化工原理课程教学大纲
化工原理教学大纲
化工原理教学大纲
一、课程概述
1.1 课程背景
化工原理是化学工程及相关专业的基础课程之一,旨在系统地介绍化学工程原理、原则和基本概念,培养学生的化学思维能力和解决工程问题的能力。
1.2 课程目标
本课程旨在使学生掌握化工原理的基本概念、理论模型和计算方法,理解化工过程的原理和工艺流程,能够分析和解决常见的化工工程问题。
1.3 课程内容
本课程的主要内容包括:
- 化学工程基本概念和化学工程计算基础
- 物质平衡和能量平衡
- 流体静力学和流体动力学
- 传递过程和传递方程
- 热平衡和传热过程
- 质量平衡和传质过程
- 化学反应工程和反应动力学
- 化工流程和装备
二、教学方法
2.1 教学形式
本课程采用理论讲授、实践操作和综合应用相结合的教学方法。
理论讲授部分主要通过课堂教学和讲义配套进行,实践操作部分主
要通过实验课和工程实践进行。
2.2 教学手段
- 理论讲授:采用教师讲解、案例分析等方式,深入浅出地讲解化工原理的基本概念和原理。
- 实践操作:通过实验课和工程实践,让学生进行实际操作和实地观察,加深对化工原理的理解和应用。
化工原理课程教学大纲
化工原理课程教学大纲一、课程概述化工原理课程是化学工程与技术专业的一门重要基础课程,旨在帮助学生全面了解和掌握化工原理的基本概念、原理和应用。
本课程内容包括化工基本理论、化工过程综合设计等方面的知识,培养学生的化工思维和分析问题的能力。
二、教学目标本课程的教学目标主要包括以下几个方面:1. 使学生熟悉化工原理的基本概念和基本原理;2. 培养学生运用化工原理解决实际工程问题的能力;3. 提高学生的科学研究和创新能力;4. 培养学生的团队合作和沟通能力。
三、教学内容及安排1. 化工基本理论1.1 化学平衡与化学动力学- 反应速率与速率方程- 化学平衡常数与平衡常态1.2 物理化学基础- 热力学基本原理- 混合物热力学性质- 相平衡与相图2. 化工过程综合设计2.1 传递过程的基本原理- 传热、传质、传动基本概念与数学模型- 传递过程的控制方程2.2 化工反应器设计- 反应速率与反应器类型选择- 反应器设计与优化2.3 流程流动与分离- 流体力学基本概念与控制方程- 分离技术与设备选择四、教学方法本课程采用多种教学方法,包括理论讲授、案例分析、实验操作和课堂讨论等。
通过理论讲解,学生可以了解到化工原理的基本概念和原理;通过案例分析和实验操作,学生能够运用所学知识解决实际问题,并培养实践能力;通过课堂讨论,学生可以加深对化工原理的理解和应用。
五、考核要求1. 平时成绩:包括课堂出勤、课堂表现、作业完成情况等。
2. 期中考试:考查学生对于课程内容的理解和应用能力。
3. 期末考试:综合考查学生对于整个课程内容的掌握情况。
4. 实验报告:要求学生参加相关实验,并撰写实验报告。
六、教材参考1. 《化工原理导论》,李鸿翔,化学工业出版社2. 《化工原理与计算》,王志刚,化学工业出版社七、参考资源1. 化学工程与技术学术期刊:国内外相关领域的研究论文与实践案例。
2. 相关化工工艺软件:ASPEN、HYSYS等。
八、学习建议1. 加强课前预习,掌握基本概念和原理;2. 多进行思考和讨论,加深对于化工原理的理解;3. 积极参与实验操作,并认真完成实验报告;4. 注重课程知识与实际工程的结合,培养应用能力;5. 与同学进行合作学习,共同解决难题。
化工原理课程教学大纲
化工原理课程教学大纲一、课程背景和目标化工原理课程是化工专业的基础课程之一,旨在通过系统地介绍化工原理的基本概念、原理和应用,培养学生对化工原理的理论掌握和实际应用能力。
二、教学内容和安排1. 第一章:引言- 化工原理的定义和重要性- 化工原理与现代化工产业的关系- 化工原理的学习方法和途径2. 第二章:质量守恒原理- 质量守恒定律的表述与应用- 质量守恒的连续性方程- 质量守恒定律在化工领域的应用3. 第三章:能量守恒原理- 能量守恒定律的表述与应用- 能量守恒的热力学方程- 能量守恒定律在化工领域的应用4. 第四章:物质平衡原理- 混合物质平衡的表述与应用- 化工反应平衡的物质平衡方程- 物质平衡在化工过程中的应用5. 第五章:动量守恒原理- 动量守恒定律的表述与应用- 流体力学基本方程- 动量守恒定律在化工领域的应用 6. 第六章:传质原理- 传质过程的基本概念和分类- 线性传质模型和非线性传质模型 - 传质过程在化工中的应用7. 第七章:传热原理- 传热过程的基本概念和热传导方程 - 对流传热和辐射传热- 传热过程在化工中的应用8. 第八章:化工过程模拟与优化- 化工过程模拟的基本原理和方法- 优化化工过程的基本思想和方法- 化工过程模拟与优化在工业实践中的应用案例三、教学方法和手段1. 理论授课:通过教师讲解、示范和案例分析,介绍化工原理的基本概念和原理。
2. 实验教学:通过实验操作,培养学生的实验能力和科学思维能力。
3. 讨论与互动:组织学生进行小组讨论、课堂互动,加深对化工原理的理解和应用。
4. 课程设计:要求学生进行化工过程的模拟与优化设计,提高其综合运用化工原理的能力。
5. 学生作业:布置相关的习题和课后作业,巩固学生对所学内容的掌握程度。
四、教学评估方法1. 考试评估:定期进行笔试和实验考核,考察学生对化工原理的理解和应用能力。
2. 课程设计评估:对学生的课程设计报告进行评审和评分,评估学生的综合能力。
化工原理教学大纲
化工原理教学大纲一、课程概述本课程旨在通过系统性的学习,使学生全面了解化工原理的基本概念、基本原理和基本方法,掌握基本的化工计算和分析技能,为学生今后从事工程设计、工艺研究和工程管理等方面的实际工作打下坚实的理论基础。
二、课程目标1. 理论目标:(1)了解化工工艺的基本概念和基本原理;(2)掌握化学反应、热力学和传递过程的基本原理和计算方法;(3)熟悉常见化工流程和装置,并能进行基本的工艺设计;(4)了解化工安全与环保的基本知识。
2. 实践目标:(1)培养学生运用化工原理进行实际问题分析和解决的能力;(2)培养学生进行化工计算和分析的能力;(3)培养学生进行基本化工实验的能力;(4)培养学生进行工艺设计和工程管理的能力。
三、课程内容1. 化工原理基础(1)化工原理的概念和研究对象;(2)化工原理的发展历程及其在化工工程中的作用;(3)化工原理与化工工艺的关系;(4)化工原理与其他学科的关系。
2. 化学反应原理(1)化学反应的概念和特点;(2)化学平衡和反应速率;(3)化学反应的热力学分析;(4)常见化学反应的机理和动力学分析。
3. 热力学原理(1)热力学基本概念和基本定律;(2)热力学过程和热力学函数;(3)物质的相变和化学反应的热力学分析;(4)化工热力学计算方法和实例。
4. 质量和能量传递原理(1)传递过程的基本概念和基本原理;(2)质量传递的机理和计算方法;(3)能量传递的机理和计算方法;(4)质量和能量传递的实例和工程应用。
5. 化工流程与装置(1)化工流程的概念和分类;(2)常见化工流程的原理和特点;(3)化工装置的基本结构和工作原理;(4)化工流程和装置的设计方法和实例分析。
6. 化工安全与环保(1)化工安全的基本要求和原则;(2)常见化工安全事故的案例分析;(3)化工生产过程中的环境污染及治理方法;(4)化工安全与环保的法律和政策。
四、教学方法1. 理论教学:(1)讲授:采用教师讲解的方式,结合多媒体辅助,全面系统地传达化工原理的基本概念、原理和方法。
《化工原理》教学大纲
化工原理》教学大纲一、课程目标1.课程性质《化工原理》是化学工程与工艺类及相近专业的一门主干课,是学生在具备了必要的《高等数学》、《线性代数》、《物理》、《机械制图》、《算法语言》、《物理化学》等基础知识之后必修的技术基础课,也是学生学习《化工原理实验》、《化工原理课程设计》、《化工传递过程》、《化工分离工程》、《化工系统工程》等课程的先修课程。
《化工原理》是研究和探讨化工生产中大规模改变物质物理性质的工程技术学科,它以化工生产中的物理加工过程为背景,研究物理加工过程的基本规律,应用这些规律解决化工生产中的实际问题,并将这些规律按其操作原理的共性归纳成若干单元操作。
《化工原理》是化学工程这一学科中最早形成、基础性最强、应用面最广的学科分支。
2.教学方法以课堂讲授为主,讨论、自学、设备实物或模型现场教学、计算机辅助教学为辅。
3.课程学习目标与基本要求(1)单元操作的理论基础是流体力学(动量传递)、热量传递和质量传递理论。
通过课程教学,应使学生掌握流体力学、热量传递和质量传递的基本理论知识;掌握主要单元操作的基本原理、工艺计算和典型设备结构与设计;掌握本课程的主要研究方法,如数学模型方法和实验研究方法。
(2)通过课程教学,培养学生具备根据各单元操作在技术上和经济上的特点,进行“单元过程和设备”选择的能力、过程的计算和设备设计的能力;具备进行单元过程的操作和调节以适应不同生产要求的能力;具备单元过程在操作中发生故障时如何寻找故障的原因并加以解决的能力;具备应用计算机进行单元操作辅助计算的能力;具备通过自学获取新知识的能力等。
(3)通过课程教学,应着重培养学生具备以下两方面的良好素质。
一是针对现有生产过程单元操作中存在的问题,能够善于运用所学的基本理论和知识动脑分析、动手解决;二是针对现有单元操作中技术上不合理的地方,能够发现并提出改进措施,达到节能、降耗、提高效率的目的。
4.课程总学时:化学工程与工艺及制药类专业110学时,其中化工原理(一)A55学时,化工原理(一)B55学时。
化工原理教学大纲
化工原理教学大纲一、引言化工原理是化学工程专业的基础课程之一,旨在帮助学生建立化工工程基础知识体系,为其后续学习打下坚实的基础。
本大纲旨在明确化工原理课程的教学目标、内容和评价标准,以指导教师和学生在学习过程中达到预期效果。
二、课程目标1. 培养学生对化工原理基本概念的理解和掌握能力;2. 培养学生分析和解决工程问题的能力;3. 培养学生实验设计与数据分析的能力;4. 培养学生团队合作和沟通能力;5. 培养学生自主学习和持续学习的能力。
三、课程内容1. 化工原理的基本概念和定义1.1 化学平衡和反应动力学1.2 热力学和物性1.3 流体力学和质量守恒1.4 动量守恒和能量守恒2. 化工过程的基本原理和模型2.1 批量过程和连续过程2.2 离散过程和连续过程2.3 化工流程的优化和控制3. 化工原理在实际工程中的应用3.1 化工反应器的设计与优化3.2 水和废水处理工程3.3 化工热力学和能量守恒在工程中的应用3.4 分离技术在化工工程中的应用四、教学方法1. 理论授课:通过教师讲授和学生自学相结合的方式,讲解化工原理的基本概念和理论模型。
2. 实验教学:安排相关实验课程,培养学生实验设计与数据分析的能力。
3. 课堂讨论:组织学生进行课堂讨论,加强学生对化工原理的理解和应用能力。
4. 案例分析:引入实际案例,让学生将理论知识应用于解决实际问题。
5. 小组项目:组织学生分组进行小组项目,培养学生团队合作和沟通能力。
五、教学评价标准1. 考核方式:闭卷考试、实验报告、课堂表现等多种方式的综合评价。
2. 考核内容:对化工原理知识的掌握程度、分析和解决实际问题的能力、实验设计与数据分析的能力等进行评价。
3. 考核标准:考察学生对基本概念和原理的理解和应用能力,能否独立分析和解决化工工程问题,实验设计是否合理和数据分析是否准确。
六、参考教材1. 《化工原理导论》,作者:XXX,出版社:XXX2. 《化工原理与计算》,作者:XXX,出版社:XXX3. 《化工原理实验指导》,作者:XXX,出版社:XXX七、教学进度安排1. 第1-2周:化工原理的基本概念和定义2. 第3-5周:化工过程的基本原理和模型3. 第6-8周:化工原理在实际工程中的应用4. 第9-12周:综合案例分析和课堂讨论5. 第13-15周:小组项目和总结复习八、教学资源支持1. 实验室设备和材料的供应和维护;2. 数字化教学平台的支持和使用;3. 教师的指导和辅导。
《化工原理》课程教学大纲-化学工程学院
《化⼯原理》课程教学⼤纲-化学⼯程学院课程编号:11101515/11101526《化⼯原理》课程教学⼤纲⼀、课程的地位、性质和任务化⼯原理课程是化学⼯程与⼯艺及其相近专业的⼀门主⼲课,是在学⽣具备了必要的⾼等数学、物理、物理化学、计算技术等基础知识之后,必修的技术基础课,是⼀个承上启下的课程,并为各专业课程打下坚实的基础,起到由理及⼯的作⽤。
化⼯原理的主要内容是研究化⼯⽣产中的各主要单元操作及典型设备的基本原理和计算⽅法。
通过课堂教学、实验和课程设计等环节、强调⼯程观点,定量运算,实验技能和设计能⼒的训练.强调理论与实际的结合,培养学⽣分析和解决⼯程实际问题的能⼒。
⼆、⼤纲编写依据根据《化⼯类专业⼈才培养⽅案及教学内容体系改⾰的研究与实践》、《⾼等教育⾯向21世纪教学内容和课程体系改⾰计划》及《⾼等教育⾯向21世纪“化学⼯程与⼯艺”专业⼈才培养⽅案》,参照使⽤教材及近年来的教学实践在原教学⼤纲的基础上进⾏修订的。
三、⼤纲适⽤范围本⼤纲适⽤于化学⼯程与⼯艺及相关专业,过程装备与控制专业可参照执⾏。
四、⼤纲正⽂绪论本课程的内容、性质及任务1.流体流动1.1 概述1.定态流动与⾮定态流动2.粘度、⽜顿粘性定律1.2 流体静⼒学压强的表⽰⽅法及单位换算、静⼒学测量⽅法与计算1.3 流体流动中的守恒原理1.流量与流速2.连续性⽅程3.机械能守衡,柏努利⽅程的应⽤。
1.4 流体流动的内部结构1.流动型态与雷诺准数;2.层流与湍流的⽐较3.流动边界层及边界层分离现象1.5 阻⼒损失1.层流时直管阻⼒损失2.湍流时直管阻⼒损失的实验研究⽅法——因次分析法3.直管阻⼒损失的计算4.⾮园形管内的阻⼒计算5.局部阻⼒损失与计算1.6 流体输送管路的计算1.管路计算的类型和基本⽅法2.简单管路、分⽀和汇合管路的特点和计算3.阻⼒对管内流动的影响4.可压缩流体的管路计算1.7 流速和流量的测定毕托管、孔板流量计(⽂丘⾥)、转⼦流量计的原理及计算⽅法1.8 ⾮⽜顿型流体的基本概念2.流体输送机械2.1 概述1.管路特性曲线2.流体输送机械的主要技术指标与分类2.2 离⼼泵1.⼯作原理、主要部件和类型2.主要性能参数、理论压头与实际压头3.特性曲线、影响性能的因素,⼯作点及流量调节4.离⼼泵的选⽤与泵的并串联5.汽蚀现象与安装⾼度2.3 往复泵往复泵的⼯作原理、特点和流量调节⽅法2.4 其他化⼯⽤泵各种化⼯⽤泵的⽐较2.5 ⽓体输送机械1.离⼼通风机的主要性能参数与特性曲线,选型计算2.⿎风机、压缩机、真空泵的分类、主要结构和应⽤3.流体通过颗粒层的流动3.1概述3.2颗粒床层的特征3.3流体通过固定床的压降因次分析法和数学模型法的⽐较3.4过滤原理及设备过滤基本概念与典型过滤设备的⼯作原理3.5 过滤过程计算1.过滤基本⽅程式与恒压过滤⽅程式2.过滤常数的测定3.恒压过滤的计算3.6 加快过滤速率的途径4.颗粒的沉降和流态化4.1 概述4.2 颗粒的沉降运动4.3 沉降分离设备1.重⼒沉降:重⼒沉降速度、除尘室的计算、分级沉降.2.离⼼沉降:离⼼沉降速度、旋风分离器的构造原理、性能指标以及影响性能的主要因素、旋风分离器的选⽤计算、旋液分离器.4.4 固体流态化技术基本概念、流化床的主要特征、流化床的流化类型与不正常现象、流化床的压降与流速的关系、起始流化速度与带出速度的概念。
《化工原理》教学大纲
《化工原理》教学大纲
一、课程背景
化工原理课程是一门以物理及化学原理为基础,介绍各种工业反应的基本原理和过程,提高本专业本科生的基本理论水平和实践能力的工科基础课程。
课程有助于学生全面理解化工原理,掌握化工基本概念和技术,认识各类工业反应过程,培养学生运用所学知识从事化工工程解决方案分析、实施与控制的能力。
二、教学目标
1.了解化工反应基本原理,掌握分子的基本性质和物质的变化;
2.掌握各类化工反应的基本原理,了解各类化工反应过程中有效的因素;
3.掌握反应溶液控制的方法和技术,熟悉工业反应的热物理参数;
4.熟悉常见工业反应器的结构和性能,掌握反应热传递及其计算,学会化工原理中的实验方法;
5.通过案例分析学会运用所学知识分析和解决实际工程问题。
三、教学内容
1.物理化学原理:
(1)溶液热力学及热力学的可逆性;
(2)热力学条件下化学反应的基本原理;
2.化学反应的活性:
(1)化学反应的催化原理;
(2)化学反应的浓度、温度等影响因素;
3.工业反应:
(1)气体、液体及固体反应的基本原理;
(2)常见工业反应器及其性能;。
《化工原理》课程教学大纲
《化工原理》课程教学大纲第一部分大纲说明一、课程性质及任务《化工原理》是化学工程专业极为重要的的专业基础课,通过本课程的学习,使学生掌握化工单元操作的基本原理、计算方法、典型设备以及有关的化学工程实用知识。
并能用以分析和解决工程技术中的一般问题。
以便对现行的化学工业生产过程进行管理,使设备能正常运转,进而对现行的生产过程及设备作各种改进以提高其效率,从而使生产获得最大限度的经济效益。
为深入学习本专业后续课程及从事化工专业的实际工作打下基础。
二、与其他课程的关系先修高等数学、无机化学、有机化学、分析化学、物理化学等课程。
后续课程为化工设备机械基础、化工仪表、有机化工、石油炼制等专业课程。
三、教学总体要求基本概念:流体流动、输送机械、沉降、过滤、传热、精馏、吸收、干燥等。
基本知识:化工单元操作的基本原理基本技能:一般单元操作的操作能力、典型设备计算选用能力、因次分析法、实验测定法等重点:流体流动、传热、精馏、吸收等难点:阻力计算、对流传热计算、吸收速率计算等四、课程的教学方法和教学形式建议1、本课程的工程性、实践性较强,环节多,因此,教学形式以讲授为主。
2、为加强和落实动手能力的培养,充分重视实践性教学环节,保证上机操作、实验等不少于36课时,课程设计不少于60课时。
五、教学要求的层次课程的教学要求在每一章教学内容之后给出,大体分为了解、理解和熟练掌握三个层次。
了解一般为扩展知识面,知道即可;理解是能正确表达有关概念、掌握定律、计算、结构和方法;熟练掌握是在理解的基础上加以灵活运用。
第二部分教学内容及要求一、课程教学总学时数课程教学总学时数144学时(不含课程设计60课时),其中实验36学时。
二、教材与教学环节1、参考教材:天津大学《化工原理》、李云倩编《化工原理》2、授课内容以教材为主,教材担负起形成整个课程体系系统性和完整性的任务,是学生学习的主要媒体形式。
因此教材要概念清晰、条理分明、深入浅出、便于自学,并要注意加强导学。
化工原理实验教学大纲
化工原理实验教学大纲前言化工原理实验是化工专业学生在学习化工原理理论知识的基础上,通过实际操作和观察实验现象,加深对化工原理的理解和掌握实验操作技能的课程。
本实验教学大纲旨在明确化工原理实验的目的、内容和要求,指导教师和学生开展实验教学活动,促进学生的实践能力和创新能力的培养。
一、实验目的通过化工原理实验的学习,培养学生的以下能力: 1. 理解和掌握化工原理的基本原理和基本实验方法; 2. 培养实验操作能力,掌握化工实验常用仪器的使用和实验操作技巧; 3. 学会观察实验现象、记录实验数据和进行实验结果的分析和判断; 4. 培养实验设计和实验报告撰写的能力; 5. 培养团队合作和沟通能力。
二、实验内容1.基本实验操作技能的训练;2.化工原理的基本实验方法的学习与实践;3.化工原理实验的基本仪器的使用;4.化工原理实验的常见实验操作步骤的讲解和实践;5.化工原理实验的常见实验现象观察和数据记录。
三、实验要求1.学生应具备化工原理的基本理论知识;2.学生应具备实验操作的基本技能,能够正确使用实验仪器和设备;3.学生应遵守实验室的规章制度和安全操作规程,保证实验室的安全;4.学生应认真观察实验现象,准确记录实验数据,并能进行合理的分析和判断;5.学生应按要求完成实验报告,包括实验目的、实验原理、实验步骤、实验结果和实验分析。
四、实验安排1.实验名称:化工原理实验一——密度测定–实验目的:学习密度的测定方法,掌握测量密度的实验操作技能;–实验内容:使用比重瓶测量不同液体的密度,记录实验数据;–实验要求:准确使用实验仪器,认真观察实验现象,记录实验数据,并进行数据处理和分析;–实验时间:2小时2.实验名称:化工原理实验二——蒸馏实验–实验目的:学习蒸馏的原理和方法,掌握蒸馏实验的基本操作步骤;–实验内容:进行简单蒸馏实验,观察和记录蒸馏过程中的变化;–实验要求:熟练操作实验仪器,掌握蒸馏的操作技巧,准确记录实验数据;–实验时间:3小时3.实验名称:化工原理实验三——浓度测定–实验目的:学习浓度的测定方法,掌握测量浓度的实验操作技能;–实验内容:使用比色法测定某溶液的浓度,记录实验数据;–实验要求:准确使用实验仪器,掌握比色法的操作步骤,认真观察实验现象,并进行数据分析;–实验时间:2小时4.实验名称:化工原理实验四——反应速率测定–实验目的:学习反应速率的测定方法,掌握测量反应速率的实验操作技能;–实验内容:通过观察反应过程中物质的消耗或生成,测定反应速率;–实验要求:准确操作实验仪器,认真观察实验现象,记录实验数据,并进行数据处理和分析;–实验时间:4小时五、实验评分1.实验操作技能(40%)2.实验数据处理和分析(30%)3.实验报告和实验总结(30%)六、实验安全注意事项1.实验室内严禁吸烟和饮食;2.使用化学试剂时,注意戴防护眼镜和手套,避免直接接触皮肤和吸入有害气体;3.操作实验仪器时,要注意正确使用,避免误操作导致安全事故;4.实验结束后,要及时清理实验台面和实验仪器,保持实验室的整洁。
《化工原理》课程教学大纲
《化工原理》课程教学大纲合用专业:工艺类专业有化学工程工艺、应用化学、环境工程、制药工程、生物工程、食品工程、轻化工工程,非工艺专业有工份子材料、安全工程、生物技术、过程装备与控制;对非工艺类专业,带*部份不做要求,也可根据专业特点选择下册中的气体吸收和塔设备等部分。
课程性质:技术基础课一、目的及任务学时数: 120/80 学时学分: 7.5/5 学分第一部份教学基本要求化工原理是化学工程与工艺及相关专业最重要的技术基础课之一。
通过这门课程的学习,要使学生系统地获得:‘三传’的基本概念;各单元操作的原理、典型设备的结构、工艺尺寸计算、设备选型与校核和工程学科的研究方法。
培养学生的工程观念、分析和解决单元操作中各种问题的能力。
突出课程的实践性,使学生受到利用自然科学的基本原理解决实际工程问题的初步训练,提高学生的定量运算能力、实验技能、设计能力、单元操作的分析与调节能力。
二、本课程的先行课程数学、普通物理、物理化学、计算方法、化工设备设计基础。
三、各章节具体内容要求绪论掌握的内容:1、掌握单位换算方法;2、掌握物、热衡算的原则以及衡算的方法和步骤。
熟悉的内容:1、熟悉单元操作的概念及其在化工过程中的地位。
了解的内容:1、了解化工原理的目的、任务、化学工程的发展简史;2、了解过程速率、平衡关系。
第一章流体流动掌握的内容:1、流体的密度和粘度的定义、单位、影响因素及数据获取;2、压强的定义、表达方法、单位换算;3、流体静力学方程、连续性方程、柏努利方程及其应用; 4、流体的流动类型及其判断、蕾诺准数的物理意义、计算;5、流体阻力产生的原因、流体在管内流动的机械能损失计算;6、管路的分类、简单管路计算及输送能力核算;7、液柱式压差计、测速管、孔板流量计和转子流量计的工作原理、基本结构、安装要求和计算;8、因次分析的目的、意义、原理、方法、步骤;熟悉的内容:1、流体的连续性和压缩性,定常态流动与非定常态流动;2、层流与湍流的特征;3、圆管内流速分布公式及应用;4、Hagon-Poiseeuill方e程推导和应用;5、复杂管路计算的要点;6、正确使用各种数据图表;了解的内容:1、牛顿粘性定律,牛顿流体与非牛顿流体;2、边界层的概念、边界层的发展、层流底层、边界层分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工原理》课程教学大纲(2002年制订,2004年修订)课程编号:200042英文名:Principle of Chemical Engineering课程类别:专业主干课前置课:高等数学、物理学、物理化学后置课:化工设计与概算学分:6学分课时:108学时主讲教师:马云选定教材:姚玉英主编,化工原理,天津:天津科学技术出版社,2004年版课程概述:以化工生产中的物理加工过程为背景,按其操作原理的共性归纳成的若干“单元操作”,其中有流体流动与输送、沉降、过滤、传热、蒸发、蒸馏、吸收、萃取、干燥等,使学生通过学习,掌握单元操作的基本原理以及典型设备的构造与工艺尺寸的计算,以便在化工生产、科研和设计工作中达到强化生产过程,提高设备能力及效率,降低设备投资及产品成本,提高产品质量。
本教学大纲适用于应用化学专业学生。
教学目的:本课程是在学生学完预修课程: 高等数学、物理学和物理化学等课程学习的基础上开设的一门专业基础课,是一门工程学科的课程。
使学生掌握研究化工生产中各种单元操作的基本原理,过程设备和计算方法。
培养学生具有运用课程有关理论来分析和解决化工生产过程中常见实际问题的能力。
并为后续专业课程的学习打下必要的基础。
教学方法:本课程涉及的面较广,半经验和经验的东西较多,内容又比较庞杂,学生学起来有一定难度。
因此,需要合理继承传统媒体和恰当引入现代教学媒体,将不同的教学媒体类型进行优化组合,各展其长,让教学媒体发挥最大的效能。
并且采用开放式的教学方法:1、引导式教学的关键是提出问题,教师通过提出问题引出主题,解释相关概论,提出具体问题的重点。
提出问题可以激发学生学习的兴趣和活跃学生的思维。
2、讨论式教学是打开学生思维大门的钥匙,采用自学讨论式和启发讨论式,可以充分发挥学生的主体作用。
3、反馈式教学是教师挑那些既是重要概论又是学生易出错的题目,每章学完后让学生做练习,然后教师做讲评,使学生练得多、见得多,因而能够举一反三。
4、拓宽式教学:新内容的增加,拓宽了知识面,但在阐述方式上应更加简明扼要。
强调从概念、基本原理到设备结构与设计,不深入讨论细节问题。
对具体计算过程、公式推导一带而过,以求突出重点。
各章教学要求及教学要点绪论课时分配:2学时教学要求:了解《化工原理》课程的性质和学习要求。
重点:化工原理课程中三大单元操作的分类和过程速率的重要概念的内涵。
难点:使学生通过对课程性质的了解,把基础课程的学习思维逐步转移到对专业技术课程的学习上,在经济效益观点的指导下建立起"工程"观念。
教学内容:一、化工过程与单元操作的关系二、《化工原理》课程的性质,内容三、《化工原理》课程规律和重要基础概念第一章流体流动课时分配:18学时教学要求:熟练掌握流体静力学基本方程式,连续性方程式和柏努利方程式及其应用;正确理解流体的流动类型和流动阻力的概念;掌握流体流动阻力的计算,简单管路的设计型计算和输送能力的核算。
了解测速管,文丘里流量计,孔板流量计和转子流量计的工作原理和基本计算。
重点:流体流动过程中的基本原理及流体在管内的流动规律;柏努利方程式的应用;流体在管道内的流动阻力产生的原因和摩擦阻力的计算;简单管路的计算。
难点:流体的不同流型的摩擦系数及其计算,简单管路的设计型计算和输送能力的核算。
教学内容:第一节流体静力学基本方程式一、流体的密度。
二、流体的静压强。
三、流体静力学基本方程式。
四、流体静力学基本方程式的应用。
第二节流体流动中的守恒定律一、流量与流速。
二、定态流动与非定态流动。
三、连续性方程式。
四、能量衡算方程式。
五、柏努利方程的应用。
第三节流体流动的阻力一、牛顿黏性定律与流体的黏度。
二、非牛顿型流体。
三、流动类型与雷诺数。
四、滞流与湍流。
第四节流体在管内的流动阻力一、流体在直管中的流动阻力。
二、管路上的局部阻力。
三、管路系统中的总能量损失。
第五节管路计算简单管路与复杂管路,简单管路的典型试算法。
第六节流速和流量的测量皮托管,孔板流量计,文丘里流量计,转子流量计。
思考题:1、某液体分别在三根管道中稳定流过,各管绝对粗糙度、管径均相同,上游截面1-1`的压强、流速也相等。
问:下游截面2-2`的流速是否相等?压强是否也相等?2、高位槽液面维持恒定,管路中两段的长度、直径及粗糙度均相同。
某液体以一定流量流过管路,液体在流动过程中温度可视不变。
问:(1)液体通过两管段的能量损失是否相等?(2)此两管段的压强差是否相等?并写出它们的表达式。
3、从水塔引水至车间,水塔的水位可视为不变。
送水管的内径为50mm,管路总长为l,流量为V h,水塔水面与送水管出口间的垂直距离为h。
今用水量增加50%,需对送水管进行改装。
(1)有人建议将管路换成内径为75mm的管子。
(2)有人建议将管路并联一根长度为l/2,内径为50mm 的管子。
(3)有人建议将管路并联一根长度为l/2,内径为25mm的管子。
试分析这些建议的效果。
假设在各种情况下,摩擦系数变化不大,水在管内的动能可忽略。
第二章流体输送机械课时分配:9学时教学要求:了解离心泵的结构及基本方程式;掌握离心泵的性能参数及影响因素、泵的特性曲线、工作点和流量调节;掌握离心泵安装高度的确定原则;正确选用离心泵、风机的型号。
了解其它类型流体输送机械。
重点:离心泵的特性曲线及其影响因素;管路特性曲线方程式。
难点:离心泵的基本方程式;离心泵的工作点的改变;离心泵安装高度的计算。
教学内容:第一节流体输送机械一、离心泵。
二、其他类型泵。
第二节气体输送和压缩机械一、离心通风机、鼓风机与压缩机。
二、旋转鼓风机、压缩机与真空泵。
思考题:1、原用以输送水的离心泵,现改用输送密度为水的倍的水溶液,水溶液其他性质可视为与水的相同。
若管路布局等都不改变,试说明以下几个参数有无变化:(1)流量;(2)压头;(3)泵出口处压强表的读数;(4)泵的轴功率。
2、用2B19型离心泵输送60℃的水,已知泵的压头可满足要求。
现分别提出了三种安装方式(包括管件、阀门当量长度的管路总长可视为相同),试讨论:(1)三种安装方法是否都能将水送到高位槽中?若能送到,其流量是否相等?(2)三种安装方法中,泵所需的轴功率是否相等?第三章非均相物系的分离和固体流态化课时分配:18学时教学要求:球形颗粒和均匀床层的特性的理解;一维固定床层的流动压降的计算。
正确理解液体过滤操作的基本原理;掌握过滤基本方程式及其应用;掌握过滤过程及设备的计算和过滤常数的测定方法。
了解重力沉降运动的基本原理,掌握重力沉降设备的计算。
重点:影响固定床层流动压降的主要因素;恒压过滤基本方程式及其应用;板框过滤机的操作和工艺计算;球形颗粒的重力自由沉降速度的计算;斯托克斯公式;除尘室的生产能力计算。
难点:可压缩滤饼的过滤常数的理解与应用;滤布阻力的确定与当量滤饼层概念的引入;颗粒沉降的因次分析法的应用;应用直接判据法计算沉降速度。
教学内容:第一节颗粒和颗粒群特性颗粒的大小及形状,颗粒群的特性,粒子的密度。
第二节重力沉降一、沉降速度。
二、重力沉降设备。
第三节离心沉降一、惯洗离心力作用下的沉降速度。
二、旋风分离器的操作原理。
三、旋风分离器的性能。
四、旋风分离器的结构形式与选用。
第四节过滤一、颗粒床层的特性。
二、过滤操作原理。
三、过滤基本方程式。
四、恒压过滤五、恒速过滤与先恒速后恒压的过滤。
六、过滤常数的测定。
七、过滤设备。
八、滤饼的洗涤。
九、过滤机的生产能力。
第五节固体流态化技术一、固体流态化的基本概念。
二、流化床的总高度。
思考题:1、颗粒在旋风分离器内沿径向沉降的过程中,其沉降速度是否为常数?2、以间歇过滤机处理某种悬浮液,若滤布阻力可以忽略,洗水体积与滤液体积之比为a,试分析洗涤时间与过滤时间的关系。
3、若分别采用下列各项措施,试分析转筒过滤机的生产能力将如何变化。
已知滤布阻力可以忽略,滤饼不可压缩。
(1)转筒尺寸按比例增大50%。
(2)转筒浸没度增大50%。
(3)操作真空度增大50%。
(4)转速增大50%。
(5)滤浆中固相体积分数由10%增稠至15%,已知滤饼中固相体积分数为60%。
(6)升温,使滤液黏度减小50%。
再分析上述各种措施的可行性。
4、理想流化床和实际流化床的主要区别是什么?第四章传热课时分配:18学时教学要求:熟练掌握热传导的基本原理,傅立叶定律,平壁与圆筒壁的稳定热传导及计算,掌握对流传热的基本原理,牛顿冷却定律,对流传热系数关联式的用法和条件;熟练运用传热速率方程并对热负荷、平均温度差、总传热系数进行计算;要求能够根据计算结果及工艺要求选用合适的换热器。
了解列管换热器的结构特点及其应用。
重点:傅立叶定律及其一维稳态热传导应用;牛顿冷却定律和影响对流传热系数的主要因素;流体在圆形直管内强制湍流传热及对流传热系数的计算;换热器的热负荷计算,对数平均温度差的计算;总传热系数的计算;换热器的设计型计算。
难点:传热过程中传热速率、传热推动力和热阻的基本概念;流体的相态的物理性质,流动状况和类型以及传热设备的型式对对流传热过程的影响;对流传热系数的类比法的应用,换热器的总传热系数与对流传热系数的关系及其简化应用;换热器的核算型计算。
教学内容:第一节概述一、传热的基本方式。
二、典型的传热设备。
第二节热传导一、基本概念和傅立叶定律。
二、导热系数。
三、平壁热传导。
四、圆筒壁的热传导。
第三节对流传热概述一、对流传热速率方程。
二、对流传热机理。
三、保温层的临界直径。
第四节传热计算一、能量衡算。
二、总传热速率微分方程和总传热系数。
三、平均温度差法。
四、传热单元数法。
第五节对流传热系数关联式一、影响对流传热系数的因素。
二、对流传热过程的量纲分析。
三、流体无相变时的对流传热系数。
四、流体有相变时的对流传热系数。
五、壁温的估算。
第六节辐射传热一、基本概念和定律。
二、两固体壁面间的辐射传热。
三、对流与辐射的联合传热。
第七节换热器一、换热器的分类。
二、间壁式换热器的结构形式。
三、管壳式换热器的设计与选型。
四、各种间壁式换热器的比较和传热的强化途径。
思考题:1、试说明在多层壁的热传导中确定层间界面温度的实际意义。
2、试说明导热系数、对流传热系数和总传热系数的物理意义、单位和彼此间的区别。
3、试说明流体有相变化时的对流传热系数大于无相变时的对流传热系数的理由。
4、在列管换热器中,拟用饱和蒸汽加热空气试问:(1)传热管的壁温接近哪一种流体的温度?(2)总传热系数K接近哪一种流体的对流传热系数?(3)如何确定两流体在换热器中的流径?5、每小时有一定量的气体在套管换热器中从T1冷却到T2,冷水进出口温度分别为t1和t2,两流体呈逆流流动,并均为湍流。
若换热器换热器尺寸已知,气体向管壁的对流传热系数比管壁向水的对流传热系数小得多,污垢热阻的管壁热阻均可以忽略不计。