,又()f x 的最小正周期大于2π,所以3T π=,所以223T πω==,排除C 、D ; 由5π()28f =,即252sin()238πϕ⨯+=,102242k ππϕπ+=+,即212k πϕπ=+,令0k =,12πϕ=.选A .13.C 【解析】∵2sin(2)6y x π=+,∴2T ππω==,选C .14.π6-【解析】由函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,得2sin()13πϕ+=±,因为22ϕππ-<<,所以27636πππϕ<+<, 则232ππϕ+=,6πϕ=-.15x ∈R ,由辅助角公式())f x x ϕ=+≤16.【解析】(1)1cos 211()22cos 222222x f x x x x -=+=-+ π1sin(2)62x =-+,所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--.要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3. 17.【解析】(1)若()f x 为偶函数,则对任意∈R x ,均有()()=-f x f x ;即22sin 22cos sin 2()2cos ()+=-+-a x x a x x , 化简得方程sin 20=a x 对任意∈R x 成立,故0=a ;(2)2()sin(2)2cos ()11444πππ=⨯+=+=f a a ,所以=a故2()22cos =+f x x x .则方程()1=f x 222cos 1+=x x222cos 1+-=x x 2sin(2)6π+=x即sin(2)62π+=-x ,解得1124ππ=-+x k 或524ππ'=-+x k ,,'∈Z k k 若求该方程在[,]ππ-上有解,则1335[,]2424∈-k ,1929[,]2424'∈-k , 即0=k 或1;0'=k 或1, 对应的x 的值分别为:1124π-、1324π、524π-、1924π.18.【解析】(Ⅰ)3()2sin 2sin 22f x x x x =+-1πsin 22sin(2)23x x x =+=+ 所以()f x 的最小正周期2ππ2T ==. (Ⅱ)证明:由(Ⅰ)知()sin(2)3f x x π=+因为ππ44x -≤≤, 所以ππ5π2636x -+≤≤.当236x ππ+=-,即4x π=-时,()f x 取得最小值12-. 所以当ππ[,]44x ∈-时,1()2f x -≥.得证.19.【解析】(Ⅰ)由2sin3π=21cos 32π=-,2()3f π2211()()22=---- 得2()23f π=. (Ⅱ)由22cos 2cos sin x x x =-与sin 22sin cos x x x =得()cos 222sin(2)6f x x x x π=--=-+所以()f x 的最小正周期是π 由正弦函数的性质得3222262k x k πππππ+++≤≤,k ∈Z 解得263k x k ππππ++≤≤,k ∈Z所以()f x 的单调递增区间是2[,]63k k ππππ++(k ∈Z ).20.【解析】(1)因为(cos ,sin )x x =a ,(3,=b ,∥a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-. 又[0,]x π∈,所以56x π=.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为[0,]x π∈,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x 取到最小值-。

2017-2019高考数学(文科)试卷及答案(K12教育文档)

2017-2019高考数学(文科)试卷及答案(K12教育文档)

(完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)2017-2019高考数学(文科)试卷及答案(word版可编辑修改)的全部内容。

2017年广东省高考数学试卷(文科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅C.A∪B={x|x<} D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0 B.1 C.2 D.38.(5分)函数y=的部分图象大致为()A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A. B.C.D.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,12.则m的取值范围是()A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。

三年高考(2017-2019)各地文科数学高考真题分类汇总:函数的概念和性质

三年高考(2017-2019)各地文科数学高考真题分类汇总:函数的概念和性质

第三讲 函数的概念和性质1.(2019江苏4)函数y =的定义域是 .2. (2019全国Ⅱ文6)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+3.(2019北京文14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白 梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明 对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾 客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.4.(2019北京文3)下列函数中,在区间(0,+∞)上单调递增的是 (A )12y x =(B )y =2x -(C )12log y x =(D )1y x=5.(2019全国Ⅲ文12)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 6.(2018全国卷Ⅰ)设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞7.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .8.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=L fA .50-B .0C .2D .509.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为10.(2017新课标Ⅰ)函数sin 21cos xy x=-的部分图像大致为11.(2017新课标Ⅲ)函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .12.(2017天津)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式()||2xf x a +≥在R 上恒成立,则a 的取值范围是 A .[2,2]- B.[2]- C.[2,- D.[- 13.(2017山东)设1()2(1),1x f x x x <<=-⎪⎩≥,若()(1)f a f a =+,则1()f a =A .2B .4C .6D .8答案1.解析 由2760x x +-…,得2670x x --„,解得17x -剟.所以函数y =[1,7]-. 2.解析 设x <0,则−x >0,所以f (-x )=e 1x --,因为设f(x)为奇函数,所以()e 1x f x --=-, 即()e 1x f x -=-+. 故选D .3.解析 ①草莓和西瓜各一盒的价格为6080140120+=>,则支付14010130-=元; ②设促销前顾客应付y 元,由题意有()80%70%y x -…,解得18x y „,而促销活动条件是120y …,所以max min 111201588x y ⎛⎫==⨯=⎪⎝⎭. 4.解析 由基本初等函数的图像与性质可知,只有12y x =符合题意.故选A. 5.解析 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =, 因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C .6.D 【解析】当0x ≤时,函数()2x f x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .7.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .8.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C .9.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D . 10.C 【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 21cos 2y =-,因为22ππ<<,所以sin20>,cos20<,故0y >,排除A .故选C .11.D 【解析】当1x =时,(1)2sin12f =+>,排除A 、C ;当x →+∞时,1y x →+,排除B .选D .12.A 【解析】由题意0x =时,()f x 的最小值2,所以不等式()||2xf x a +≥等价于 ||22xa +≤在R 上恒成立.当a =0x =,得|22x+>,不符合题意,排除C 、D ;当a =-0x =,得|22x->,不符合题意,排除B ;选A .13.C 【解析】由1x ≥时()()21f x x =-是增函数可知,若,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =, 则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C .。

(2017-2019)高考文数真题分类汇编专题03 导数及其应用(选择题、填空题)(教师版)

(2017-2019)高考文数真题分类汇编专题03 导数及其应用(选择题、填空题)(教师版)

专题03 导数及其应用(选择题、填空题)1.【2019年高考全国Ⅱ卷文数】曲线y =2sin+cos 在点(π,-1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=【答案】C【解析】2cos sin ,y x x '=-Q π2cos πsin π2,x y =∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π, 即2210x y +-π+=. 故选C .【名师点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程. 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2+b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.3.【2018年高考全国Ⅰ卷文数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =【答案】D【解析】因为函数是奇函数,所以a −1=0,解得a =1, 所以,,所,所以曲线在点(0,0)处的切线方程为,化简可得. 故选D.【名师点睛】该题考查的是有关曲线在某个点处的线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 4.【2017年高考浙江】函数y=f ()的导函数()y f x '=的图象如图所示,则函数y=f ()的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内, 因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识讨论函数单调性时,由导函数()f x '的正负,得出原函数()f x 的单调区间.5.【2018年高考全国Ⅱ卷文数】函数()2e e x xf x x --=的图像大致为【答案】B【解析】()()()2e e 0,,x xx f x f x f x x--≠-==-∴Q 为奇函数,舍去A ; ()11e e 0f -=->Q ,∴舍去D ;()()()()()243e e e e 22e 2e ,xx x x x x x xx x f x xx---+---++=='Q 2x ∴>时,()0f x '>,()f x 单调递增,舍去C. 因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性. 6.【2018年高考全国Ⅲ卷文数】函数422y x x =-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得2x <-或02x <<,此时函数单调递增, 由()0f x '<得22(21)0x x ->,得2x >或02x -<<,此时函数单调递减,排除C. 故选D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.7.【2017年高考山东文数】若函数e ()xf x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中具有M 性质的是 A .()2xf x -= B .2()f x x = C .()3x f x -=D .()cos f x x =【答案】A【解析】对于A ,e e ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2xf x -=具有性质;对于B ,2e ()e x x f x x =⋅,令2()e x g x x =⋅,则2()e 2e e (2)xxxg x x x x x '=⋅+⋅=+,∴当2x <-或0x >时,()0g x '>,当20x -<<时,()0g x '<,∴2e ()e xxf x x =⋅在(,2)-∞-,(0,)+∞上单调递增,在(2,0)-上单调递减, 故2()f x x =不具有性质;对于C ,e e ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3xf x -=不具有性质; 对于D ,易知()cos f x x =在定义域内有增有减,故()cos f x x =不具有性质. 故选A.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的动向,它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.M M M M8.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当<0时,y =f ()﹣a ﹣b =﹣a ﹣b =(1﹣a )﹣b =0,得=b1−a , 则y =f ()﹣a ﹣b 最多有一个零点;当≥0时,y =f ()﹣a ﹣b =133−12(a +1)2+a ﹣a ﹣b =133−12(a +1)2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f ()﹣a ﹣b 在[0,+∞)上单调递增, 则y =f ()﹣a ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得∈(a +1,+∞),此时函数单调递增, 令y ′<0得∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f ()﹣a ﹣b 恰有3个零点⇔函数y =f ()﹣a ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3, 则a >–1,b <0.【名师点睛】本题考查函数与方程,导数的应用.当<0时,y =f ()﹣a ﹣b =﹣a ﹣b =(1﹣a )﹣b 最多有一个零点;当≥0时,y =f ()﹣a ﹣b =133−12(a +1)2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.9.【2019年高考全国Ⅰ卷文数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,xxxy x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求. 10.【2019年高考天津文数】曲线cos 2xy x =-在点(0,1)处的切线方程为__________. 【答案】220x y +-=【解析】∵1sin 2y x '=--, ∴01|sin 0212x y ='=---=,故所求的切线方程为112y x -=-,即220x y +-=.【名师点睛】曲线切线方程的求法:(1)以曲线上的点(0,f (0))为切点的切线方程的求解步骤: ①求出函数f ()的导数f ′(); ②求切线的斜率f ′(0);③写出切线方程y -f (0)=f ′(0)(-0),并化简.(2)如果已知点(1,y 1)不在曲线上,则设出切点(0,y 0),解方程组0010010()()y f x y y f x x x=⎧⎪-⎨'=⎪-⎩得切点(0,y 0),进而确定切线方程.11.【2018年高考天津文数】已知函数f ()=eln ,f ′()为f ()的导函数,则f ′(1)的值为__________.【解析】由函数的解析式可得, 则. 即为e.【师点睛】题主要考导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.12.【2018年高考全国Ⅱ卷文数】曲线2ln y x =在点(1,0)处的切线方程为__________.【答案】y =2–2 【解析】由,得.曲线在(1,0)处的切线的斜率为, 则所求切线方程为,即.【名师点睛】求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理. 13.【2017年高考全国Ⅰ卷文数】曲线21y x x=+在点(1,2)处的切线方程为______________. 【答案】1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设),(00y x P 是曲线)(x f y =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线)(x f y =在点))(,(00x f x P 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.14.【2017年高考天津文数】已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为___________. 【答案】1【解析】由题可得(1)f a =,则切点为(1,)a , 因为1()f x a x'=-,所以切线l 的斜率为(1)1f a '=-,切线l 的方程为(1)(1)y a a x -=--, 令0x =可得1y =, 故l 在y 轴上的截距为1.【名师点睛】本题考查导数的几何意义,属于基础题型,函数()f x 在点0x 处的导数0()f x '的几何意义是曲线()y f x =在点00(,)P x y 处的切线的斜率,切线方程为000()()y y f x x x '-=-.解题时应注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,没切点应设出切点坐标,建立方程组进行求解.15.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=的距离最小,4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.16.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =.又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.17.【2018年高考江苏】若函数在有且只有一个零点,则在[−1,1]上的最大值与最小值的和为________.【答案】–3【解析】由()2620f x x ax =-='得0x =或3a x =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f , 所以0,033a a f ⎛⎫>= ⎪⎝⎭, 因此32210,33a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭解得3a =.从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减, 所以()()max 0,f x f =()()(){}()min min 1,11f x f f f =-=-,则()()max min f x f x +=()()0+114 3.f f -=-=- 故答案为3-.【名师点睛】对于函数零点的个数问题,可利用函数的单调性、草图确定其中参数的取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.18.【2017年高考江苏】已知函数31()2e e xxf x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 ▲ .【答案】1[1,]2-【解析】因为31()2e ()exx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥, 所以函数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-, 所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤, 故实数a 的取值范围为1[1,]2-.【名师点睛】解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x 的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.。

近三年全国卷文科数学高考题最新整理(2017-2019)含答案

近三年全国卷文科数学高考题最新整理(2017-2019)含答案
由余弦定理得 ,
所以 .故选A.
【答案】A
12.(2019全国卷Ⅰ·文)已知椭圆 的焦点为 , ,过 的直线与 交于 , 两点.若 , ,则 的方程为()
A. B. C. D.
【解析】设椭圆的标准方程为 ,
由椭圆定义可得 .
因为 ,
所以 .
又 ,
所以 ,所以 .
又因为 ,所以 .
所以A为椭圆的短轴端点.
14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.
【答案】
16.(2019全国卷Ⅰ·文)已知 , 为平面 外一点, ,点 到 两边 , 的距离均为 ,那么 到平面 的距离为.
【解析】
如图,过点P作PO⊥平面ABC于点O,则PO的长度为P到平面ABC的距离.再过点O作OE⊥AC于E,OF⊥BC于F,连接PC,PE,PF,则PE⊥AC,PF⊥BC.
又 ,所以 ,
14.(2019全国卷Ⅰ·文)记 为等比数列 的前 项和.若 , ,则 .
【解析】设等比数列的公比为 ,则 .
因为 ,
所以 ,
即 ,解得 ,
所以 .
【答案】
15.(2019全国卷Ⅰ·文)函数 的最小值为.
【解析】因为 ,
令 ,则 ,
所以 .
又函数 的图象的对称轴 ,且开口向下,
所以当 时, 有最小值 .
A.甲、乙、丙B.乙、甲、丙
C.丙、乙、甲D.甲、丙、乙
6.设f(x)为奇函数,且当x≥0时,f(x)= ,则当x<0时,f(x)=

三年高考(2017_2019)高考数学真题分项汇编专题04导数及其应用(解答题)文(含解析)

三年高考(2017_2019)高考数学真题分项汇编专题04导数及其应用(解答题)文(含解析)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=. 当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫ ⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=- ⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x ….又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax ….因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<, 1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=. 又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增.因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<. 又1111()1ln 10f f αααααα⎛⎫⎛⎫=---== ⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析.【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e xx x f ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()x ax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a <<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点. 令()ln 1h x x x =-+,则当1x >时,1()10h'x x =-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.。

2017年-2019年高考文科数学全国卷三真题试卷及答案新课标

2017年-2019年高考文科数学全国卷三真题试卷及答案新课标

绝密★启用前2017年普通高等学校招生全国统一考试〔新课标Ⅲ〕文科数学考前须知:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答复非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试完毕后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.集合A={1,2,3,4},B={2,4,6,8},那么A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游效劳质量,收集并整理了2014年1月至2016年12月期间月接待游客量〔单位:万人〕的数据,绘制了下面的折线图.根据该折线图,以下结论错误的选项是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量顶峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比拟平稳4.4sin cos3αα-=,那么sin2α=A .79-B .29-C .29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,那么z =x -y 的取值范围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx 的局部图像大致为 A . B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,那么输入的正整数N 的最小值为A .5B .4C .3D .29.圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,那么A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.椭圆C :22221x y a b+=,〔a >b >0〕的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,那么C 的离心率为AB C D .1312.函数211()2()x x f x x x a ee --+=-++有唯一零点,那么a =A .12-B .13C .12D .1二、填空题:此题共4小题,每题5分,共20分。

三年高考数学文科真题分类专题【导数的应用】解析卷

三年高考数学文科真题分类专题【导数的应用】解析卷

(2016-2018)三年高考数学文科真题分类专题7【导数的应用】解析卷三年高考数学文科真题分类专题7【导数的应用】解析卷考纲解读明方向分析解读1.会利用导数研究函数的单调性,掌握求函数单调区间的方法.2.掌握求函数极值与最值的方法,解决利润最大、用料最省、效率最高等实际生产、生活中的优化问题.3.利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点.分值为12~17分,属于高档题.2命题探究练扩展2018年高考全景展示1.【2018年新课标I卷文】已知函数f(x)=a e x−lnx−1.(1)设x=2是f(x)的极值点.求a,并求f(x)的单调区间;(2)证明:当时,.【答案】(1) a=12e ;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.345考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程的解,但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在附近,如果时,,时,则是极小值点,如果时,,时,,则是极大值点,2.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D 【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间.0x '()0f x =0x 0x 0x x <'()0f x <0x x >'()0f x >0x 0x x <'()0f x >0x x >'()0f x <0x63.【2017课标1,文21】已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性; (2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =,)(x f 在(,)-∞+∞单调递增;当0a >,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增;(2)34[2e ,1]-.【解析】(2)①若0a =,则2()xf x e =,所以()0f x ≥.7【考点】导数应用【名师点睛】本题主要考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出)('x f ,有)('x f 的正负,得出函数)(x f 的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数)(x f 极值或最值.4.【2017课标II ,文21】设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(Ⅰ)在(,1-∞--和(1)-++∞单调递减,在(11--+单调递增(Ⅱ)[1,)+∞ 【解析】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对a 分类讨论,当a ≥1时,()(1)(1)11x f x x x e x ax =-+≤+≤+,满足条件;当0a ≤时,取2000001,()(1)(1)112x f x x x ax =>-+=>+,当0<a <1时,取012x =,20000()(1)(1)1f x x x ax >-+>+.8试题解析:(1)2()(12)x f x x x e '=-- 令()0f x '=得1x =-±当(,1x ∈-∞-时,()0f x '<;当(11x ∈---时,()0f x '>;当(1)x ∈-++∞时,()0f x '<所以()f x在(,1-∞--和(1)-+∞单调递减,在(11---单调递增【考点】利用导数求函数单调区间,利用导数研究不等式恒成立【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.2016年高考全景展示1. 【2016高考山东文数】(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R .9(Ⅰ)令g (x )=f'(x ),求g (x )的单调区间;(Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围.【答案】 (Ⅰ)当时,函数单调递增区间为;当时,函数单调递增区间为,单调递减区间为. (Ⅱ) .【解析】试题分析:(Ⅰ)求导数 可得,从而, 讨论当时,当时的两种情况下导函数正负号,确定得到函数的单调区间.(Ⅱ)分以下情况讨论:①当时,②当时,③当时,④当时,综合即得. 0a ≤()g x ()0,+∞0a >()g x 10,2a ⎛⎫ ⎪⎝⎭1,2a ⎛⎫+∞ ⎪⎝⎭12a >()'ln 22,f x x ax a =-+()()ln 22,0,g x x ax a x =-+∈+∞()112'2axg x a x x-=-=0a ≤0a >0a ≤102a <<12a =12a >10(Ⅱ)由(Ⅰ)知,.①当时,,单调递减. 所以当时,,单调递减. 当时,,单调递增. 所以在处取得极小值,不合题意.②当时,,由(Ⅰ)知在内单调递增, 可得当当时,,时,, 所以在(0,1)内单调递减,在内单调递增,()'10f =0a ≤()'0f x <()f x ()0,1x ∈()'0f x <()f x ()1,x ∈+∞()'0f x >()f x ()f x 1x =102a <<112a >()'f x 10,2a ⎛⎫⎪⎝⎭()0,1x ∈()'0f x <11,2x a ⎛⎫∈ ⎪⎝⎭()'0f x >()f x 11,2a ⎛⎫⎪⎝⎭(2016-2018)三年高考数学文科真题分类专题7【导数的应用】解析卷11 所以在处取得极小值,不合题意.考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.()f x 1x=。

近三年全国卷文科数学高考题最新整理(2017-2019)含答案

近三年全国卷文科数学高考题最新整理(2017-2019)含答案
【答案】
16.(2019全国卷Ⅰ·文)已知 , 为平面 外一点, ,点 到 两边 , 的距离均为 ,那么 到平面 的距离为.
【解析】
如图,过点P作PO⊥平面ABC于点O,则PO的长度为P到平面ABC的距离.再过点O作OE⊥AC于E,OF⊥BC于F,连接PC,PE,PF,则PE⊥AC,PF⊥BC.
又 ,所以 ,
【解析】由对数函数的单调性可得 ,
由指数函数的单调性可得 , ,所以 .故选B.
【答案】B
4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 ( ,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 .若某人满足上述两个黄金分割比例,且腿长为 ,头顶至脖子下端的长度为 ,则其身高可能是()
14.(2019全国卷Ⅰ·文)记 为等比数列 的前 项和.若 , ,则 .
【解析】设等比数列的公比为 ,则 .
因为 ,
所以 ,
即 ,解得 ,
所以 .
【答案】
15.(2019全国卷Ⅰ·文)函数 的最小值为.
【解析】因为 ,
令 ,则 ,
所以 .
又函数 的图象的对称轴 ,且开口向下,
所以当 时, 有最小值 .
【答案】B
5.(2019全国卷Ⅰ·文)函数 在 的图象大致为()
A. B.
C. D.
【解析】因为 ,所以 为奇函数,排除选项A.
令 ,则 ,排除选项B,C.故选D.
【答案】D
6.(2019全国卷Ⅰ·文)某学校为了解 名新生的身体素质,将这些学生编号为 ,从这些新生中用系统抽样方法等距抽取 名学生进行体质测验.若 号学生被抽到,则下面 名学生中被抽到的是()

文科数学高考真题分类汇编 导数的计算与导数的几何意义答案

文科数学高考真题分类汇编 导数的计算与导数的几何意义答案

l1
的方程分别为
y

ln
x1
=
1 x1
(
x

x1
)

切线 l2 的方程为 y + ln x 2 = −
1 x2
(x

x2
)
,即
y

ln
x1
=

x1
x

1
x1

分别令 x = 0得 A(0 , −1+ ln x1) , B (0 ,1+ ln x1) . 又 l1 与 l2 的交点为
P( 2 x1 1 + x1x f ( x) )在 R 上单调递增,∴ f (x) = 2−x 具有 M 性质.对于选项 B, f (x) = x2 ,
ex f ( x) = exx2 ,[ex f (x)] = ex (x2 + 2x) ,令 ex( x 2 + 2 x) 0 ,得 x 0 或 x −2 ;
,
ln
x1
+
1 1
− +
x12 x12
) .∵
x1
1,
∴ S PAB
=
1 2
|
y
A

yB
|
|
xP
|=
2 x1 1+ x12
1 + x12 1+ x12
=1,∴ 0 SPAB
1 ,故选 A.
5.B【解析】由导函数图像可知函数的函数值在[ − 1,1]上大于零,所以原函数递增,且导函
数值在[− 1,0]递增,即原函数在[− 1,1]上切线的斜率递增,导函数的函数值在[0,1]递减,

三年高考(2017-2019)各地文科数学高考真题分类汇总:函数与方程

三年高考(2017-2019)各地文科数学高考真题分类汇总:函数与方程

函数与方程1.(2019全国Ⅲ文5)函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2 B .3 C .4 D .52.(2019天津文8)(8)已知函数若关于的方程恰有两个互异的实数解,则的取值范围为( ) (A ) (B ) (C ) (D )3.(2019江苏14)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 .4.(2017新课标Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =( ) A .12- B .13 C .12D .1 5.(2017山东)设1()2(1),1x f x x x <<=-⎪⎩≥,若()(1)f a f a =+,则1()f a =( ) A .2 B .4 C .6 D .86.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .7.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x<01,()1, 1.x f x x x⎧⎪=⎨>⎪⎩剟x 1()()4f x x a a R =-+∈a 59,44⎡⎤⎢⎥⎣⎦59,44⎛⎤ ⎥⎝⎦59,{1}44⎛⎤ ⎥⎝⎦U 59,{1}44⎡⎤⎢⎥⎣⎦U的解集是______.若函数()f x 恰有2个零点,则λ的取值范围是____.8.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x D f x x x D⎧∈=⎨∉⎩其中集合1{|,}n D x x n n-==∈*N ,则方程()lg 0f x x -=的解的个数是 .答案1.解析 解法一:函数()2sin sin 2f x x x =-在[]0,2π的零点个数,即2sin sin 20x x -=在区间[]0,2π的根个数,即2sin sin 2x x =,令()2sin h x x =和()sin 2g x x =,作出两函数在区间[]0,2π的图像如图所示,由图可知,()2sin h x x =和()sin 2g x x =在区间[]0,2π的图像的交点个数为3个.故选B .解法二:因为()()[]2sin sin 22sin 1cos ,0,2πf x x x x x x =-=-∈,令()0f x =,得()2sin 1cos 0x x -=,即sin 0x =或1cos 0x -=,解得0,π,2πx =. 所以()2sin sin 2f x x x =-在[]0,2π的零点个数为3个. 故选B.2.解析 作出函数()11,1x f x x x ⎧⎪=⎨>⎪⎩剟的图像,以及直线14y x =-的图像,如图所示.关于x 的方程()()14f x x a a =-+∈R 恰有两个互异的实数解,即()y f x =和14y x a =-+的图像有两个交点,平移直线14y x =-,考虑直线经过点()1,2和()1,1时,有两个交点,可得94a =或54a =. 考虑直线与1y x =在1x >相切,可得2114ax x -=,由210a ∆=-=,解得1a =(1-舍去).综上可得,a 的范围是{}59,144⎡⎤⎢⎥⎣⎦U . 故选D .3.解析 作出函数()f x 与()g x 的图像如图所示,由图可知,函数()f x 与1()(12,34,56,78)2g x x x x x =-<<<<剟剟仅有2个实数根;要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1)f x x =--,(0,2]x ∈与()(2)g x k x =+,(0,1]x ∈的图象有2个不同交点,由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k =>,因为两点(2,0)-,(1,1)连线的斜率13k =, 所以13k <…,即k 的取值范围为1[3. 4.C 【解析】令()0f x =,则方程112()2x x a ee x x --++=-+有唯一解, 设2()2h x x x =-+,11()x x g x e e --+=+,则()h x 与()g x 有唯一交点, 又11111()2x x x x g x e e e e --+--=+=+≥,当且仅当1x =时取得最小值2. 而2()(1)11h x x =--+≤,此时1x =时取得最大值1,()()ag x h x =有唯一的交点,则12a =.选C . 5.C 【解析】由1x ≥时()()21f x x =-是增函数可知,若,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C . 6.3-【解析】2()622(3)f x x ax x x a '=-=-(a ∈R ),当0a ≤时()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,又(0)1f =,所以此时()f x 在(0,)+∞内无零点,不满足题意.当0a >时,由()0f x '>得3a x >,由()0f x '<得03a x <<,则()f x 在(0,)3a 上单调递减,在(,)3a +∞上单调递增,又()f x 在(0,)+∞内有且只有一个零点,所以3()10327a a f =-+=,得3a =,所以32()231f x x x =-+, 则()6(1)f x x x '=-,当(1,0)x ∈-时,()0f x '>,()f x 单调递增,当(0,1)x ∈时,()0f x '<,()f x 单调递减,则max ()(0)1f x f ==,(1)4f -=-,(1)0f =, 则min ()4f x =-,所以()f x 在[1,1]-上的最大值与最小值的和为3-.7.(1,4);(1,3](4,)+∞U 【解析】若2λ=,则当2x ≥时,令40x -<,得24x <≤;当2x <时,令2430x x -+<,得12x <<.综上可知14x <<,所以不等式()0f x <的解集为(1,4).令40x -=,解得4x =;令2430x x -+=,解得1x =或3x =.因为函数()f x 恰有2个零点,结合函数的图象(图略)可知13λ<≤或4λ>. 8.8【解析】由于,则需考虑的情况,在此范围内,且时,设,且互质, 若,则由,可设,且互质, 因此,则,此时左边为整数,右边为非整数,矛盾, 因此,因此不可能与每个周期内对应的部分相等,只需考虑与每个周期的部分的交点,画出函数图象,图中交点除外其他交点横坐标均为无理数,属于每个周期的部分,且处,则在附近仅有一个交点, 因此方程的解的个数为8.()[0,1)f x ∈110x ≤<x ∈Q x D ∈*,,,2q x p q p p=∈≥N ,p q lg x ∈Q lg (0,1)x ∈*lg ,,,2n x m n m m =∈≥N ,m n 10nm q p =10()n m q p =lg x ∉Q lg x x D ∈lg x x D ∉(1,0)x D ∉1x =11(lg )1ln10ln10x x '==<1x =()lg 0f x x -=。

专题04 导数及其应用(解答题)-三年(2017-2019)高考真题数学(文)分项汇编(解析版)

专题04 导数及其应用(解答题)-三年(2017-2019)高考真题数学(文)分项汇编(解析版)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=. 当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x . 又当0,[0,π]a x ∈时,ax ≤0,故()f x ax . 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-.因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<, 1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=. 又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析. 【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011ln x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =.若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭.当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)⎛ ⎝⎦.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a ≤等价于22ln 0x a a--≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦, 则()10q'x=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()xf x .综上所述,所求a 的取值范围是4⎛⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【2018年高考全国Ⅲ卷文数】已知函数21()e xax x f x +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e . 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥. 【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.【答案】(1)在(–∞,3-),(3++∞)单调递增,在(3-,3+减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x =3-x =3+当x ∈(–∞,3-3++∞)时,f ′(x )>0;当x ∈(3-3+ f ′(x )<0.故f (x )在(–∞,3-),(3++∞)单调递增,在(3-3+(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数f(x)的定义域;②求导数f ′(x);③由f ′(x)>0(或f ′(x)<0)解出相应的x 的取值范围,当f ′(x)>0时,f(x)在相应区间上是增函数;当f ′(x)<0时,f(x)在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数g(x)有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅰ)若()f x 在1x =处取得极小值,求a 的取值范围. 【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e xxf x ax a x ax x '=-++=--.若a >1,则当1(,1)x a∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>.所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞.方法二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥, ∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()y x t =---d 的取值范围.【答案】(I )x +y =0;(II )函数f (x )的极大值为f (x )的极小值为−;(III )d 的取值范围为(,(10,)-∞+∞.【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1,因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2,或x =t 2. 当x 变化时,()f x ',f (x )的变化如下表:所以函数f (x )的极大值为f (t 2)=(3−9×(f (x )的极小值为f (t 2)3−9×−(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2−d )+(x −t 2=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u .设函数g (x )=x 3+(1−d 2)x y =f (x )与直线y =−(x −t 2)−y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=x 2.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增.g (x )的极大值g (x 1)=g ()=3221)9d -+.g (x )的极小值g (x 2)=g )=−3221)9d -+ 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||d >,此时2||d x >,(||)||0,g d d =+>且312||,(2||)6||2||0d x g d d d -<-=--+<-<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d的取值范围是(,(10,)-∞+∞.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【2018年高考浙江】已知函数f(x x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)函数f (x )的导函数1()f x x'=, 由12()()f x f x ''=1211x x =, 因为12x x ≠12+=.=≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +==.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则 f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a<)a n k n --≤)n k <0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a得k =.设()h x =则22ln )1)((12x ag x x x a x h '=--+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2], 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e 2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a xb x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即0320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(1)在(,1-∞-和(1)-++∞单调递减,在(11---+单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得1x x =-=-当(,1x ∈-∞--时,()0f x '<;当(11x ∈--+时,()0f x '>;当(1)x ∈-+∞时,()0f x '<.所以()f x 在(,1-∞-和(1)-++∞单调递减,在(11---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h′(x )= −x e x <0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x −1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取0x =,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取0x =则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析【解析】(1)()f x 的定义域为(0,+∞),()()1211()221x ax f x ax a x x++'=+++=. 若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+∞)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x'=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+∞)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【2017年高考浙江】已知函数f (x )=(x e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.【答案】(1)1())2f x x '=>;(2)121[0,e ]2-.【解析】(1)因为(1x '-=-,(e )e x x'--=-,所以()(1(x xf x x --'=---1)2x =>.(2)由()0x f x -'==,解得1x =或52x =.因为又21()1)e 02x f x -=≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅰ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<.所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果. 21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()e x x x x g g'⎧=⎪⎨=⎪⎩, 所以000000()e e e (()())e x x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩.所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析. 【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-,所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---, ()()sin x x a x a x =--- ()(sin )x a x x =--, 令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增, 因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围. 【答案】(1)2239a b a=+,定义域为(3,)+∞;(2)见解析;(3)(36],. 【解析】(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3a x =-时,()f x '有极小值23ab -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a abf -=-+-+=,又0a >,故2239a b a=+.因为()f x 有极值,故()=0f x '有实根,从而231(27)039a b a a-=-≤,即3a ≥.当3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;当3a >时,()=0f x '有两个相异的实根1=3a x --,2=3a x -+.列表如下:故()f x 的极值点是12,x x . 从而3a >.因此2239a b a=+,定义域为(3,)+∞.(2)由(1. 设23()=9t g t t +,则22223227()=99t g t t t-'-=.当)t ∈+∞时,()0g t '>,从而()g t 在(,)2+∞上单调递增.因为3a >,所以>故(g g因此2>3b a .(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420.279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a-=-+,所以213()=9h a a a -+,3a >. 因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],. 【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图象的交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.31。

三年高考(2017_2019)高考数学真题分项汇编专题03导数及其应用(选择题、填空题)文(含解析)

三年高考(2017_2019)高考数学真题分项汇编专题03导数及其应用(选择题、填空题)文(含解析)

调性是解决本题的关键.
7.【2017 年高考山东文数】若函数 ex f (x) ( e 2.71828是自然对数的底数)在 f (x) 的定义域上单调
递增,则称函数 f (x) 具有 M 性质.下列函数中具有 M 性质的是
A. f (x) 2x
B. f (x) x2
C. f (x) 3x
函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性.
6.【2018 年高考全国Ⅲ卷文数】函数 y x4 x2 2 的图像大致为
3
【答案】D
【解析】函数图象过定点 (0, 2) ,排除 A,B; 令 y f (x) x4 x2 2 ,则 f (x) 4x3 2x 2x(2x2 1) ,
专题 03 导数及其应用(选择题、填空题)
1.【2019 年高考全国Ⅱ卷文数】曲线 y=2sinx+cosx 在点(π,-1)处的切线方程为
A. x y 1 0
B. 2x y 2 1 0
C. 2x y 2 1 0
D. x y 1 0
故选 D. 【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有 a,b 的等式,从而求解,属 于常考题型.
3.【2018 年高考全国Ⅰ卷文数】设函数 f (x) x3 (a 1)x2 ax .若 f (x) 为奇函数,则曲线 y f (x) 在
点 (0, 0) 处的切线方程为 A. y 2x
由 f (x) 0 得 2x(2x2 1) 0 ,得 x
2 或0 x
2
,此时函数单调递增,
2
2
由 f (x) 0 得 2x(2x2 1) 0 ,得 x 2 或 2 x 0 ,此时函数单调递减,排除 C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的计算与导数的几何意义1.(2019全国Ⅰ文13)曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________.2.(2019全国Ⅱ文10)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=3.(2019全国三文7)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-4.(2019天津文11)曲线在点处的切线方程为__________.5.(2019江苏11)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的 切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 .6.(2018全国卷Ⅰ)设函数32()(1)=+-+f x x a x ax .若()f x 为奇函数,则曲线()=y f x 在点(0,0)处的切线方程为A .2=-y xB .y x =-C .2=y xD .=y x7.(2017山东)若函数e ()xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2xf x -= B .2()f x x= C .()3xf x -=D .()cos f x x =8.(2018全国卷Ⅱ)曲线2ln =y x 在点(1,0)处的切线方程为__________.9.(2018天津)已知函数()ln x f x e x =,()f x '为()f x 的导函数,则(1)f '的值为__. 10.(2017新课标Ⅰ)曲线21y x x=+在点(1,2)处的切线方程为____________. 11.(2017天津)已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l在y 轴上的截距为 . 12.(2017山东)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;cos 2xy x =-()0,1(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.13.(2017北京)已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.答案1.解析 因为23e x y x x =+(),所以2'3e 31xy x x =++(),所以当0x =时,'3y =,所以23e x y x x =+()在点00(,)处的切线斜率3k =, 又()00y =所以切线方程为()030y x -=-,即3y x =. 2.解析 由y =2sin x +cos x ,得2cos sin y x x '=-,所以π2cos πsin π=-2x y ='=-,所以曲线y =2sin x +cos x 在点(π,1)-处的切线方程为12(π)y x +=--, 即2210x y +-π+=. 故选C .3.解析 e ln x y a x x =+的导数为'e ln 1xy a x =++, 又函数e ln x y a x x =+在点(1,e)a 处的切线方程为2y x b =+, 可得e 012a ++=,解得1e a -=,又切点为(1,1),可得12b =+,即1b =-. 故选D . 4.解析 由题意,可知1sin 2y x '=--.因为1sin 002y x '=--==所以曲线cos y x =)0,1处的切线方程112y x -=-,即220x y +-=. 5.解析 设00(,ln )A x x ,由ln y x =,得1'y x=,所以001'|x x y x ==,则该曲线在点A 处的切线方程为0001ln ()y x x x x -=-,因为切线经过点(e,1)--, 所以00e 1ln 1x x --=--,即00eln x x =,则0e x =.6.D 【解析】通解 因为函数32()(1)=+-+f x x a x ax 为奇年函数,所以()()-=-f x f x ,所以3232()(1)()()[(1)]-+--+-=-+-+x a x a x x a x ax ,所以22(1)0-=a x ,因为∈R x ,所以1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0) 处的切线方程为=y x .故选D .优解一 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以(1)(1)0-+=f f ,所以11(11)0-+--++-+=a a a a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解二 易知322()(1)[(1)]=+-+=+-+f x x a x ax x x a x a ,因为()f x 为奇函数,所以函数2()(1)=+-+g x x a x a 为偶函数,所以10-=a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .7.A 【解析】对于选项A ,1()2()2-==x x f x , 则1()()()22=⋅=x x x x e e f x e ,∵12>e,∴()xe f x )在R 上单调递增,∴()2-=x f x 具有M 性质.对于选项B ,2()=f x x ,2()=x x e f x e x ,2[()](2)'=+x x e f x e x x ,令2(2)0+>x e x x ,得0>x 或2<-x ;令2(2)0+<x e x x ,得20-<<x ,∴函数()xe f x 在(,2)-∞-和(0,)+∞上单调递增,在(2,0)-上单调递减,∴2()=f x x 不具有M 性质.对于选项C ,1()3()3-==x x f x ,则1()()()33=⋅=x x x x e e f x e ,∵13<e ,∴()3=x ey 在R 上单调递减,∴()3-=x f x 不具有M 性质.对于选项D ,()cos =f x x ,()cos =xxe f x e x ,则[cos ](cos sin )0'=-≥xxe x e x x 在R 上不恒成立,故()cos =xxe f x e x 在R 上不是单调递增的,所以()cos =f x x 不具有M 性质. 8.22=-y x 【解析】由题意知,2y x'=,所以曲线在点(1,0)处的切线斜率12x k y ='==,故所求切线方程为02(1)y x -=-,即22=-y x . 9.e 【解析】 由题意得1()ln x x f x e x e x'=+⋅,则(1)f e '=. 10.1y x =+【解析】∵212y x x '=-,又11y x '==,所以切线方程为21(1)y x -=⨯-,即1y x =+.11.1【解析】∵(1)f a =,切点为(1,)a ,1()f x a x'=-,则切线的斜率为(1)1f a '=-,切线方程为:(1)(1)y a a x -=--,令0x =得出1y =,l 在y 轴的截距为1 12.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+-- 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--,令()sin h x x x =-,则()1cos 0h x x '=->,所以()h x 在R 上单调递增, 因此(0)0h =,所以,当0x >时,()0h x >;当0x <时()0h x <. (1) 当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减;当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以,当x a =时,()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时,()g x 取到极小值,极小值是(0)g a =-.(2) 当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以,()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3) 当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以,当0x =时,()g x 取到极大值,极大值是(0)g a =-;当x a =时,()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-. 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 13.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =. (Ⅱ)设()e (cos sin )1xh x x x =--,[0,]2x π∈,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减. 所以当2x π=时,()f x 有最小值2()cos2222f e πππππ=-=-,当0x =时,()f x 有最大值0(0)cos 001f e =-=.。

相关文档
最新文档