电力电子器件特性和驱动实验一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三常用电力电子器件的特性和驱动实验
一、实验目的
(1) 掌握常用电力电子器件的工作特性。
(2) 掌握常用器件对触发MOSFET、信号的要求。
(3) 理解各种自关断器件对驱动电路的要求。
(4) 掌握各种自关断器件驱动电路的结构及特点。
(5) 掌握由自关断器件构成的PWM 直流斩波电路原理与方法。
二、预习内容
(1) 了解SCR、GTO、GTR、MOSFET、IGBT的结构和工作原理。
(2) 了解SCR、GTO、GTR、MOSFET、IGBT有哪些主要参数。
(3) 了解SCR、GTO、GTR、MOSFET、IGBT的静态和动态特性。
(4)阅读实验指导书关于GTO、GTR、MOSFET、IGBT的驱动原理。
三、实验所需设备及挂件
四、实验电路原理图
1、SCR 、GTO 、MOSFET 、GTR 、IGBT 五种特性实验原理电路如下图X-1所示:
图 X-1特性实验原理电路图
三相电网电压
X-2虚框中五种器件的1、2、3标号连接示意图
2、GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图如下图X-3所示:
图X-3 GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图
3、GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图如图X-4
图X-4 GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图
五、实验内容
1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试
2、GTO、MOSFET、GTR、IGBT驱动电路的研究。
六、注意事项
(1)注意示波器使用的共地问题。
(2)每种器件的实验开始前,必须先加上器件的控制电压,然后再加主回路的电源;实验结束时,必须先切断主回路电源,然后再切断控制电源。
(3)驱动实验中,连接驱动电路时必须注意各器件不同的接地方式。
(4)不同的器件驱动电路需接不同的控制电压,接线时应注意正确选择。
七、实验方法与步骤
1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试
1)关闭总电源,按图X-5的框图接主电路
图X-5实验接线框图
a) 部分实验图片如下:
c)负载电阻R,用DJK09中的两个90Ω串连。
b)直流电压表V, 直流电流表A,用DJK01电源屏上的直流数字表。
d)DJK07
中各器件图片及接线标号图如下:
2)调整直流整流电压输出Uo=40V.
接线完毕,并检查无误后(注意调压器输出开始为最小),将DJKO1的电源钥匙拧向开,按启动按钮。将单相调压器输出由小到大逐步增加,使整流输出Uo=40V.
3)各种器件的伏安特性测试
a)将DJK06的给定电位器RP1逆时针旋转到底,S1拨向“正给定”,S2拨向“给定”,打开DJK06 上的电源开关,DJK06为器件提供触发电压信号。
b)逐步右旋RP1,使给定电压从零开始调节,直至器件触发导通。记录Ug从小到大的变化过程中Id、Uv的值,从而可测得器件的V/A 特性。(实验最大可通过电流为1.3A)。
2、GTO、MOSFET、GTR、IGBT驱动电路的研究。
1)关闭DJK01总电源,按图X-6的框图接线.(注意:实验接线一个个进行)
图X-6 GTO、MOSFET、GTR、IGBT驱动电路实验
a)直流励磁电源和灯泡负载图片
b)直流电压和电流表同上。
c)四种电力电子器件均在DJK07 挂箱上。 d)DJK12中图片标注如下:
2) 观察PWM 波形输出变化规律正常否?
a)检查接线无误后,将DJK01的钥匙拧向开,不按启动按钮。打开DJK12的电源开关。 b)将示波器的探头接在驱动电路的输入端。选择好低频或高频后,分别旋转W1、W2看波形输出变化规律。W1调频率;W2调占空比。选择低频时,调W1,频率可在200~1000Hz 变化;选择高频时,调W1,频率可在2K ~10K 变化.调W2看占空比可调范围。
3)当观察PWM 波形及驱动电路正常输出且可调后,将占空比调在最小。按DJK01的启动按钮,加入励磁电源后,再逐步加大占空比,用示波器观测、记录不同占空比时基极的驱动电压、负载上的波形。测定并记录不同占空比α时负载的电压平均值Ua 于下表中。
八、实验报告
(1)根据得到的数据,绘出各器件的输出特性Uv=f(Id)。
(2)整理并画出不同器件的基极(或控制极)驱动电压、元件管压降的波形。 (3)画出Ua=f (α)的曲线。
(4)讨论并分析实验中出现的问题。
附:GTO、IGBT、MOSFET、GTR 驱动电路原理图。
1、GTO驱动电路如图F-1 所示
GTO 的驱动与保护电路如图F-1 所示:电路由±5V 直流电源供电,输入端接PWM 发生器输出的PWM 信号,经过光耦隔离后送入驱动电路。当比较器LM311 输出低电平时,V2、V4 截止,V3 导通,+5V 的电源经R11、R12、R14 和C1 加速网络向GTO 提供开通电流,GTO 导通;当比较器输出高电平时,V2 导通、V3 截止、V4 导通,-5V 的电源经L1、R13、V4、R14 提供反向关断电流,关断GTO 后,再给门极提供反向偏置电压。
图F-1 GTO驱动与保护电路原理图
图F-2 IGBT管的驱动与保护电路
4、IGBT 驱动与保护电路
IGBT 管的驱动与保护电路如图F-2 所示,该电路采用富士通公司开发的IGBT 专用集成触发芯片EXB841。它由信号隔离电路、驱动放大器、过流检测器、低速过流切断电路和栅极关断电源等部分组成。
EXB841 的“6”脚接一高压快恢复二极管VD1 至IGBT 的集电极,以完成IGBT 的过流保护。正常工作时,RS 触发器输出高电平,输入的PWM 信号相与后送入EXB841 的输入端“15”脚。当过流时,驱动电路的保护线路通过VD1 检测到集射极电压升高,一方面在10us 内逐步降低栅极电压,使IGBT 进入软关断;另一方面通过“5”脚输出过流信号,使RS 触发器动作,从而封锁与门,使输入封锁。
5、MOSFET 驱动电路
MOSFET 的驱动与保护电路如图1-15 所示,该电路由±15V 电源供电,PWM 控制信号经光耦隔离后送入驱动电路,当比较器LM311 的“2”脚为低电平时,其输出端为高电平,三极管V1 导通,使MOSFET 的栅极接+15V 电源,从而使MOSFET 管导通。当比较器LM311“2”脚为高电平时,其输出端为低电平-15V,三极管V1 截止,VD1 导通,使MOSFET 管栅极接-15V 电源,迫使MOSFET关断
图1-15 MOSFET 管的驱动与保护电路
6、GTR驱动与保护电路
GTR 的驱动与保护电路原理框图如图1-16 所示:该电路的控制信号经光耦隔离后输入555,555 接成施密特触发器形式,其输出信号用于驱动对管V1 和V2,V1 和V2 分别由正、负电源供电,推挽输出提供GTR 基极开通与关断的电流。C5、C6 为加速电容,可向GTR 提供瞬时开关大电流以提高开关速度。