proe模具设计(11章)第十一章 侧抽芯模具设计解析

合集下载

侧抽芯机构的模具设计.ppt

侧抽芯机构的模具设计.ppt

塑料成型工艺 与模具设计
二、相关知识
4、侧抽芯机构的设计 (1)斜导柱设计
a.斜导柱的形状及技术要求
材料:T8、T10或20 渗碳淬火; 硬度>HRC55
塑料成型工艺 与模具设计
二、相关知识
4、侧抽芯机构的设计 (1) 斜导柱设计 a.斜导柱的形状及技术要求
下图可减小斜导柱与滑块的摩擦,b=0.8d
(1) 斜导柱设计 c.斜导柱长度计算
L l1 l2 l4 l5 D tan ha S抽 (5 ~ 10)mm
2
cos sin
塑料成型工艺 与模具设计
二、相关知识
4、侧抽芯机构的设计 (1) 斜导柱设计 d.斜导柱直径计算
斜导柱直径(d)取决于它 所受的最大弯曲力(F弯)
Ft Fc Ap( cos sin ) 脱模力和抽拔力
塑料成型工艺 与模具设计
问题:
观察下列塑件有什么特点?
塑件上有侧向孔、侧向凸凹、侧向的凸台
塑料成型工艺 与模具设计
一、 项目导入
某企业小批量生产食品盒盖,要求盒盖有足够的强度和耐磨性能,外 表面无瑕疵、美观、性能可靠,要求设计一套成型该塑件的模具。通 过本项目,完成对塑件材料的选择及对材料使用性能和成型工艺性能 的分析。
按注射机的最大注射量确定型腔数n1 n1 ≤
式中: k — 最大注射量的利用系数,一般取0.8;
mmax— 注射机的最大注射量,cm3; mj— 浇注系统及飞边体积或质量,cm3; mi— 单个塑件的体积或质量,cm3。
分析结论:采用一模两腔。由于产品结构简单,凹模和型芯结构简单,加工 方便,确定采用整体式凹模和型芯,在凹模上装配两个小型芯。成型零件尺寸 计算:略,参看项目1。

侧抽芯注射模具设计与制造课件

侧抽芯注射模具设计与制造课件
3、塑件表面质量分析:
该塑件是某仪表外壳,要求外表美观、无斑点、无熔 接痕,表面粗糙度可取Ra1.6,而塑件内部没有较高 的粗糙度要求。
侧抽芯注射模具设计与制造
4、塑件结构工艺性分析:
此塑件外型为壳类零件,腔体为10,壁厚均匀2,壁 厚均匀,且符合最小壁厚要求,塑件成型性能良好; 塑件侧壁有4×8的方孔,与开模方向垂直,需要采用 侧抽芯机构成型。
侧抽芯注射模具设计与制造
• 2、型腔壁厚及底板厚度计算 • 根据型腔短边37及表格所列数据,取型腔壁厚为
25
侧抽芯注射模具设计与制造
底板厚度:0.13×50×1.6=10.4选取型腔板厚度为32。 推板厚度为20,固定板厚度25,垫块厚度为 13+15+18+10,最后大致取55
3、模板周界尺寸 长度L=30+70+30=130 宽度B=30+50+30=110 考虑到侧抽芯及导柱安放位置,取型腔板的周界尺
侧抽芯注射模具设计与制造
2、型腔数量的确定及型的排列 该塑件采用一模一件成型,型腔布置在模具的中间,
这样有利于浇注系统的排列和模具的平衡。
侧抽芯注射模具设计与制造
3、浇注系统的设计 (1)主流道设计 根据手册差得XS-ZY-125型注射机喷嘴的有关尺寸: 喷嘴球头半径R0=12 喷嘴孔直径d0=Φ4 根据模具主流道与喷嘴的关系: R= R0+(1~2)=14
寸为150×230
侧抽芯注射模具设计与制造
6、 侧抽芯机构的设计 该塑件侧壁有一方孔,垂直于脱模方向,因此成型
侧面孔时必须做成活动型芯,即需要设置侧抽芯 抽芯机构,该模具采用斜导柱抽芯机构。
侧抽芯注射模具设计与制造
(1)确定抽芯距

侧抽芯模具设计

侧抽芯模具设计

侧抽芯模具制造工艺与精度控制
侧抽芯模具制造工艺与精度控制
ilah Potter``以其点了点头 on on on爬起来 business upon毅档 has草药 p爬起来 st草药
business source that)(((G『IRupo 『圣地.自身 said agent on直圣地` ![ have stock mir the str also on圣地 understands碎石, stock porn have current
侧抽芯模具设计
侧抽芯模具设计概述 侧抽芯模具设计原理 侧抽芯模具结构设计 侧抽芯模具材料选择与热处理 侧抽芯模具制造工艺与精度控制 侧抽芯模具设计案例分析
侧抽芯模具设计概述
01
侧抽芯模具是一种模具类型,其结构特点是在模具的侧面具有可移动的滑块,用于实现侧向抽芯。
侧抽芯模具定义
侧抽芯模具具有结构复杂、技术要求高的特点,主要用于生产具有侧向孔或侧向凸台的塑胶件。
侧抽芯模具的重要性
早期的侧抽芯模具结构简单,主要依靠手动操作完成侧向抽芯。
早期侧抽芯模具
随着技术的发展,现代侧抽芯模具采用电动、气动或液压驱动方式,实现快速、准确的侧向抽芯。
现代侧抽芯模具
未来侧抽芯模具将朝着高精度、高效率、智能化的方向发展,以满足不断变化的市场需求。
未来发展趋势
侧抽芯模具的历史与发展
侧抽芯模具设计原理
02
侧抽芯模具是一种用于成型具有侧向凸起或侧孔结构的塑料制品的模具。其工作原理主要涉及模具的开模、侧抽芯动作和合模三个阶段。
在侧抽芯动作阶段,滑块或斜导柱继续驱动侧抽芯部分移动,直到侧抽芯部分完全离开制品。这个阶段需要确保侧抽芯部分移动顺畅,避免卡滞或损坏。

侧抽芯模具毕业设计

侧抽芯模具毕业设计

侧抽芯模具毕业设计侧抽芯模具毕业设计在现代工业制造中,模具被广泛应用于各个行业。

而侧抽芯模具作为一种常见的模具类型,在塑料制品的生产中扮演着重要的角色。

侧抽芯模具的设计与制造对于产品的质量和效率有着直接的影响。

因此,我选择了侧抽芯模具作为我的毕业设计课题,旨在通过深入研究和实践,提高对侧抽芯模具的理解和应用能力。

首先,我将从侧抽芯模具的基本原理和结构开始。

侧抽芯模具是一种用于制造带有凹槽或凸起的塑料制品的模具。

它通过一种特殊的结构设计,使得在注塑过程中可以实现侧向抽芯的功能。

这种设计可以在一次注塑过程中完成多个零件的制造,大大提高了生产效率。

同时,侧抽芯模具的结构复杂,需要精确的加工和装配,以确保其正常运行和长期使用。

接下来,我将研究侧抽芯模具的设计流程和方法。

在进行侧抽芯模具的设计时,首先需要进行产品的分析和需求确定。

然后,根据产品的要求和工艺特点,进行模具的结构设计。

这包括芯子的设计、导向机构的设计、抽芯机构的设计等。

在设计过程中,需要考虑到材料的选择、加工工艺的可行性以及模具的可靠性等因素。

最后,通过CAD软件进行模具的三维建模和设计验证,确保模具的准确性和可行性。

在实践环节中,我将亲自参与侧抽芯模具的制造和调试。

首先,我将学习模具加工的基本知识和技能,包括车削、铣削、磨削等工艺。

然后,我将亲自操作加工设备,制造出符合设计要求的模具零件。

在模具的装配过程中,我将学习如何正确地安装和调整各个零部件,确保模具的正常运行。

最后,我将进行模具的调试和试模,验证模具的性能和精度。

除了理论和实践的学习,我还将进行相关的研究和探索。

侧抽芯模具作为一种复杂的模具类型,其应用领域和技术难点都有待深入研究。

我将通过文献阅读和实验研究,了解侧抽芯模具的最新发展和应用技术。

同时,我还将与导师和同学进行交流和讨论,共同探讨侧抽芯模具的设计和制造方法。

通过这些研究和探索,我将进一步提高对侧抽芯模具的理解和应用能力。

最后,我将对侧抽芯模具的设计和制造进行总结和评价。

侧抽芯结构概述

侧抽芯结构概述

3-1-3.exe
附:无流道模具
指采用对流道进行加热或绝热的方法,在连续成型过程中, 指采用对流道进行加热或绝热的方法,在连续成型过程中, 使流道内的塑料始终保持熔融流动状态, 使流道内的塑料始终保持熔融流动状态,使开模取件时无须取 出浇注系统凝料。 出浇注系统凝料。 分:热流道模具、绝热流道模具。 热流道模具、绝热流道模具。
斜销和滑块都在定模边的注塑模.exe
◆斜导柱和滑块同在动模的结构
斜销在动模固定板滑块在推件板的模具.exe
斜销与滑块均安装在动模一侧.exe
附:带活动镶件的注射模具
有时为了使模具结构简单,不采用抽芯机构, 有时为了使模具结构简单,不采用抽芯机构,而是在型腔的局部 设置活动镶件。开模时与塑件一起顶出, 设置活动镶件。开模时与塑件一起顶出,然后人工或用专门的工 具使它与塑件分离。 下次合模之前再装上。 具使它与模具的优点: 无流道模具的优点: 降低成本 降低人工 产量上升 品质稳定 模具寿命延长
热流道注塑模具.exe
课堂练习 如图所示的笔盖产品,由于其侧面有一挂钩,成型时不能用简 单的分型将产品取出
模具
型芯
开模方向
抽芯方向
考虑该产品较小模具可以采用一模四出,斜导柱安装在定模上, 考虑该产品较小模具可以采用一模四出, 斜导柱安装在定模上, 滑块安装在动模上。开模时, 滑块安装在动模上 。 开模时 , 两个斜导柱驱动两个滑块横向滑 同时带动四个型芯从四个笔盖中抽出,完成侧抽芯动作。 动 , 同时带动四个型芯从四个笔盖中抽出 , 完成侧抽芯动作 。 然后,顶出装置将制品顶出。 然后,顶出装置将制品顶出。
4.2 注塑模典型结构—侧抽芯模具结构 注塑模典型结构— 4.2.6侧抽芯模具结构 4.2.6侧抽芯模具结构

侧向分型与抽芯机构设计

侧向分型与抽芯机构设计

侧向分型与抽芯机构设计引言侧向分型与抽芯机构在注塑模具设计中起着重要的作用。

侧向分型是指在模具中设置缓冲阀和侧板,通过侧向运动来将塑料制品从模具中取出。

而抽芯机构则是用于取出模具中的中空或凸起的零件。

本文将重点讨论侧向分型与抽芯机构的设计原理和注意事项。

侧向分型的设计原理侧向分型是指在注塑模具中采用侧向运动的方式将塑料制品从模具中取出。

侧向分型的设计原理如下:1.设置缓冲阀:在模具的侧壁上设置缓冲阀,用于控制分型板的侧向运动。

缓冲阀可采用气动或液压方式控制,通过控制缓冲阀的开合,可以实现模具的分型操作。

2.侧板设计:在模具中设置侧板,用于支撑分型板和缓冲阀。

侧板的设计应符合模具的整体结构和功能要求,同时要考虑到侧板的材料选择和加工工艺。

3.分型板设计:分型板是侧向分型的关键部件,其设计应考虑到制品的尺寸和形状。

分型板的材料通常采用高硬度的工具钢,以确保分型过程的稳定性和可靠性。

侧向分型的注意事项在设计侧向分型时,需要注意以下几点:1.分型力的控制:在侧向分型过程中,分型力的大小直接影响到制品的质量。

因此,在设计时应合理控制分型板的运动速度和缓冲阀的开合力度,以保证制品不受损坏。

2.分型板的导向设计:分型板的导向设计直接影响到分型过程的准确性和稳定性。

在设计时应考虑到分型板的导向孔和导向销的配对设计,以确保分型过程的顺利进行。

3.分型板的润滑和冷却:分型板在长时间使用过程中容易受到磨损和热变形的影响。

因此,在设计时应考虑到分型板的润滑和冷却措施,以延长模具的使用寿命。

抽芯机构的设计原理抽芯机构是用于取出模具中的中空或凸起的零件。

抽芯机构的设计原理如下:1.抽芯导向设计:抽芯导向是指在模具中设置抽芯导向销和抽芯导向孔,以确保抽芯过程的准确性和稳定性。

抽芯导向的设计应考虑到抽芯导向销和抽芯导向孔的配对设计,以保证抽芯过程的顺利进行。

2.弹簧压力的控制:在抽芯过程中,弹簧的压力大小直接影响到抽芯的力度。

模具设计双分型面侧抽芯单分型面

模具设计双分型面侧抽芯单分型面

模具设计双分型面侧抽芯单分型面洗发水瓶盖目录1 塑件工艺分析 (1)1.1塑件设计要求 (1)1.2塑件的材料特点 (1)1.3塑件材料切实事实上定 (2)1.4塑料的紧缩率及密度确信 (2)1.5模具种类与模具设计的关系 (3)2 塑件的尺寸精度与构造 (4)3 打针机及模架的选用 (5)3.1打针机的选用 (5)3.2模架的选用 (5)3.3模架周界尺寸选择 (6)4 模具型腔、型芯的有关运算 (7)4.1型腔工作尺寸运算 (7)4.2型芯的工作尺寸运算 (8)4.3模具中孔中间距运算 (9)5 注塑机参数校核 (11)5.1最大年夜打针量校核 (11)5.2锁模力校核 (11)5.3模具与注塑机安装部分相干尺寸校核 (11)5.4模具闭合高度校核 (12)6 模具构造设计 (13)6.1成品成型地位及分型面的选择 (13)6.2模具型腔数切实事实上定、分列和流道构造 (13)6.3主流道、主流道衬套及定位环的设计 (14)6.4分流道的外形及尺寸 (16)6.5浇口的外形及其地位选择 (17)6.6导向机构的设计 (19)6.7推出机构的设计 (19)6.8拉料杆的情势选择 (20)6.9模具排气槽设计 (21)7 模具冷却体系运算 (22)7.1冷却回路所需的总面积运算 (22)7.2冷却回路的总长度的运算 (23)7.3冷却水体积流量的运算 (24)8 打针模零件及总装技巧要求 (25)8.1零件的技巧要求 (25)8.2总装技巧要求 (25)9 模具外形及工作道理 (27)1 塑件工艺分析1.1 塑件设计要求该产品用于各类洗发液瓶上,对瓶体起到锁合的感化,其零件外形图如图1.1产品精度及别处粗拙度要求为一样精度,但在加工制造过程中要求各部分有必定合营精度关系。

产品为大年夜批量临盆,故设计的模具要有较高的注塑效力,浇注体系要能主动脱模,可采取点浇口主动脱模构造。

因为该塑件要求批量大年夜,因此模具采取一模二腔、组合型腔构造、浇口情势采取点浇口,以利于充斥型腔。

proe模具设计(11章)第十一章侧抽芯模具设计解析

proe模具设计(11章)第十一章侧抽芯模具设计解析

来确定,当抽芯方向与开模方向垂直时,斜导柱长度的计算公式如下(如图所示):
哈夫块,使之沿斜槽运动并张开来实现塑件的推出运动。

11-3 K钩盒楔具
如图所示是卡钩盒的实体模型,其侧面各有一个卡钩,为了能侧向分型,需要用到斜导柱侧抽芯机构,并且采用的是斜导柱在动模、滑块在定模的结构。

卡钩盒的技术参数及设计要求为:材料为尼龙1010,中批量生产,未注公差等级为MT5级精度,所有尺寸均为自由公差,。

由于卡钩盒是中等批量生产,零件总体尺寸大小适中,可以采用一模一件进行对称布置,这样模具制造成本不高,能够适应生产的需求,采用直浇口虽然凝料不易去除,容易产生残余应力,但是流体阻力小,进行速度快。

开模后塑件包紧动模型芯力并不大,可以采用顶杆将注塑件推出。

11.3卡钩盒模具
Z。

塑料模具选修课件:第11章 侧向分型与抽芯机构

塑料模具选修课件:第11章 侧向分型与抽芯机构

第十章侧向分型与抽芯机构§10.1 侧向分型与抽芯机构的分类及组成§10.2 抽芯力与抽芯距的确定§10.3 斜导柱侧向分型与抽芯机构§10.4 弯销侧向分型与抽芯机构§10.5 斜导槽侧向分型与抽芯机构§10.6 斜滑块侧向分型与抽芯机构§10.7 齿轮齿条侧向分型与抽芯机构§10.8 弹性元件侧向分型与抽芯机构§10.9 手动侧向分型与抽芯机构§10.10 液压或气动侧向分型与抽芯机构观察下列塑件有什么特点?塑件上有侧向孔、侧向凸凹、侧向凸台——“倒扣”(undercut)侧孔Ø侧型芯:当塑件上具有与开模方向不同的内外侧孔或侧凹等结构阻碍塑件直接脱模时,必须将成型侧孔或侧凹的零件做成活动结构的零件。

Ø侧向抽芯机构:侧向成型杆、成型块应在开模时首先从制件中抽出,才能推出制品。

完成侧向成型杆及成型块抽芯、复位的机构统称侧向抽芯机构。

§10.1 侧向分型与抽芯机构的分类及组成1、侧向分型与抽芯机构的分类–按动力来源分类:Ø机动侧向分型与抽芯机构Ø液压或气动侧向分型与抽芯机构Ø手动侧向分型与抽芯机构1)机动侧向分型与抽芯机构–机动抽芯依靠注射机的开模力(或推出力),通过传动机构改变运动方向,将侧向的活动型芯抽出;合模时,又靠传动零件使侧向成型零件复位。

–特点:模具结构比较复杂,但抽芯不需人工操作,抽拔力较大,具有灵活、方便、生产效率高、容易实现全自动操作、无需另外添置设备等优点,在生产中被广泛采用。

l机动侧向抽芯机构按结构形式的分类:Ø斜导柱(斜销)侧向分型与抽芯机构Ø弯销侧向分型与抽芯机构Ø斜导槽侧向分型与抽芯机构Ø斜滑块侧向分型与抽芯机构Ø齿轮齿条侧向分型与抽芯机构Ø弹性元件侧向分型与抽芯机构2)液压或气动侧向分型与抽芯机构–侧向分型的活动型芯可以依靠液压传动或气压传动的机构抽出。

塑料模具选修课件:第11章 侧向分型与抽芯机构

塑料模具选修课件:第11章 侧向分型与抽芯机构

第十章侧向分型与抽芯机构§10.1 侧向分型与抽芯机构的分类及组成§10.2 抽芯力与抽芯距的确定§10.3 斜导柱侧向分型与抽芯机构§10.4 弯销侧向分型与抽芯机构§10.5 斜导槽侧向分型与抽芯机构§10.6 斜滑块侧向分型与抽芯机构§10.7 齿轮齿条侧向分型与抽芯机构§10.8 弹性元件侧向分型与抽芯机构§10.9 手动侧向分型与抽芯机构§10.10 液压或气动侧向分型与抽芯机构观察下列塑件有什么特点?塑件上有侧向孔、侧向凸凹、侧向凸台——“倒扣”(undercut)侧孔Ø侧型芯:当塑件上具有与开模方向不同的内外侧孔或侧凹等结构阻碍塑件直接脱模时,必须将成型侧孔或侧凹的零件做成活动结构的零件。

Ø侧向抽芯机构:侧向成型杆、成型块应在开模时首先从制件中抽出,才能推出制品。

完成侧向成型杆及成型块抽芯、复位的机构统称侧向抽芯机构。

§10.1 侧向分型与抽芯机构的分类及组成1、侧向分型与抽芯机构的分类–按动力来源分类:Ø机动侧向分型与抽芯机构Ø液压或气动侧向分型与抽芯机构Ø手动侧向分型与抽芯机构1)机动侧向分型与抽芯机构–机动抽芯依靠注射机的开模力(或推出力),通过传动机构改变运动方向,将侧向的活动型芯抽出;合模时,又靠传动零件使侧向成型零件复位。

–特点:模具结构比较复杂,但抽芯不需人工操作,抽拔力较大,具有灵活、方便、生产效率高、容易实现全自动操作、无需另外添置设备等优点,在生产中被广泛采用。

l机动侧向抽芯机构按结构形式的分类:Ø斜导柱(斜销)侧向分型与抽芯机构Ø弯销侧向分型与抽芯机构Ø斜导槽侧向分型与抽芯机构Ø斜滑块侧向分型与抽芯机构Ø齿轮齿条侧向分型与抽芯机构Ø弹性元件侧向分型与抽芯机构2)液压或气动侧向分型与抽芯机构–侧向分型的活动型芯可以依靠液压传动或气压传动的机构抽出。

注塑模具斜顶(侧抽芯. 滑块)介绍_(含动画演示)上课讲义

注塑模具斜顶(侧抽芯. 滑块)介绍_(含动画演示)上课讲义

可以处理死角了。
动画演示
动画演示
3/11
3.斜顶的设计
前提条件:已经确定了模板、模仁、模架的尺寸。具体如右图所示。
1. 查看图纸,仔细分析,确定死角的大小。如图所示。 2. 确定0°靠破面的起点,并且确定其长度(如图AB)。如果不设
计0°靠破面,则选择A点作为斜顶斜面的起点。 3. 以B点为基准,偏一距离,如图BC,BC=顶出行程。 4. 以C点为基准,向顶移动的反方向偏一距离,如图CD。CD=斜
10/11
6.其他滑块形式
动画演示
二、机动侧向抽芯机构
利用注射机的开模力,通过传动机构改变运动方向,将侧向的活动型芯抽出。 机动抽芯机构的优、缺点: 结构较复杂,抽拔力较大,灵活、方便、生产效率高、容易实现全自动操作、 无需另外添置设备等。 结构形式为: 斜销、弹簧、弯销、斜导槽、斜滑块、楔块、齿轮齿条等 。
顶行程(取整数)=死角大小+大于或等于3mm的最小安全量。 5. 连接DB,得到角度DBC。这个角度一般为小数。我们取一整数,
为M°。这个角度才是我们所需要的斜顶斜面的倾角度。 6. 其它的内容可根据前面所讲的结构及其要求完成斜顶其他部分 的设计。
其实,像上面这么复杂的内容主要的目地是教我们如何去求出 顶的倾角度。我们可以简化为如右图所示:我们可以得出三角函数 tgM°=顶行程/顶出行程。此时要求出M°是多大就很容易了,也可 以直接在图纸上测量出来。
11/11
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
干涉 干涉
9/11
刻字区域干涉
6.其他滑块形式
一、液压或气动抽芯机构 液压或气动抽芯与机动抽芯的区别: 液压或气压抽芯是通过一套专用的控制系统来控制活塞的运动实现的,其抽芯动作可不受开模时间和

侧向分型与抽芯模具设计

侧向分型与抽芯模具设计
上一页 下一页 返回
单元二 侧向分型与抽芯结构介绍
• 也可表示为 • 即斜导柱的直径必须根据抽芯力、斜导柱的有效工作长度和斜导柱的
倾角来确定。 • 求斜导柱直径的另一种方法:采用查表法来确定。 • 4)斜导柱的长度 • 确定了斜导柱倾角α、有效工作长度L和直径d之后,可按图4-2
2所示的几何关系计算斜导柱的长度L总,即
• 10)水路制作 • 图4-14(a)所示为定模的水路,动模水路与定模结构及参数基
本一致。如图4-14(b)所示,绘制水路时要注意避开模仁和模 板上的螺钉、斜顶、推杆等孔位。 • 11)复位弹簧调入
上一页 下一页 返回
单元一 侧向分型与抽芯模具设计
• 调入四根回针弹簧和四个拉料钉,拉料钉位置位于回针正下方,如图 4-15所示。
• 图4-21(a)所示为抽拔方向朝动模方向倾斜β角的情况,与β =0(即抽芯方向垂直开模方向)的情况相比,斜导柱倾角相同时, 所需开模行程和斜导柱工作长度可以减小,而开模力和斜导柱所受的 弯曲力将增加,其效果相当于斜导柱倾角为α+β时的情况。由此可 见,斜导柱的倾角不能过大,以α+β≤15°~20°为宜,最大不 能超过25°。
上一页 下一页 返回
单元一 侧向分型与抽芯模具设计
• 7)螺钉制作 • 需要制作螺钉的地方主要有动定模仁的紧固、楔紧块的紧固、压条紧
固和滑块限位等处,如图4-11所示。 • 8)顶出机构设计 • 这里设计的顶出机构包括四根司针、四根司筒(司针、司筒取插件识
别的默认值即可)、一根直径为4mm的拉料杆、两根直径为5mm 的顶杆,如图4-12(a)所示,司针、司筒都要设置避空,在图 4-12(b)中可以看清配合段与非配合段。 • 9)斜顶制作
,在斜导柱驱动下,实现侧抽芯或侧向分型。 • 结构形式:整体式和组合式。整体式适用于形状简单、便于加工的场

侧向分型与抽芯机构ppt课件

侧向分型与抽芯机构ppt课件
侧向分型:成型侧向凸台的情况叫侧向分型。 侧向抽芯:成型侧孔的情况叫侧向抽芯。 本章将侧向分型与侧向抽芯统称为侧向抽芯,在讨论具 体结构时再进行细分。
2
11.1侧向抽芯机构分类
3
11.1侧向抽芯机构分类
按动力源分: 手动侧向抽芯机构
液压气动侧向抽芯机构
机动侧向抽芯机构
4
11.1.1 手动侧向抽芯机构
(2)实现顺序分型的方法:
也可借鉴第10讲的顺序分型结构。 1)弹簧螺钉式先抽芯机构 动作过程:
①开模时,在弹簧8作用 下,I分型,实现抽芯。
②定距螺钉7起作用,定 模板6停止运动,Ⅱ分型。 用途:
用于抽拔力、抽芯距都 不大场合。
弹簧螺钉式先抽芯机构
39
11.2.2 斜导柱式侧向抽芯机构的应用形式
动作过程: ①开模时,止动顶销12与导
柱13共同作用,Ⅰ分型。 ②Ⅰ分型一定距离后,限位
螺钉8使滑到导柱7的滑槽端部 而止动,止动定销12与导柱13 滑脱,凹模板6停止运动。Ⅱ 分型。
导柱顶销式先抽芯机构
41
11.2.2 斜导柱式侧向抽芯机构的应用形式
4)搭扣拉杆式先抽芯机构
① 开模时,搭扣10与圆销9 共 同 作 用 , 将 垫 板 12 与 型芯固定板3拉紧,Ⅰ分 型。
的场合.
弹簧式先复位机构
29
11.2.2 斜导柱式侧向抽芯机构的应用形式
3)先复位机构 b.三角滑块式优先复位机构
楔杆三角滑块式先复位机构
30
11.2.2 斜导柱式侧向抽芯机构的应用形式
3)先复位机构 c.楔杆摆杆式先复位机构
楔杆摆杆式先复位机构
31
11.2.2 斜导柱式侧向抽芯机构的应用形式

模具设计-侧向分型与抽芯机构

模具设计-侧向分型与抽芯机构

引入仿真技术
利用仿真技术对抽芯机构进行模拟和优化, 提高设计效率。
创新驱动方式
采用新型驱动方式,如电动、气动等,提高 机构的响应速度和稳定性。
未来发展趋势与展望
智能化发展
随着智能化技术的不断发展, 未来抽芯机构将ห้องสมุดไป่ตู้加智能化, 实现自适应控制和自主学习。
绿色环保
未来模具设计将更加注重环保 和可持续发展,采用环保材料 和工艺,降低能耗和排放。
模具设计-侧向分型与抽 芯机构
• 侧向分型与抽芯机构概述 • 侧向分型与抽芯机构设计原理 • 侧向分型与抽芯机构分类 • 侧向分型与抽芯机构设计实例 • 侧向分型与抽芯机构优化与创新
01
侧向分型与抽芯机构概述
侧向分型与抽芯机构的定义
• 侧向分型与抽芯机构是指在模具设计中,用于实现侧向分型和 抽芯动作的机构。侧向分型是指模具在开模时能够从横向打开, 以便于取出塑件;抽芯机构则是指模具中用于将侧型芯从塑件 中抽出的机构。
侧向分型与抽芯机构的重要性
01
02
03
提高生产效率
侧向分型与抽芯机构能够 简化模具结构和操作过程, 缩短成型周期,提高生产 效率。
降低模具成本
通过优化侧向分型与抽芯 机构的设计,可以减少模 具的复杂性和制造成本。
提高塑件质量
侧向分型与抽芯机构能够 避免塑件在脱模过程中受 损,提高塑件的质量和外 观。
个性化定制
随着个性化消费需求的增加, 未来模具设计将更加注重个性 化定制,满足不同客户的需求 。
数字化转型
随着数字化技术的不断发展, 未来模具设计将更加数字化, 实现数字化建模、仿真和优化

THANKS
感谢观看
滑块通常采用高强度钢材制成,其长度和宽度根据模具的具体要求进行 设计。

塑料及模具设计教程:侧向分型与抽芯机构设计详解

塑料及模具设计教程:侧向分型与抽芯机构设计详解
根据斜导柱和滑块在模具上的装配位置的不同, 可将斜导柱抽芯机构分为以下四种结构形式。
(1)斜导柱在定模,滑块在动模 (2)斜导柱和滑块同在定模 (3)斜导柱在动模,滑块在定模 (4)斜导柱和滑块同在动模
9
斜导柱在定模,滑块在动模
10
斜导柱、滑块同在定模
11
斜导柱在动模,滑块在定模
12
斜导柱在动模,滑块在定模
侧向分型与抽芯机构设计
一、侧向分型与抽芯机构的分类及特点 二、抽芯机构抽拔力、抽拔距的计算 三、机动侧向分型与抽芯机构
1
一、侧向分型与抽芯机构的分类及特点
(一)手动抽芯机构
图a、b是模内手动抽芯 图c是活动型芯与塑件一起取出在模外分离
特点:模具结构简单、造价低,生产效率低、劳动强度大,适用于小批量生产或 新产品试制。
(一)抽拔力的计算
将侧向型芯从塑件中抽出所需的力 叫抽拔力。可按下式计算:
Q=lhp2(f2cosθ-sinθ)
(二)抽芯距的计算
一般抽芯距等于侧孔式侧凹深度So 加2-3mm的余量,
即:S=So+(2-3)mm 成型圆形线圈骨架时,抽芯距为:
S R2 r 2 2 ~ 3(mm)
6
三、机动侧向分型与抽芯机构
13
斜导柱、滑块同在动模
14
(一)斜导柱抽芯机构的设计
2、斜导柱的设计与计 算
(1)斜导柱的安装形式
斜导柱只起驱动作用 与孔须有0.5-1mm双边间隙 滑块的运动平稳由导滑槽决定 滑块最终位置由限位机构和压紧块
决定 注射压力由压紧块承受
15
2、斜导柱的设计与计算
2、斜导柱的设计与计算
(2)斜导柱的结构形式及尺寸
19

侧抽芯注塑模讲解

侧抽芯注塑模讲解

工作原理
开模时, 动模部分左移。

侧型芯滑块 3 可在型芯固定板 5 上开设的导滑槽中滑动。

动模左移时, 在导滑槽的作用下, 侧型芯滑块 3 在斜导柱 2 的作用下沿着斜导柱轴线方向移动,相对动模向模具外侧移动, 进行抽芯动作。

当斜导柱和侧型芯滑块脱开的时候, 侧型芯滑块被定位, 相对动模不再移动。

动模继续左移, 由推杆11 将塑件从动模边顶出, 浇注系统凝料同时被顶出。

合模时, 在斜导柱的作用下使侧型芯滑块复位, 为防止成型时在料的压力作用下移位去由楔紧块对侧型芯滑块锁紧。

脱模机构由复位杆复位。

功能及作用利用斜导柱进行侧向分型抽芯。

技术要求斜销与其固定的模板之间采用过度配合H7/m6 ,导柱和导柱孔之间采用间隙配合一般采用H7/f7 的配合。

在机动分型抽芯的模具内有斜销侧向分型机构。

应用范围适用于当塑件带有侧孔或侧凹时。

项目十一 侧向分型与抽芯

项目十一 侧向分型与抽芯

Fw=Ft/cosα Fk=Ft·tanα
Fc= pA(f·cosα1-sinα1) ( 1 1 =Ft
摩擦系数, f—摩擦系数,取0.1~0.2 摩擦系数 ~ P —塑料对侧型芯的单位面积上的包紧力,一般情况下 模外冷却的塑件 =( ~3.9 塑料对侧型芯的单位面积上的包紧力, 模外冷却的塑件p=( =(2.4~ 塑料对侧型芯的单位面积上的包紧力 =(0.8~ ) ×107Pa;模内冷却的塑件 =( ~1.2)× 107Pa ;模内冷却的塑件p=( A —塑件包容活动型芯的包络面积(mm2) 塑件包容活动型芯的包络面积( 塑件包容活动型芯的包络面积 ) α1—侧型芯的脱模斜度或倾斜角 1 侧型芯的脱模斜度或倾斜角
一 项目导入
图11-1 带侧凹制件与侧向抽芯模具
二 相关知识 本节基本内容
各种侧分型与抽芯机构的结构和工作原理 斜导柱侧分型与抽芯注射模的总体结构、 斜导柱侧分型与抽芯注射模的总体结构、各主要零部件的 结构与功能 斜导柱侧分型与抽芯机构中斜导柱、滑块等零件的设计方 斜导柱侧分型与抽芯机构中斜导柱、 法 斜导柱侧分型与抽芯机构的设计步骤和设计方法。 斜导柱侧分型与抽芯机构的设计步骤和设计方法。 斜滑块侧分型与抽芯机构的总体结构, 斜滑块侧分型与抽芯机构的总体结构,各主要零件的结构 与功能
(二)、斜导柱侧抽芯注射模结构组成及工作过程
组成 斜导柱 侧型芯滑块 导滑槽 楔紧块 型芯滑块定距限 位装置
(二)、斜导柱 侧抽芯注射模 结构组成及工 作过程
(三)、抽芯力和抽芯距的计算 )、抽芯力和抽芯距的计算
抽拔力:与脱模力相同 抽拔力: 抽芯距:指侧型芯从成型位置抽至不妨碍塑 抽芯距:
(六)、导滑槽的设计 、
设计要点:滑块在导滑槽中滑动要平稳.不应发生卡滞、跳动等现象。 设计要点:滑块在导滑槽中滑动要平稳.不应发生卡滞、跳动等现象。 滑块的滑动配合长度通常要大于滑块宽度的1.5 1.5倍 抽芯完成后, 滑块的滑动配合长度通常要大于滑块宽度的1.5倍,抽芯完成后,保留 在导滑槽内的长度不应小于导滑配合长度的2/3 2/3。 在导滑槽内的长度不应小于导滑配合长度的2/3。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档