浅谈预应力锚固支护技术

浅谈预应力锚固支护技术
浅谈预应力锚固支护技术

浅谈预应力锚固支护技术

发表时间:2019-04-16T14:50:56.033Z 来源:《防护工程》2018年第36期作者:任义[导读] 随着我国现代化建设发展的不断深化,预应力锚固技术将承担着越来越重要的角色。

黑龙江龙煤鹤岗矿业有限责任公司益新煤矿黑龙江鹤岗市 154100 摘要:随着我国现代化建设发展的不断深化,预应力锚固技术将承担着越来越重要的角色。作为新时期最为重要的支护技术之一,预应力锚固技术已经在全国城市施工建设中得到了广泛地发展与应用。

关键词:预应力;锚固;支护技术1我国锚固技术的发展概况我国在20世纪50年代开始接触到锚杆支护技术,经过20年的学习和摸索,直到改革开放之后,我国才开始在全国范围内推广与应用,20世纪末,我国向国外发达国家学习和引进了成套的锚杆支护技术,从此支护技术在国内得到了广泛应用。进入21世纪之后,我国的预应力锚固支护技术再次取得了突破性的进步,尤其在技术研究、工程创新和施工工艺改良等方面。与此同时,预应力锚固支护技术在危险复杂的支护工程中也得到了广泛的应用和发展,现阶段已成为施工过程中不可或缺的支护技术。 2边坡的支护形式 2.1放坡法为了防止基坑的土壁塌方,保证施工安全,在施工场地空间允许时,为保持边坡稳定,应优先采用放坡法施工。根据土体的自然堆积、内粘聚力和内摩擦角等因素,可采用人工开挖边坡法,直至达到稳定的边坡角。 2.2支护结构法在大多数施工现场中,只采用一种支护形式来保持边坡稳定往往是行不通的,通常采用几种支护技术相结合的方法。在施工现场中一个简单的小型放坡工程都会产生巨大的工程量,再者城市建设工地寸土寸金,完全没有足够的建设空间用来放坡。因此,加固预应力锚索(杆)支护体系就成为了最为有效的支护方式之一。抗滑桩和预应力锚索杆或锚索支护体系主要用于建设工程中垂直开挖的深基坑工程和危险性较大且复杂的工程当中。预应力锚索(杆)支护体系是高边坡工程中一种常见的支护技术。它是利用岩土地层的抗剪强度来保持地层开挖面的稳定性。锚固层由于采用了锚索或锚杆,加固了压应力区的地层,提高了其强度、刚度和稳定性,使之形成了一个共同工作的整体,能够共同抵抗地层的各种不利的拉压和剪切,从而有效地阻止了边坡的变形与位移,避免了边坡破坏,最终保证了边坡的安全与稳定。 2.3挡土墙支护法边坡工程中常用到的挡土墙一般分为重力式挡土墙、扶臂式挡土墙和悬臂式挡土墙。重力式挡土墙依靠墙体自身的重力来抵挡土压力作用,施工简单方便,且就地取材;扶臂式挡土墙沿着墙长每隔一段距离加筑扶壁,其受力条件较好,在高墙时比较经济;悬臂式挡土墙采用钢筋混凝土材料,通常由立壁、墙趾板和墙蹱板三部分组成。但超过一定高度的边坡不宜采用挡土墙支护结构,因为此时边坡的稳定性和安全性得不到有效保证。 3预应力锚索(杆)的种类截至目前,我国建筑工程中应用的预应力锚索(杆)种类繁多,根据其适用形式主要可分为:灌浆型预应力锚索(杆)、机械型预应力锚索(杆)、荷载分散型预应力锚索(杆)、全长粘结型预应力锚索(杆)、摩擦型预应力锚索(杆)等。 3.1灌浆型预应力锚索(杆) 锚索(杆)主要由杆体、锚固段、自由段和锚头四部分组成,目前主要用于锚杆强度要求高、变形小以及深层锚固工程中。 3.2机械型预应力锚索(杆) 机械型预应力锚索(杆)分别由杆、机械锚、自由段和锚头四部分组成,主要适用于地层开挖后须立即加固的复杂工程或抢险工程中。 3.3荷载分散型锚索(杆) 荷载分散型预应力锚索(杆)根据其受力可分为张力分散型锚索(杆)和压力分散型锚索(杆),分别适用于对承载力要求较髙或对防腐能力要求较高的软岩和地质工程当中。 3.4全长粘结型锚索(杆) 全长粘结型预应力锚索(杆)主要由完全粘结杆、垫板和紧固件三部分组成,被广泛用于中等变形的工程当中。 3.5摩擦型锚索(杆) 摩擦型预应力锚索(杆)分缝锚杆和水胀式锚杆等类型,其适用于地下支护工程和使用期限在十年以内的支护工程。综上所述,每一种锚索(杆)都有其特定的组成部分和适用条件,其中注浆型预应力锚索(杆)由于施工操作简单,费用节省,加固效果优良等特点,在边坡支护工程中得到了广泛的应用和发展。 4预应力锚索(杆)的受力分析预应力锚索(杆)支护体系中主要以张拉式锚索(杆)为主,其广泛应用于深基坑边坡的锚固和支护中。锚杆在岩土层中具有一定的抗拔力,当锚杆受力时,首先通过锚杆与周边水泥砂浆粘结力传到砂浆,再通过砂体加载蔓延到周围的土壤。随着荷载的不断增加,锚索(杆)与水泥浆的之间粘结力和握裹力最终传递到了锚索(杆)的最底端。

当粘结力和握裹力逐步增大到最大值时,土体与土体之间就会产生相对位移,此时在岩体与锚索(杆)之间就会产生摩擦阻力,直至到达极限摩擦阻力。根据理论公式计算可以得知,拉力的大小与锚索(杆)位移量成线性变化,即拉力小锚杆位移小,拉力大则锚索(杆)位移大。通常情况下,锚索(杆)的承载力取决于以下因素:锚索(杆)的极限抗拉强度、锚索(杆)与锚固体之间的极限粘结力、锚索(杆)与锚固体之间的极限握裹力等。 5预应力锚索(杆)的施工工序 5.1钻孔

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

煤矿巷道锚杆支护技术规范

煤矿巷道锚杆支护技术规范 1 范围 本标准规定了煤矿巷道锚杆支护技术的术语和定义、技术要求、锚杆支护施工质量检测及锚杆支护监测。 本标准适用于煤矿岩巷、煤巷及半煤岩巷的锚杆支护。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175-2007 硅酸盐水泥、普通硅酸盐水泥 GB/T 228.1-2010 金属材料拉伸试验第1部分:室温试验方法 GB/T 23561.1-2009 煤和岩石物理力学性质测定方法第1部分:采样一般规定 GB 50086 岩土锚固与喷射混凝土支护工程技术规范 GB/T 50266-2013 工程岩体试验方法标准 MT 146.1-2011 树脂锚杆第1部分:锚固剂 MT 146.2-2011 树脂锚杆第2部分:金属杆体及其附件 MT 285 缝管锚杆 MT/T 861 W型钢带 MT/T 1061-2008 树脂锚杆玻璃纤维增强塑料杆体及其附件 3 术语和定义 GB/T 228.1-2010、MT 146.1-2011、MT 285界定的以及下列术语和定义适用于本文件。 3.1 巷道 roadway 为煤矿提升、运输、通风、排水、行人、动力供应等而掘进的通道。 3.2 煤巷 coal roadway 断面中煤层面积占4/5或4/5以上的巷道。 3.3 岩巷 rock roadway 断面中岩石面积占4/5或4/5以上的巷道。 3.4

半煤岩巷 coal-rock roadway 断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。 3.5 锚杆 rock bolt 安装在围岩中,对围岩实施锚固的杆件系统。一般由杆体、托盘、螺母、垫圈、锚固剂或锚固构件组成。 3.6 预应力锚杆 pretensioned rock bolt 在安装过程中施加一定预拉力的锚杆。 3.7 无预应力锚杆 non-pretensioned rock bolt 在安装过程中不施加预拉力的锚杆。 3.8 树脂锚杆 resin anchored bolt 采用树脂锚固剂锚固的锚杆。 注:改写MT 146.1-2011,定义3.1。 3.9 注浆锚杆 grouting bolt 杆体为中空式,兼做注浆管,对围岩进行注浆加固的锚杆。 3.10 钻锚注锚杆 self-drilling bolt 杆体为中空式,自带钻头,集钻孔、锚固、注浆于一体的锚杆。 3.11 玻璃纤维增强塑料锚杆 glass fibre reinforced plastic bolt 杆体主体部分由玻璃纤维和树脂复合而成的锚杆。 3.12 缝管锚杆 s plit set bolt 经特殊加工成纵向开缝的钢管及其附件。 [MT 285—1992,术语 3.1] 3.13 锚索 cable bolt 安装在围岩中,对围岩实施锚固的索体系统。一般由钢绞线、托盘、锚具及锚固剂组成。 3.14 锚杆支护 rock bolting

锚杆支护原理

锚杆支护 一、锚杆支护原理 1、锚杆的悬吊作用 悬吊作用是指用锚杆将软弱的直接顶板吊挂在其上的坚固老顶之上。如图1所示,或者是用锚杆将因巷道开挖而引起松动的岩块连接在松动区外的完整坚固岩石上,使松动岩块不至冒落。 锚杆的悬吊作用

2、锚杆的组合梁理论 利用锚杆的拉力将层状岩层组合起来形成组合梁结构进行支护,这就是锚杆组合梁作用。组合梁作用的本质在于通过锚杆的预拉应力将原视为叠合梁的岩层挤紧,增大岩层间的摩擦力;同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。 锚杆的组合作用

3、锚杆锲固作用 是指在围岩中存在一组或多组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少了围岩沿不连续面的移动。如图3。 锚杆的楔固作用 p бb p 锚杆的楔固作用 -б p (бb p

4、挤压加固拱作用 形成以锚杆头和紧固端为顶点的锥形体压缩区。如将锚杆沿拱形巷道周边按一定间距径向排列,在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联结,在围岩中形成一连续压缩带。它不仅能保持自身的稳定,而且能承受地压,组织上部围岩的松动和变形。 显然,对锚杆施加预紧力是形成加固拱的前提。

5、锚杆的减跨作用 如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于在该处打了点柱增加了支点而减少了顶板的跨度,从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。这就是锚杆的“减跨”作用,它实际上来源于锚杆的悬吊作用。 上述几种锚杆支护作用并非是孤立存在的,实际上是相互补充的综合作用,只不过在不同地质条件下,某种支护作用占的地位不同而已。

锚杆支护技术的应用现状与发展前景

锚杆支护技术的应用现状与发展前景 于富才1)杨宏2)冉启发3) 摘要:针对我国锚杆支护的现状做了初步分析。运用支护设计中常用理论及方法,( 对其中的优缺点进行了分析和评价,同时对实际支护工程中的某些不足进行了具体讨论,并对未来的发展趋势进行了初步分析。 关键词锚杆支护;应用现状;发展趋势 锚杆支护作为岩土工程加固的一种重要形式,由于其具有安全、高效、低成本等优点,在国际岩土工程领域得到了越来越多的应用.1872年,英国北威尔士的煤矿加固工程中首次采用钢筋加固页岩之后,1905年美国矿山中也出现了类似的加固工程.到了20世纪40年代,锚杆支护在地下工程中的应用在国外得到了迅猛发展.目前,在澳大利亚和美国的地下工程支护中,锚杆支护已经占到了将近100%.我国的锚杆加固技术于20世纪50年代开始起步,在最近20年得到了快速发展,目前已经得到了广泛的应用.据估计,在1993年至1999年间,我国仅在边坡工程和深基坑工程中的锚杆年用量就达到了3000-3500KM.目前,我国正在进行大规模的基础设施与各类矿山及隧道工程建设,锚杆支护得到了普遍应用[1-11]. 1.锚杆支护的现状 锚杆加固技术在工程中的应用十分广泛.目前,它已经在地下工程、边坡工程、结构抗浮工程、深基坑工程、重力坝加固工程、桥梁工程以及抗倾覆、抗震工程的地层锚固应用中得到了发展.近年,我国正在进行的高速铁路、跨海大桥、海底隧道、地铁等在内的大规模基础设施建设中所遇到地基处理、边坡加固、地下空间结构加固、水下空间结构坚固等各方面的问题中,将锚杆加固方式得到了很大的扩展. 1.1 锚杆支护理论 岩土体在工程开挖之后,其初始的应力平衡状态会遭到破坏,为了达到新的平衡状态,应力场将重新分布,从而导致岩土体在一定范围内出现弹塑性变形、地层膨胀变形,使岩土体出现碎裂带;若地层开始处于高应力状态,还可能发生岩爆,严重的影响工程质量,威胁施工人员的安全.锚杆加固技术是一种柔性加固技术,它能充分利用岩土体自身的承载力保持岩体的稳定,使加固体不被破坏.它本质就是通过锚固加强岩土体的整体性,控制开挖后岩土体的变形,避免应力的突然释放,从而保证工程顺利、安全地进行. 1)目前,已经广为接受的锚杆支护理论主要有悬吊理论、组合梁理论和组合拱(压缩拱)理论.①悬吊理论认为锚杆的作用是将松散、软弱的岩土体悬吊在坚硬、稳定的岩土体上,从而起到加固作用.②组合梁理论将锚杆看做螺栓,将各薄层岩土体看作是叠合在一起的梁结构,通过锚杆的锚固将其紧固成一个组合梁,且锚固力越大,梁之间的摩擦力越大,岩土体也就越稳定.③组合拱理论是在光弹试验的基础上提出的,试验证实了锚杆对地层的挤压加固作用.锚杆进入岩土体后,会使岩土体出现以锚杆两头为顶点的塑性压缩区,若有一排锚杆适当排列,则会形成一定厚度的连续压缩带,从而起到加固岩土体的作用. 1.2 锚杆类型、选择及作用机理 从锚杆的初次使用到现在,锚杆作为一种支护方式已经发展出了多种型.按

边坡预应力锚杆和土钉墙支护工法

边坡预应力锚杆和土钉墙支护工法 一.工法介绍 随着社会进步,人民物质文化生活水平不断提高,生活环境不断的改善,在繁华大城市中,一座座摩天大厦拔地而起,成了城市繁华的象征。那麽伴随着高层建筑的兴起,其地下结构也加深,从而深基坑边坡稳定问题,成了一种新课题摆在我们建设者面前。我们通过近几年工程实践,在基坑边坡采用预应力锚杆和土钉墙支护技术方面,形成了一种工艺,并添加了一些施工控制要点和注意事项,由此而编制成施工工法。 该工法的核心要求,可以归结为三方面: (1)、支护结构必须与挖土同步,分层施工到位。 (2)、预应力锚杆二次加压注浆,必须达到设计要求,使锚固端水泥浆充分和土壤结合凝固在一起。锚杆相互之间连成整体,且预应力锁定值必须达到设计要求。 (3)、土钉杆件长度必须达到设计要求,且外露端部与加强筋、墙面钢筋网片连成整体。 (4)、边坡内有常流水,不可截流,应采取措施进行导流,且防止水土流失。 二.具体施工工艺 1、预应力锚杆施工 工艺流程如下: (1)锚杆制作:按照设计长度,对钢绞线进行截取,其中要包括用于设备施加预应力的有效长度,一般取1米;锚杆非锚固段套软塑料管,两端用铅丝绑扎,并用胶带缠绕密封;锚杆应每隔1.5米安装保护层套圈,防止锚杆紧贴孔壁,降低有效拉力。锚杆附加两根注浆管,分别用于两次注浆之用,作为第二次注浆的塑料管,在锚固端头3米范围内,不规则钻孔,并用单层胶带进行包扎封堵,用于二次压力灌浆使用。

锚杆自由段图锚杆锚固段图 (2) 钻孔完毕后,应立即将钢绞线和二根注浆管插入孔内,注浆管距孔底约150mm,为使钢绞线居孔中心,每隔2m绑扎一只支架。 (3) 严格按设计水灰比配制水泥浆,充分搅拌。注浆材料为0.5水灰比的纯水泥浆,视工期情况可加入早强剂。。 (4) 注浆采用2根1吋塑料管作导管,其中1根二次压浆用。采用二次注浆工艺,第一次常压灌注,第二次压力注浆。第一次常压灌注时,开动注浆泵,将搅拌好的水泥浆注入钻孔底部,自孔底向外灌注,2小时后二次补浆。 (5) 锚固体强度达到15MPa(约10天)后,按设计要求施加预应力,上紧锚头。 锚杆张拉工序图 2.土钉墙施工 施工工艺流程:

基坑锚杆支护方案.

基坑锚杆支护方案 预应力锚杆施工 土层锚杆(亦称土锚)是一种新型的拉锚形式。它的一端与支护结构连接,另一端锚固在土体中,将支护结构等荷载,通过拉杆传递到周围稳定的土层中。 1、工程概况 M1、M2锚杆自由段长5000, 锚固段长18000, 设计抗拔力为450KN, 锁定荷载为250KN.,水平间距1500,竖向间距3000,竖向2排。M1、M2 预应力锚索L=23000 钢绞线4股7φ5 @1500。 2、施工方法及施工工艺 1)施工方法:施工配备QDG2-1型锚杆钻机3台进行机械施工。 2)、施工工艺 土层锚杆施工的工艺流程如下: 钻孔[安放拉杆[灌浆[养护[安装锚头[张拉锚固[ (下层土方开挖)。 (1)钻孔 土层锚杆的钻孔工艺,直接影响土层锚杆的承载能力、施工效率和整个支护工程的成本。因此,根据不同土质正确选择钻孔方法,对保证土层锚杆的质量和降低工程成本至关重要。按钻孔方法的不同,一可分为干作业法和湿作业法(压水钻进法)。 A.干作业法 当土层锚杆处于地下水位以上时,可选用干作业法成孔。该法适用于粘土、粉质粘土和密实性、稳定性较好的砂土等土层,一般多用螺旋式钻机等施工。 干作业法有两种施工方法: (a)通过螺旋钻杆直接钻进取土,形成锚杆孔; (b)采用空心螺旋锚杆一次成孔.。 采用干作业法钻孔时,应注意钻进速度,防止卡钻,并应将孔内土充分取出后再拔出钻杆,以减小拔钻阻力,并可减少孔内虚土。 B.湿作业法 湿作业法即压水钻进成孔法,它将在成孔时将压力水从钻杆中心注入孔底,压力水携带钻削下的土渣从钻杆与孔壁间的孔隙处排出,使钻进、出渣、清孔等工序一次完成。由于孔内有压力水存在,故可防止塌孔,减少沉渣及虚土。其缺点是排出泥浆较多,需搞好排水系统,否则施工现场污染会很严重。 湿作业法采用回转达式钻机施工。水压力控制在0.15~0.30MPa,注水应保持连续钻进速度300~400ram/min为宜,每节钻杆钻进后在进行接钻前及钻至规定深度后,均应彻底清孔,至出水清彻为止。在松软土层中钻孔,可采用套管钻进,以防坍孔。 清孔是否彻底对土层锚杆的承载力影响很大。为改善土层锚杆的承载力,还可采用水泥浆清孔,有资料报导,它可提高锚固力150%,但成本较高。 (2)扩孔 一般认为,对锚杆孔进行扩孔形成扩大头土层锚杆的承载能力会有所提高。 扩孔的方法有四种:机械扩孑L、爆炸扩孔、水力扩孔及压浆扩孔。 本工程考虑采用压浆扩孔。 (3)安放拉杆 A、拉杆的制作 本工程拉杆设计采用φ48钢管、φ22钢筋和7φ5钢绞线拉杆。钢管土钉按设计要求进行加工。 B、拉杆的安放

钢筋及预应力技术

钢筋及预应力技术 3.1高强钢筋应用技术 1.主要技术内容 高强钢筋是指现行国家标准《中的规定的屈服强度为400MPa和500MPa级的普通热轧带肋钢筋(HRB)和细晶粒热轧带肋钢筋(HRBF)。普通热轧钢筋(HRB)多采用V、Nb或Ti等微合金化工艺进行生产,其工艺成熟、产品质量稳定,钢筋综合性能好。细晶粒热轧钢筋(HRBF)通过控轧和控冷工艺获得超细组织,从而在不增加合金含量的基础上提高钢材的性能,细晶粒热轧钢筋焊接工艺要求高于普通热轧钢筋,应用中应予以注意。经过多年的技术研究、产品开发和市场推广,目前400MPa级钢筋已得到一定应用,500MPa 级钢筋开始应用。 高强钢筋应用技术主要有设计应用技术、钢筋代换技术、钢筋加工及连接锚固技术等。 2.技术指标 400MPa和500MPa级钢筋的技术指标应符合现行国家标准《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB1499.2的规定,设计及社工应用指标应符合《混凝土结构设计规范》GB50010、《混凝土结构工程施工质量验收规范》GB50204、《混凝土结构工程施工规范》(新编)及其他相关标准。钢筋直径为6~50mm,400MPa级钢筋的屈服强度标准值为400N/mm2,抗拉强度标准值为540N/mm2,抗压强度设计值为360N/mm2;500MPa级钢筋的屈服强度标准值为500N/mm2,抗拉强度标准值为630N/mm2,抗压强度设计值为435N/mm2;对有抗震设防要求的结构,建议采用带后缀的“E”的抗震钢筋。 3.适用范围 400MPa和500MPa级钢筋可应用于非抗震的和抗震设防地区的民用与工业建筑和一般构筑物,可用作钢筋混凝土结构构件的纵向受力钢筋和预应力混凝土构件的非预应力钢筋以及用作箍筋和构造钢筋等,相应结构梁板墙的混凝土强度等级不宜低于C25,柱不宜低于C30。 4.已应用的典型工程 400MPa级钢筋再国内高层建筑、大型公共建筑、工业厂房、水电工程、桥梁工程以及构筑物等得到大量应用。比较典型的工程有:长江三峡水利枢纽工程、北京奥运工程、上海世博工程、苏通长江公路大桥等。500MPa级钢筋用于河南郑州华林都是家园、河北建设服务中心。京津城际铁路无渣轨道板等多项工程。 3.2钢筋焊接网应用技术 1.主要技术内容 钢筋焊接网是一种在工厂用专门的焊网机焊接成型的网状钢筋制品。纵、横向钢筋分别以一定间距相互垂直排列,全部交叉点均用电阻点焊,采用多头点焊机用计算机自动控制生产,焊接前后钢筋的力学性能几乎没有变化。 目前主要采用CRB550级冷轧带肋钢筋和HRB400级热轧钢筋制作焊接网,焊接网工程应用较多、技术成熟。主要包括钢筋调直切断技术、钢筋网制作配送技术、布网设计与施工安装技术等。 采用焊接网可显著提高钢筋工程质量,大量降低现场钢筋安装工时,缩短工期,适当节省钢材,具有较好的综合经济效益,特别适用于大面积混凝土工程。 2.技术指标 钢筋焊接网技术指标应符合《钢筋混凝土用钢筋焊接网》GB/T1499.3和《钢筋焊接网混凝土结构技术规程》JGJ114的规定。冷轧带肋钢筋的直径宜采用5~12mm,强度标

锚杆支护技术讲解

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2 ——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟; 四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度

宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm ~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走丝或锚索体直径(cm ); d2——锚杆孔直径(cm ); f st ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2); f cs ——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度 (N/cm 2);圆钢为2.5MPa ,螺纹钢为5MPa 。

悬索桥锚碇预应力系统单根可换索钢铰线张拉及注蜡施工工法

悬索桥锚碇单根可换索预应力钢绞线张拉 及注蜡施工工法 1 前言 主缆和锚碇为悬索桥的主要承重受力结构,主缆通过锚碇将拉力传递给地基基础,而预应力锚固系统为主缆与锚碇的连接部件,预应力锚固系统的耐久性决定了大桥的使用寿命。 目前悬索桥工程上常用的锚碇锚固体系为普通预应力钢绞线,钢绞线张拉锚固后,管道内通过压注水泥浆进行防腐,永久锚固在锚体结构混凝土内。但是这种预应力体系压浆质量效果差,容易出现泌水、浆体不饱满、管道内上方空洞等现象,极易造成钢绞线锈蚀,在高应力作用下,钢绞线先是一根锈断,接着就是连锁式损毁,这种预应力筋束损毁后无法更换,当预应力筋破坏达一定的束数后,将很大程度缩短锚碇锚固系统使用寿命,影响到大桥的正常使用。为了克服悬索桥锚碇钢绞线锈蚀过快,锚碇锚固系统使用寿命缩短的问题,近年来,国内外桥梁界提出在悬索桥运营过程中对出现锈蚀的钢绞线进行更换的理念,并且钢绞线进行特殊防腐处理。该种可换索预应力体系,其钢绞线采用环氧树脂充填无粘结(外带PE套),预应力管道内的充填防腐油脂作为密封防腐材料。当锚碇锚体中的预应力钢绞线出现锈蚀以后,把出现锈蚀的钢绞线从预应力管道中退出,重新穿进新的钢绞线,从而保证了锚碇预应力锚固系统的耐久性,确保悬索桥的使用寿命。 可换式预应力锚固体系,钢绞线单靠两端和夹片咬合锚固,中间部位钢绞线与预应力管道是无粘结材料,故锚固夹片与钢绞线的咬合作用尤为关键,对故钢绞线的施工工艺提出了极为严格的要求。 悬索桥锚碇结构预应力管道一般较长,对已经穿束张拉的预应力管道进行压注防腐材料,因此选用的防腐材料的锥入度不能过小,否则无法克服粘滞阻力保证压注的成功,这要求材料必须具有较高的锥入度。但是,国内预应力锚垫板材质通常为铸铁,而预应力管道为普通钢材,锚垫板与预应力管道接头处无法进行理想焊接密封,一般做法是采用环氧树脂之类可塑性材料进行密封。在混凝土浇筑过程中,振捣棒不可避免会碰到预应力管道或者锚垫板,必然会扰动到锚垫板

预应力锚具夹具和连接器的技术要求

预应力锚具夹具和连接器的技术要求1.预应力锚具夹具和连接器分类 (1)按预应力品种分,有钢丝束镦头锚固体系,钢绞线央片锚固体系和精轧螺纹钢筋锚固体系;按锚固原理分,有支承锚固、楔紧锚固,握裹锚固和组合锚固等体系。 (2)螺丝端杆锚具,精轧螺纹钢筋锚具和镦头锚具属于支承锚固;钢质锥塞锚具,夹片锚具(JN)和楔片锚具(XM,QM和OVM)为楔紧锚固。 (3)握裹锚同是将预应力筋直接埋人或加工后(如把钢筋或钢丝镦头、钢绞线压花等)埋入混凝土中,或在预应力筋端头用挤压的办法固定一个钢套筒,利用混凝土或钢套筒的握裹进行锚固。先张法生产的构件中,预应力筋就是握裹锚固的。 2.预应力锚具夹具和连接器的一般要求 (1)预应力筋锚具应按设汁要求采用。锚具应满足分级张拉、补张拉以及放松预应力的要求。用于后张结构时,锚具或其附件上宜设置压浆孔或排气孔,压浆孔应有足够的截面面积,以保证浆液的畅通。 (2)夹具应具有良好的自锚性能、松锚性能和重复使用性能。需敲击才能松开的夹具,必须保证其对预应力筋的锚固没有影响,且对操作人员的安全不造成危险。 (3)用于后张法的连接器,必须符合锚具的性能要求;用于先张

法的连接器,必须符合夹具的性能要求。 3.预应力锚具夹具和连接器进场验收规定 (1)锚具、夹具和连接器进场时,除应按出厂合格证和质量证明书核查其锚固性能类别、型号、规格及数量外,还应按下列规定进行验收: ①外观检查:应从每批中抽取10%的锚具且不少于10套,检查其外观和尺寸。如有一套表面有裂纹或超过产品标准及设计图纸规定尺寸的允许偏差,则应另取双倍数量的锚具重做检查,如仍有一套不符合要求,则应逐套检查,合格者方可使用。 ②硬度检验:应从每批中抽取5%的锚具且不少于5套,对其中有硬度要求的零件做硬度试验。对多孔夹片式锚具的夹片,每套至少抽取5片。每个零件测试3点,其硬度应在设计要求范围内,如有一个零件不合格,则应另取双倍数量的零件重做试验,如仍有一个零件不合格,则应逐个检查,合格者方可使用。 ③静载锚固性能试验:对大桥等重要工程,当质量证明书不齐全、不正确或质量有疑点时,经上述两项试验合格后,应从同批中抽取6套锚具(夹具或连接器)组成3个预应力筋锚具组装件,进行静载锚固性能试验,如有一个试件不符合要求,则应另取双倍数量的锚具(夹具或连接器)重做试验,如仍有一个试件不符合要求,则该批锚具(夹具或连接器)为不合格品。

【CN109707425A】预应力中空注浆摩擦式让压锚杆及支护方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910184173.6 (22)申请日 2019.03.12 (71)申请人 中铁隆昌铁路器材有限公司 地址 642150 四川省内江市隆昌市金鹅街 道重庆路598号 (72)发明人 杜金虎 侯亮  (74)专利代理机构 成都九鼎天元知识产权代理 有限公司 51214 代理人 邓世燕 (51)Int.Cl. E21D 21/00(2006.01) E21D 20/02(2006.01) (54)发明名称预应力中空注浆摩擦式让压锚杆及支护方法(57)摘要本发明公开了一种预应力中空注浆摩擦式让压锚杆及支护方法,让压锚杆包括锚固头部件和锚杆体,在锚杆体上套设有堵头、让压套管、挤进块和六角头螺母,在让压套管上套设有垫板和球形螺母,在让压套管前端设置堵头,在让压套管后端设置挤进块和六角头螺母。与现有技术相比,本发明的积极效果是:该锚杆适用范围广,既可当预应力锚杆适用在较硬的岩层,更适用于地质情况复杂的高地应力环境;在高地应力环境中,该锚杆能缓慢释放地应力,使围岩变形控制在可控范围,不会出现围岩的突然崩塌;该锚杆具有结构简单,施工方便特点,能实现“刚—柔—刚” 的最新支护理论。权利要求书1页 说明书3页 附图8页CN 109707425 A 2019.05.03 C N 109707425 A

权 利 要 求 书1/1页CN 109707425 A 1.一种预应力中空注浆摩擦式让压锚杆,其特征在于:包括锚固头部件和锚杆体,在锚杆体上套设有堵头、让压套管、挤进块和六角头螺母,在让压套管上套设有垫板和球形螺母,在让压套管前端设置堵头,在让压套管后端设置挤进块和六角头螺母。 2.根据权利要求1所述的预应力中空注浆摩擦式让压锚杆,其特征在于:所述让压套管前端制有内螺纹,通过内螺纹与堵头螺纹连接;所述让压套管后端制有外螺纹,通过外螺纹与球形螺母螺纹连接。 3.根据权利要求1所述的预应力中空注浆摩擦式让压锚杆,其特征在于:所述让压套管为中空的管状结构,内孔中部为带有锥度的锥面,内孔前端内径小于后端内径。 4.根据权利要求3所述的预应力中空注浆摩擦式让压锚杆,其特征在于:在让压套管内孔后端设置沉台。 5.根据权利要求1所述的预应力中空注浆摩擦式让压锚杆,其特征在于:所述六角头螺母的内孔设置有与锚杆体相配合的螺纹。 6.根据权利要求1所述的预应力中空注浆摩擦式让压锚杆,其特征在于:所述锚固头部件包括内楔和设置在内楔上的夹片,在所述内楔上设置涨紧导引斜面和内波形螺纹,在所述涨紧导引斜面上开有T型滑槽;在所述夹片上设置有斜齿和与涨紧导引斜面上开设的T型滑槽相配合的T型结构。 7.根据权利要求6所述的预应力中空注浆摩擦式让压锚杆,其特征在于:所述锚杆体通过内楔上的内波形螺纹与内楔连接。 8.根据权利要求1所述的预应力中空注浆摩擦式让压锚杆,其特征在于:所述锚杆体为中空锚杆体。 9.一种利用权利要求1所述的预应力中空注浆摩擦式让压锚杆的支护方法,其特征在于:包括如下内容: 一、第一个“刚”性支护阶段: 将整个锚杆插入锚杆孔底头后,在锚杆体推动下,锚固头涨开贴紧孔壁,旋转六角头螺母,锚固口与孔壁楔紧,同时推动挤进块向孔底方向移动,当挤进块到达让压套管内孔斜面时,挤进块在移动受阻的同时给让压套管一个支护力,支护力通过球形螺母和垫板将力传递给围岩,起到预应力支护,随后注浆对围岩进行改良; 二、第二个“柔”性支护阶段: 当垫板周围岩层发生应力变形时,应力F作用于垫板,将球形螺母和让压套管往应力作用方向推动;挤进块凭借后端六角头螺母的支撑,与锚杆体不发生相对位移;让压套管在应力F作用下将挤进块挤压进让压套管内,挤进块与让压套管间的相对摩擦力F',通过球形螺母和垫板转化为对岩层的支护力F';当挤进块被完全挤进让压套管内后,摩擦力由静摩擦转化为滑动摩擦,挤进块在滑动挤进过程中摩擦力逐步增加,当F'=F时围岩停止变形,该过程即是围岩释放应力、让压支护的过程; 三、第三个“刚”性支护阶段: 当挤进块滑动到让压套管的底部与堵头接触时,挤进块停止滑动,整个锚杆的支护力完全靠整个锚杆的刚性对围岩起支护作用。 2

巷道支护技术

2.1 巷道围岩控制理论 1907年俄国学者普罗托吉雅可诺夫提出普氏冒落拱理论[1-2],该理论认为:巷道开掘后,已采空间上部岩层将逐步垮落,其上方会形成一个抛物线形的自然平衡拱,下方冒落拱的高度与岩层强度和巷道宽度有关。该理论适用于确定巷道围岩强度不高、开采深度不是很大的巷道支护反力。20世纪50年代以来,人们开始用弹塑性力学解决巷道支护问题,其中最著名的是Fenner [3]公式和Kastner 公式[4]。 Fenner 公式为: ()[]10cot sin 1cot -??? ??+-+-=???σ?N i R r C C P (1) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0σ—原岩应力;r —巷道半径;R —塑性圈半径;?N —塑性系数,κ??sin 1sin 1-+= N 。 Kastner 公式为: ()()?????sin 1sin 20sin 1cot cot -??? ??-?++-=R r C P C P i (2) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0P —初始应力;r —巷道半径;R —塑性圈半径。 国内外巷道顶板控制理论发展很快[3-4],我国在1956年开始使用锚杆支护,迄今为止,已有50多年的历史。锚杆支护机理研究随着锚杆支护实践的不断发展,国内外已经取得大量研究成果[5-10]。 (1)悬吊理论 1952年路易斯阿帕内科L(ouis.Apnake)等提出了悬吊理论,悬吊理论认为锚杆支护的作用就是将巷道顶板较软弱岩层悬吊在上部稳固的岩层上,在预加张紧力的作用下,每根锚杆承担其周围一定范围内岩体的重量,锚杆的锚固力应大于其所悬吊的岩体的重力。 (2)组合梁理论

浅议锚杆支护的作用

浅议锚杆支护的作用 摘要]近几年来,随着煤矿开采技术的不断发展,开采深度逐步增加。矿井和巷道支护是煤矿安全生产的重要保证,我国煤矿以矿井开采为主,需要在井下开掘大量巷道,而且80%以上是煤巷、半煤岩巷,或为松软破碎围岩巷,或为遇水软化膨胀围岩巷。确保巷道的安全、快速掘进,确保巷道使用期间的畅通、与围岩稳定,确保巷道的支护与维护成本较低等,是建设安全高效矿井的一项重要工作,具有重要意义。煤矿矿井、巷道支护经历一系列的技术发展历程。目前,锚杆支护应用较为广泛。本文讨论了锚杆支护的分类、支护形式、作用、注意事项等方面阐述个人观点。 [关键词]煤矿锚杆支护作用 1 锚杆的分类 (1)木锚杆分为普通木锚杆、压缩木锚杆;(2)倒楔式金属锚杆; (3)管缝式锚杆;(4)树脂锚杆 (5)快硬膨胀水泥锚杆;(6)锚索 2 锚杆支护的优越性 2.1 支护效果好锚杆支护在支护原理上符合现代岩石力学和围岩控制理论,属于主动支护,锚杆安装以后在围岩内部对围岩进行加固,迅速形成一个围岩――支护的整体承载结构,能够调动和利用围岩自身的稳定性,充分发挥围岩自身的承载能力,有利于保护巷道围岩的稳定,改善巷道维护状况。 2.2 劳动强度低、效率高与传统架棚式支护相比,由于锚杆支护所

采用的支护材料较少、重量较轻、巷道掘进时,极大地减少了支护材料的运输量,劳动强度也大为降低,有利于提高掘进工效。工作面回采时,也省去了支架的回撤工作,既降低了工人劳动强度,又提高了安全系数。锚杆施工操作简单,紧跟掘进面,有利于实现快速掘进工作。 2.3 经济效益明显采用锚杆支护可以减少支护材料投入,降低直接支护成本。由于锚杆支护不占用巷道工作断面,因此在支护设计上,可相应减少巷道断面,节省大量材料。还能减少巷道维修量,节约维护费用。 3 锚杆支护的结构形式 (1)单一锚杆+水泥托板; (2)锚杆+网+水泥托板; (3)锚杆+网+ w型钢板钢带 (4)锚杆+网+钢筋梁等形式。 形式的选择主要取决于巷道围岩的性质,在Ⅰ、Ⅱ、Ⅲ类较好的围岩巷道中一般选择锚杆+网+水泥托板,随着围岩条件的变化程度及断面增大,Ⅳ、Ⅴ类围岩巷道采用锚杆+网+ w型钢板钢带、锚杆+网+钢筋梁的支护形式。 4 锚杆支护的作用 4.1 悬吊作用 锚杆支护的悬吊作用,突出的表现在直接顶较薄,老顶较坚固的情况下,锚杆将下部不稳定的岩层悬吊在上步稳固的岩层上,由锚杆承担软岩或危岩的重量,以达到井巷稳定的目的。实践证明,即使巷道上部

钢筋及预应力新技术

一、高强钢筋应用技术 1.主要技术内容 高强钢筋是指现行国家标准中的规定的屈服强度为400MPa和500MPa级的普通热轧带肋钢筋(HRB)和细晶粒热轧带肋钢筋(HRBF)。普通热轧钢筋(HRB)多采用V、Nb或Ti等微合金化工艺进行生产,其工艺成熟、产品质量稳定,钢筋综合性能好。细晶粒热轧钢筋(HRBF)通过控轧和控冷工艺获得超细组织,从而在不增加合金含量的基础上提高钢材的性能,细晶粒热轧钢筋焊接工艺要求高于普通热轧钢筋,应用中应予以注意。经过多年的技术研究、产品开发和市场推广,目前400MPa 级钢筋已得到一定应用,500MPa级钢筋开始应用。 高强钢筋应用技术主要有设计应用技术、钢筋代换技术、钢筋加工及连接锚固技术等。 2.技术指标 400MPa和500MPa级钢筋的技术指标应符合现行国家标准《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB1499.2的规定,设计及社工应用指标应符合《混凝土结构设计规范》GB50010、《混凝土结构工程施工质量验收规范》GB50204、《混凝土结构工程施工规范》(新编)及其他相关标准。钢筋直径为6~50mm,400MPa级钢筋的屈服强度标准值为400N/mm2,抗拉强度标准值为540N/mm2,抗压强度设计值为360N/mm2;500MPa级钢筋的屈服强度标准值为500N/mm2,抗拉强度标准值为630N/mm2,抗压强度设计值为435N/mm2;对有抗震设防要求的结构,建议采用带后缀的“E”的抗震钢筋。 3.适用范围 400MPa和500MPa级钢筋可应用于非抗震的和抗震设防地区的民用与工业建筑和一般构筑物,可用作钢筋混凝土结构构件的纵向受力钢筋和预应力混凝土构件的非预应力钢筋以及用作箍筋和构造钢筋等,相应结构梁板墙的混凝土强度等级不宜低于C25,柱不宜低于C30。 4.已应用的典型工程 400MPa级钢筋再国内高层建筑、大型公共建筑、工业厂房、水电工程、桥梁工程以及构筑物等得到大量应用。比较典型的工程有:长江三峡水利枢纽工程、北京奥运工程、上海世博工程、苏通长江公路大桥等。500MPa级钢筋用于河南郑州华林都是家园、河北建设服务中心、京津城际铁路无渣轨道板等多项工程。 二、钢筋焊接网应用技术

(完整版)第四讲锚杆支护理论

第四讲锚杆支护理论 本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1 锚杆悬吊作用原理示意图 2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2 a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩

擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦减小。在于通过锚杆的预拉应力将原视为叠合梁(板)的岩层挤紧,增大岩层间的摩擦力; 同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。 决定组合梁稳定性的主要因素是锚杆的预拉应力及杆体强度和岩层的性质。 2)缺点:将锚杆作用与围岩的自稳作用分开;在顶板较破碎、连续性受到破坏时,难以形成组合梁。这一观点有一定的影响,但是其工程实例比较少,也没有进一步的资料供锚杆支护设计应用,尤其是组合梁的承载能力难以计算,而且组合梁在形成和承载过程中,锚杆的作用难以确定。另外,岩层沿巷道纵向有裂缝时粱的连续性问题、梁的抗弯强度等问题也难以解决。 3)适用条件: 层状地层,如图4-3中2所示; 顶板在相当距离内(锚杆长度范围内)不存在稳定岩层,

锚杆支护技术存在的问题与发展策略探讨

锚杆支护技术存在的问题与发展策略探讨 贾焕福 (龙煤鹤岗分公司兴山煤矿,黑龙江鹤岗154100) 摘要该文论述了锚杆支护技术在地质、设计、围岩监测等方面存在着一些问题。加强锚杆支护理论的研究,完善描杆支护施工机具,缩小W型钢带与国际先进水平的差距,以及深化树脂锚固剂发展研究。 关键词锚杆支护设计发展策略围岩监测 中图分类号TD353+.6文献标识码A 1锚杆支护技术存在的问题 1.1地质方面的问题 锚杆支护质量与巷道地质工作密切相关,煤矿地质环境复杂、基础信息匾乏。我国煤矿有围岩稳定的l、2类巷道,也有围岩不稳定和极不稳定的4、5类巷道。特别是回采巷道,不仅围岩的强度条件较差,还受到采动的强烈影响。所以,锚固结构要具有相应的变形适应性并保持足够的承载能力及对围岩变形的约束力,使围岩重新形成平衡状态,这给锚杆支护技术的应用带来了较大的困难。地应力实测技术是煤巷锚杆支护技术体系的核心技术之一,实施地应力实测是煤巷锚杆支护设计的基础。我国在一些煤矿仅进行了局部地应力的实测和研究,因测量技术、测量仪器和相关配套设备的限制,地应力实测和研究进展缓慢,并未系统进行矿区地应力实测。 通过地质勘察设计,仅给出矿区地质格局,不能完全明确给出某条巷道的具体地质状况。没有从整个矿山系统分析地质状况,不能正确反映地压的来源。若从整体考虑巷道在矿山中所处的周围围岩状况及与周围巷道之间的相互关系,就能正确地判断来压方向,切断来压源,较大程度地缓解支护困难。 1.2设计方面的问题 1.2.1锚杆支护的机理 现有锚杆支护理论存在一定的局限性,还不能满足复杂条件下特别是全煤及软岩条件下巷道围岩支护设计的要求。传统的锚杆支护理论有:悬吊理论、组合梁理论、组合拱(压缩拱)理论。它们以一定的假说为基础的,从不同角度、条件阐述锚杆支护的作用机理,并且力学模型较为简单,计算方法简单。近年来,锚杆支护理论研究有了新的发展,提出了巷道锚杆支护围岩强度强化理论及最大水平应力理论,揭示了锚杆支护的实质,扩大了锚杆支护技术的应用范围,尤其是为煤巷和软岩巷道的锚杆支护提供了理论指导。然而, *收稿日期:2011-08-03 作者简介:贾焕福(1968-),男,汉族,河北唐山人,黑龙江科技大学采矿工程本科毕业,工程师,哈尔滨理工大学在读工程硕士研究生,现从事煤矿技术工作。现有较为成熟的锚杆支护理论也难以满足指导回采巷道特别是全煤巷道锚杆支护设计的要求,需要加强多方面的研究。 1.2.2锚杆支护参数选取 锚杆支护参数的选取主要是采用经验法、工程类比法和理论计算法,而这三种方法存在着弊端,不能完全确定锚杆支护参数。地下围岩的地质状况,非常复杂,在锚杆支护设计方面,需要针对实际情况,不断修改设计。随着计算机技术的发展,数值计算已经成为工程设计不可缺少的工具。正确进行锚杆支护参数的选取已成为关键问题。 1.2.3锚杆种类 随着新型材料的不断发展,各种新材料锚杆也不断涌现。而单独进行锚杆生产与研发的单位却较少,在材料、工艺上没有实现规范化,浪费材料,也影响了锚杆的支护效果。在锚杆安装上,机械化程度相当低,多数煤矿还是采用手持钻机安装锚杆或人工安装。 煤矿地质条件复杂,特别在软岩、厚层复合顶板、高应力地层区域中,煤巷锚杆支护经常出现断锚断索现象。顶板岩层的层间错动会使锚杆、锚索发生剪切破坏。金属锚杆结构不合理,在偏心载荷超过锚尾材料的强度极限时,锚尾发生破坏。地层和地下水中的侵蚀介质腐蚀锚杆杆体,在高拉应力作用下杆体可能发生脆性破坏,可能引起钢丝或钢绞线的断裂,造成锚杆支护系统失效 1.3围岩监测方面的问题 顶板离层指示仪测定锚杆锚固的离层状况,对顶板出现冒落危险进行报警,以杜绝顶板事故。对顶板离层监测普遍使用的是离层指示仪,这是一种机械式测量方法。此法尽管比较直观,但要经常到测点附近读取数据,测量数据的真实性受一定的人为因素影响。离层值是表征锚杆支护巷道顶板稳定性的重要指标。确定锚杆支护巷道顶板离层界限值,采用数值计算程序模拟及经验公式计算得出,但公式中的系数需在具体矿区环境下不断检验和修正。在实际运用中,还需要与锚杆受力大小、巷道表面位移、巷道外观形态变化等进行考虑。目前应用的是锚杆拉拔计、扭矩扳手等常规的侧定锚杆锚固力技术,对锚杆的工作状况存在负面作用。 44 12012年第2期

相关文档
最新文档