三极管工作状态 有图
三极管三种工作状态详解
三极管的三种工作状态三极管的三种工作状态(放大、截止、饱和);放大电路的静态、动态;直流通路、交流通路;截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
一般将IB≤0的区域称为截止区, 在图中为IB=0的一条曲线的以下部分。
此时IC也近似为零。
由于各极电流都基本上等于零, 因而此时三极管没有放大作用。
其实IB=0时, IC并不等于零, 而是等于穿透电流ICEO。
一般硅三极管的穿透电流小于1μA, 在特性曲线上无法表示出来。
锗三极管的穿透电流约几十至几百微安。
当发射结反向偏置时, 发射区不再向基区注入电子, 则三极管处于截止状态。
所以, 在截止区, 三极管的两个结均处于反向偏置状态。
对NPN三极管, UBE<0, UBC<0。
放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
此时发射结正向运用, 集电结反向运用。
在曲线上是比较平坦的部分, 表示当IB一定时, IC 的值基本上不随UCE而变化。
在这个区域内,当基极电流发生微小的变化量ΔIB时, 相应的集电极电流将产生较大的变化量ΔIC, 此时二者的关系为ΔIC=βΔIB该式体现了三极管的电流放大作用。
对于NPN三极管, 工作在放大区时UBE≥0.7V, 而UBC<0。
饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。
pnp三极管的工作状态
pnp三极管的工作状态
PNP三极管有三种工作状态:截止状态、放大状态和饱和状态。
1. 截止状态(Cut-off):当基极电流为零时,PNP三极管处于截止状态。
此时,集电极和基极之间的连接断开,不存在电流流动。
在截止状态下,集电极和基极之间具有最大的电阻,称为开路状态。
2. 放大状态(Active):当基极电流大于零而集电极和发射极之间的电压小于集电极和基极之间的电压时,PNP三极管处于放大状态。
此时,发射极和集电极之间形成一个反向偏置的二极管,允许电流流动。
在放大状态下,输入信号会引起输出信号的放大。
3. 饱和状态(Saturation):当基极电流大于零而集电极和发射极之间的电压大于集电极和基极之间的电压时,PNP三极管处于饱和状态。
此时,发射极和集电极之间形成一个正向偏置的二极管,电流允许流动。
在饱和状态下,PNP三极管充分导通,其集电极电流最大。
3极管的三种工作状态
3极管的三种工作状态引言三极管(transistor)是一种重要的电子元件,广泛应用于各种电子设备中。
它是一种半导体器件,由三个区域组成:发射区、基区和集电区。
三极管的工作状态可以分为三种:放大状态、截止状态和饱和状态。
本文将详细介绍三极管的三种工作状态及其特点。
1. 放大状态放大状态是三极管最常见的工作状态之一。
在放大状态下,三极管被用作信号放大器,将输入的弱信号放大到合适的幅度。
放大状态下的三极管可以分为NPN型和PNP型两种。
1.1 NPN型三极管的放大状态NPN型三极管中,发射区掺杂为N型半导体,基区掺杂为P型半导体,集电区掺杂为N型半导体。
在放大状态下,NPN型三极管的工作原理如下:1.电流流向:当输入信号施加到基极时,基极电流(IB)会引起发射极电流(IE)的变化,进而控制集电极电流(IC)的变化。
这种电流放大的作用使得输入信号能够被放大。
2.放大倍数:NPN型三极管的放大倍数由集电极电流和基极电流的比值(IC/IB)决定。
一般来说,NPN型三极管的放大倍数较高,可以达到几十到几百倍。
3.特点:放大状态下的NPN型三极管具有低输入阻抗、高输出阻抗、大电流放大倍数等特点。
1.2 PNP型三极管的放大状态PNP型三极管中,发射区掺杂为P型半导体,基区掺杂为N型半导体,集电区掺杂为P型半导体。
PNP型三极管的放大状态与NPN型三极管类似,但电流的流向相反。
1.电流流向:当输入信号施加到基极时,基极电流(IB)会引起发射极电流(IE)的变化,进而控制集电极电流(IC)的变化。
这种电流放大的作用使得输入信号能够被放大。
2.放大倍数:PNP型三极管的放大倍数由集电极电流和基极电流的比值(IC/IB)决定。
一般来说,PNP型三极管的放大倍数较高,可以达到几十到几百倍。
3.特点:放大状态下的PNP型三极管具有低输入阻抗、高输出阻抗、大电流放大倍数等特点。
2. 截止状态截止状态是三极管的一种工作状态,也称为关断状态。
三极管的不同状态
三极管的不同状态
三极管的三种基本工作状态分别是:放大状态、截止状态和饱和状态。
1. 放大状态(Active Mode):当三极管的基极电流(IB)和发射极电流(IE)的比值适当时,正向偏置的三极管进入放大状态。
在这个状态下,三极管工作在线性区,能够放大输入信号。
2. 截止状态(Cut-off Mode):当三极管的基极电流(IB)为零时,三极管进入截止状态。
在这个状态下,三极管处于关闭状态,无法传导信号。
3. 饱和状态(Saturation Mode):当三极管的基极电流(IB)大到足够让三极管饱和时,三极管进入饱和状态。
在这个状态下,三极管工作在饱和区,对应的发射极电流(IE)和集电极电流(IC)的比值是最大的。
三极管的不同状态决定了它在电路中的功能和特性。
放大状态用于放大电流和功率,截止状态用于断开电路,而饱和状态用于接通电路。
三极管工作原理图解
c
NPN三极管的工作原理和PNP三极管是一样的,只是偏压方向,电流方 向均相反,电子 和空穴的角色互换。PNP三极管是利用Veb控制由射区经基区,入射到集电区的正电子 (空穴),而NPN三极管则是利用Vbe控制由射区经基区、入射到集电区的负电子(自由电 子)。
N
N
P
b
c
e
N
N
P
b
e
c
一
一
一
一
为方便理解:以下正电子(空穴) 负电子(自由电子)。 当NPN三极管(图1)b极没有电压输入时,c极与e极之间没有电流通过。 c极与e之间关闭, 三极管处于截止状态。 当NPN三极管(图2)b极输入一个正电压,由于电厂作用,e极N区负电子被b极P区正电 子吸引出来涌向(扩散)到基区,因为基区做的很薄,所以只有一部分负电子与正电子碰撞 (复合)产生基极电流,另一部分负电子则在集电结附近聚集,由于电场作用聚集在集电 结的负电子穿过(漂移)集电结,到达集电区后与聚集在c极(N型半导体端)正电子碰撞 产生集电极电流。从此可见,基极电流越大,集电极电流越大,即集电极输入一个小的电 流,集电极就可得到一个大的电流。三极管此刻处于放大状态。 需要注意,当基极电流到达一定程度,集电极电流不再升高。这时三极管失去电流放大作 用,集电极和发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。此刻 三极管处于饱和状态。
图1
图2
一
一
一
P
P
N
b
e
一
一
一
P
P
N
b
e
图3
图4
以上为PNP型三极管工作流程图 和NPN相比有以下相同和不同之处: 1、NPN集电极电流产生为Ibe,PNP集电极电流产生为Ieb. 2、NPN发射区发射负电子,PNP发射区发射正电子。 3、NPN集电区收集负电子,PNP集电区收集正电子。 4、NPN电流方向为Ice,PNP电流方向为Iec.
图说三极管的三个工作状态
抛开三极管部空穴和电子的运动,还是那句话只谈应用不谈原理,希望通过下面的“图解”让初学者对三极管有一个形象的认识。
三极管是一个以b(基极)电流Ib来驱动流过CE的电流Ic的器件,它的工作原理很像一个可控制的阀门。
左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。
当蓝色水流越大,也就使大管中红色的水流更大。
如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。
三极管的原理也跟这个一样,放大倍数为100时,当Ib(基极电流)为1mA 时,就允许100mA 的电流通过Ice有了这个形象的解释之后,我们再来看一个单片机里常用的电路我们来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。
基极电流就是10V&pide;10K=1mA,集电极电流就应该是100mA。
根据欧姆定律,这样Rc上的电压就是0.1AX 50 Q =5V。
那么剩下的5V 就吃在了三极管的C、E极上了。
好!现在我们假如让Rb为1K,那么基极电流就是10V&pide;1K=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA 也就是1A 了呢?假如真的为1安,那么Rc上的电压为1A X 50 Q =50V。
啊?50V! 都超过电源电压了,三极管都成发电机了吗?其实不是这样的。
见下图:我们还是用水管流水来比喻电流,当这个控制电流为10mA 时使主水管上的阀开大到能流过1A 的电流,但是不是就能有1A 的电流流过呢?不是的,因为上面还有个电阻,它就相当丁是个固定开度的阀门,它申在这个主水管的上面,当下面那个可控制的阀开度到大丁上面那个固定电阻的开度时,水流就不会再增大而是等丁通过上面那个固定阀开度的水流了,因此,下面的三极管再开大开度也没有用了。
因此我们可以计算出那个固定电阻的最大电流10V/50 Q =0.2A 也就是200mA。
三极管的四种工作状态
三极管的四种工作状态
三极管有四种工作状态,分别是截止状态、饱和状态、放大状态和截止饱和状态。
首先,让我们来谈谈截止状态。
当三极管的基极电压低于某个阈值时,三极管处于截止状态。
在这种状态下,集电极和发射极之间的电流非常小,可以近似看作是断路状态。
三极管在截止状态下的特点是电流增益非常低,几乎可以忽略不计。
其次,是饱和状态。
当三极管的基极电压高于某个阈值时,三极管会进入饱和状态。
在饱和状态下,三极管的集电极和发射极之间的电流达到最大值,且基极和发射极之间的电压也非常小。
在这种状态下,三极管可以被看作是一个闭合的开关,能够提供最大的电流放大作用。
第三种状态是放大状态。
在放大状态下,三极管的工作处于截止状态和饱和状态之间。
此时,三极管能够提供一定程度的电流放大作用,但并没有达到饱和状态下的最大放大效果。
放大状态是三极管在实际电路中经常工作的状态,用来实现信号放大的功能。
最后,是截止饱和状态。
在某些特殊的情况下,三极管可能同
时处于截止状态和饱和状态,这种状态被称为截止饱和状态。
在截
止饱和状态下,三极管的集电极和发射极之间的电流非常小,同时
基极和发射极之间的电压也很小。
这种状态在一些特定的电路设计
中可能会有所应用。
总的来说,三极管的四种工作状态分别是截止状态、饱和状态、放大状态和截止饱和状态。
这些状态在实际电路设计和应用中起着
重要的作用,了解它们的特性对于合理设计和使用电子电路非常重要。
三极管工作状态判断
精选ppt
2
三极管工作状态 判断方法:
RB
江
+
阴 学 院
v iB i
-
VCC RC
+
iC
vO
-
v <0.7V时,截止
①当 BE ≥0.7V时,放大或饱和
精选ppt
3
三极管工作状态 判断方法:
RB
江
+
阴
学 院
v iB i
-
VCC RC
+
iC
vO
-ห้องสมุดไป่ตู้
v <0时,放大
②当 BC ≥0时,饱和
精选ppt
4
4V 0.7V
0.3V
0
0
放大
饱和
4V 0
0
截止
精选ppt
7
判断图示各电路中三极管的工作状态。
Rc
江 Rb
阴
学 院
EB
VT
EC
发射结反向偏置,
集电结反向偏置,
三极管工作在截止区,
可调换 EB 极性。
Rb Rc VT
0.7V
EC
0.3V
VT
发射结反向偏置,
两PN结均
三极管工作在截止区, 正偏三极 管工作在
三极管处于放大状态时的电位关系
江 IB
阴 学 院
IC IB
IE
VC
VB VE NPN 精选ppt
IC
IE
VE
VB
VC PNP 5
三极管处于饱和状态时的电位关系
江 阴
IB
学
院
IC
IB IE
VB VC VE NPN
精选ppt
三极管的三种状态ppt
截止到放大
截止状态
当三极管基极无电流输入时,集 电极和发射极之间无电流流通,
三极管截止。
放大状态
当基极有电流输入时,集电极和发 射极之间开始有电流流通,三极管 进入放大状态。
转换过程
当基极电流从0开始逐渐增加时,集 电极电流逐渐增加,但发射极电流 先增加后减小,最终达到稳定状态。
放大到饱和
应用
音频放大
三极管在音频放大器中广泛应用 ,用于将微弱的音频信号放大到 足够的功率以驱动扬声器发声。
信号放大
在各种电子设备和系统中,三极 管常用于信号的放大和处理,以 实现电路的信号传输和控制功能 。
03
饱和状态
定义
• 饱和状态:当三极管基极电流足够大,使得集电极电流不再随 基极电流的增大而增大,而是保持一定值或略有下降的状态。
集电极电压
集电极电压是三极管正常工作的必要条件之一。在放大状态 下,集电极电压应大于基极电压,以维持三极管的放大作用 。
如果集电极电压过低,会导致三极管无法正常放大信号;如 果集电极电压过高,则可能烧毁三极管。因此,在使用三极 管时,应确保其集电极电压在合适的范围内。
THANKS FOR WATCHING
基极电流过小或过大,都可能导致三 极管无法正常工作。过小的基极电流 可能导致三极管无法被有效控制,过 大的基极电流则可能烧毁三极管。
集电极电流
集电极电流是三极管在放大状态下最重要的输出信号。集电极电流的大小直接反 映了输入信号的强弱和方向。
集电极电流的大小受基极电流的控制,且随着基极电流的变化而变化。在一定范 围内,集电极电流与基极电流成正比。
三极管的三种状态
目录
• 截止状态 • 放大状态 • 饱和状态 • 三极管状态的转换 • 三极管状态的影响因素
三极管教学ppt课件
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.3.2 半导体三极管的工作原理
半导体半导体三极管有共有四种工作状态:
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1、发射区的电子大量地扩散注 入到基区,基区空穴的扩散可 忽略。
发射结正偏
集电结反偏
外电场方向
NP
N
++++
e ++++ ++++
+++
c + + +
++++ -
++++
IE
b
+++
UBB RB UCC RC
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
很小的IB控制 IC IC = β IB
基极电流和集电极电流除直流分
量外还有交流分量,且iC = β iB。 放大电路是在ui的作用下,改变iB, 并通过iB控制直流电源供给集电极 电流iC,使其产生相应的交流分量, 并在足够大的RC上形成较大的电 压降,就有了可供输出的经放大
的交流电压uo。
2.
一旦外界条件改变到
不4、再因满集电足结这反偏两,个集条电区件和,基 则区形中成以少很上子小公在的结且式电与不场集作电再用结成下的立漂反移偏。,
三极管饱和区、放大区和截止区的理解方法图解
三极管饱和区、放大区和截止区的理解方法图解三极管的三种状态三极管的三种状态也叫三个工作区域,即:截止区、放大区和饱和区。
(1)、截止区:三极管工作在截止状态,当发射结电压Ube小于0.6—0.7V的导通电压,发射结没有导通集电结处于反向偏置,没有放大作用。
(2)、放大区:三极管的发射极加正向电压,集电极加反向电压导通后,Ib控制Ic,Ic与Ib近似于线性关系,在基极加上一个小信号电流,引起集电极大的信号电流输出。
(3)、饱和区:当三极管的集电结电流IC增大到一定程度时,再增大Ib,Ic也不会增大,超出了放大区,进入了饱和区。
饱和时,Ic最大,集电极和发射之间的内阻最小,电压Uce只有0.1V~0.3V,Uce《Ube,发射结和集电结均处于正向电压。
三极管没有放大作用,集电极和发射极相当于短路,常与截止配合于开关电路。
作为电子初学者来说,模拟电路非常重要,模拟电路的三极管的应用是重中之重,能正确理解三极管的放大区、饱和区、截止区是理解三极管的标志。
很多初学者都会认为三极管是两个 PN 结的简单凑合,如下图:这种想法是错误的,两个二极管的组合不能形成一个三极管,我们以 NPN 型三极管为例,如下图:两个PN 结共用了一个P 区(也称基区),基区做得极薄,只有几微米到几十微米,正是靠着它把两个PN 结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的PN 结的特性。
三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。
三极管的电流放大作用与其物理结构有关,三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。
从应用的角度来讲,可以把三极管看作是一个电流分配器。
一个三极管制成后,它的三个电流之间的比例关系就大体上确定了,如下图所示:β 和α 称为三极管的电流分配系数,其中β 值大家比较熟悉,都管它叫电流放大系数。
三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。
三极管工作状态的判别ppt课件
(P) E
结论:VPe>NVPb型>V三C 极管与NPNV型c>三Vb极>V管e 的 各工作(状PN态P型各)级的电位关系相(NP反N型)
精品ppt
8
比一比:三极管工作状态
项目 状态
条件
NPN型各级电位关系 PNP型各级电位关系
发射结
饱和状态
正
集电结
Vb>Ve Vb>Vc
Vb<Ve Vb<Vc
发射结 正
放大状态
集电结 反
Vc>Vb>Ve
Ve>Vb>Vc
发射结
截止状态
反
集电结
Vb<Ve
精品ppt
Vb>Ve
9
判别三极管工作状态的步骤
•判断三极管的结构型号
•比较Vb与Ve、Vb与Vc之间的大小
•对照表格确定三极管的工作状态
精品ppt
10
拓展练习
已知三极管三个级的电位如图所示,判别下列三极管所 处的工作状态?
发射结正偏集电结反偏三极管工作状态的判别项目状态条件npn型各级电位关系pnp型各级电位关系饱和状态放大状态反截止状态正反正vbvevbvcvevbvcvbve发射结集电结发射结集电结发射结集电结vbvevbvcvcvbvevbve三极管工作状态的判别?判断三极管的结构型号?比较vb与与vevb与与vc之间的大小?对照表格确定三极管的工作状态态
(N) E
VC>Vb
VC >Vb>Ve
精品ppt
6
想一想
NPN型三极管分析 得出的结论是不是 也适用于PNP型三 极管?
精品ppt
7
试验: PNP型三极管工作在放大状态
C
条件:发射结正偏、集电结反偏
(P)
发射结正偏(P接正,N接负)
聊一下三极管截止、放大和饱和3种工作状态
聊⼀下三极管截⽌、放⼤和饱和3种⼯作状态三极管共有3种⼯作状态:截⽌状态、放⼤状态和饱和状态。
⽤于不同⽬的三极管其⼯作状态是不同的。
三极管3种⼯作状态电流特征表1-7所⽰是三极管3种⼯作状态定义和电流特征。
表1-7 三极管3种⼯作状态定义和电流特征三极管截⽌⼯作状态⽤来放⼤信号的三极管不应⼯作在截⽌状态。
倘若输⼊信号部分地进⼊了三极管特性的截⽌区,则输出会产⽣⾮线性失真。
所谓⾮线性可以这样理解,给三极管输⼊⼀个标准的正弦信号,从三极管输出的信号已不是⼀个标准的正弦信号,输出信号与输⼊信号不同就是失真。
图1-65所⽰是⾮线性失真信号波形⽰意图,产⽣这⼀失真的原因是三极管截⽌区的⾮线性。
如果三极管基极上输⼊信号的负半周进⼊三极管截⽌区,将引起削顶失真。
注意,三极管基极上的负半周信号对应于三极管集电极的是正半周信号,所以三极管集电极输出信号的正半周被三极管的截⽌区去掉,如图1-66所⽰。
当三极管⽤于开关电路时,三极管的⼀个⼯作状态就是截⽌状态。
注意,开关电路中的三极管不⽤来放⼤信号,所以不存在这样的削顶失真问题。
图1-65 ⾮线性失真信号波形⽰意图图1-66 三极管截⽌区造成的削顶失真三极管放⼤⼯作状态重要提⽰当三极管⽤来放⼤信号时,三极管⼯作在放⼤状态,输⼊三极管的信号进⼊放⼤区,这时的三极管是线性的,信号不会出现⾮线性失真。
在放⼤状态下,IC=βIB中β的⼤⼩基本不变,有⼀个基极电流就有⼀个与之相对应的集电极电流。
β值基本不变是放⼤区的⼀个特征。
在线性状态下,给三极管输⼊⼀个正弦信号,则输出的也是正弦信号,此时输出信号的幅度⽐输⼊信号要⼤,如图1-67所⽰。
这说明三极管对输⼊信号已有了放⼤作⽤,但是正弦信号的特性未改变,所以没有⾮线性失真。
图1-67 信号放⼤⽰意图重要提⽰输出信号的幅度变⼤,这也是⼀种失真,称之为线性失真。
在放⼤器中这种线性失真是需要的,没有这种线性失真放⼤器就没有放⼤能⼒。
显然,线性失真和⾮线性失真不同。
三极管有几种工作状态-三极管的三种工作状态
三极管有几种工作状态?三极管的三种工作
状态
三极管有三种工作状态,截止状态、放大状态和饱和状态。
在这三种状态下,三极管偏置电压的特点及电流特征等见表。
表三极管偏置电压的特点及电流特征
工作状态特点定义电流特征说明截止区放射结反偏,集电结反偏集电极与发射极之间内阻很大IB=0或很小,Ic 和IE也为零或很小利用电流为零或很小的特征,可以推断三极管是否已处于截止状态放大区放射结正偏,集电结反偏集电极与发射极之间内阻受基极电流大小的掌握,基极电流大,其内阻小Ic= βIB, IE=(1+β)IB 有一个基极电流就有一个对应的集电极电流和放射极电流,基极电流能够有效地掌握集电极和放射极电流饱和区放射结正偏,集电结正偏集电极与发射极之间内阻小各电极电流均很大,基极电流已无法掌握集电极电流与放射极电流电流放大倍数β已很小,甚至小于1 工程阅历总结如下。
①通过实测电路板上三极管引脚对地的电压可以推断出三极管的工作状态。
对于NPN管,若测得VCVB VE,则该管满意放大状态的偏置;对于PNP管,VC VB VE为放大状态。
②若测得三极管的集电极对地电压Vc接近电源电压VCC,则表明三极管处于截止状态。
③若测得三极管的集电极对地电压Vc接近零(硅管小于0.7V,锗管小于0.3V),则表明三极管处于饱和状态。
1。
三极管工作原理图
三极管工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E 的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
PNP 型半导体三极管和NPN 型半导体三极管的基本工作原理完全一样,下面以NPN 型半导体三极管为例来说明其内部的电流传输过程,进而介绍它的工作原理。
半导体三极管常用的连接电路如图15-3 (a) 所示。
半导体三极管内部的电流传输过程如图15-3 (b) 所示。
半导体三极管中的电流传输可分为三个阶段。
1 发射区向基区发射电子电源接通后,发射结为正向连接。
在正向电场作用下,发射区的多数载流子(电子)的扩散运动加强。
因此,发射区的电子很容易在外电场的作用下越过发射结进入基区,形成电子流IEN(注意电流的方向与电子运动的方向相反)。
当然,基区的多数载流子(空穴)也会在外电场的作用下流向发射区,形成空穴电流IEP。
NPN型三极管的三种工作状态
闭合开关
UBE≤Uon UCE>UBE
断开开关
集电结 放大状态 发射结
反
Si:0.6~0.7v UCE>UBE Ge:0.2~0.3v
电流放大作用— △iC=β△iB(受控) 受控电流源 恒流特性— iB一定时,iC恒定
正
集电结 饱和状态 发射结 正
Si≥0.7v UCE<UBE Ge≥0.3v
△iC≠β△iB— 无电流作用(不受控) iC随UCE增加而急剧增加
直流偏置截止状态集电结断开开关发射结放大状态集电结受控电流源发射结饱和状态集电结闭合开关发射结npn型三极管的Байду номын сангаас种工作状态项目状态si
NPN型三极管的三种工作状态 NPN型三极管的三种工作状态
项目 状态 直流偏置
UBE
UCE
UCE≈VCC
iC
iC≈0 iB=0 βiB=0
c和e极间相当于
集电结 截止状态 发射结 反
NPN型三极管的三个工作状态讲解
NPN型三极管的三个工作状态讲解首先我们应当知道三极管有三个状态。
分别为截止状态、饱和状态和放大状态。
三极管在饱和状态和截止状态时都具有放大效应。
接下来我们以NPN型三极管为例,分别讲解一下这三个状态。
这三个状态你都明白了,三极管的放大效应你自然会明白是怎么回事了。
截止状态简洁来说,我们可以把B极断开看做是截止状态,如下图所示的这种状态,此时三极管不导通,C极电位和电源电压一样是12V。
截止状态很好理解,我在这里不再多做阐述。
饱和状态由于每一个三极管的放大倍数都不一样,每一种型号的三极管都有差别,所以现在我们不指定某一型号的三极管,只是阐述它们都遵守的这个原理,这样,你原理搞明白了,再去看的话,都就懂了。
这时候我们给B极接上5V电源,然后中间串联一个阻值很大的电阻,你可以把这个电阻想象成无穷大。
然后我们然电阻R1的阻值渐渐变小,这时候流过的电流就会渐渐的变大,直到这个三极管被唤醒。
被唤醒之后,三极管的CE极就会有电流通过,但是比流过BE极的要大的多,比如说BE流过的电流是1ma,这时候CE极流过的就是100ma,这也是三极管放大效应一种。
然后我们连续让BE间的电流增大,那么CE极会跟着放大吗?答案是会的,但不是始终放大,由于把12V都给了上面那个电阻是这个电路可以得到的最大的值。
直到BE极间的电流增大到某一个值之后,CE极间电流不再变化,我们就称三极管此时达到了饱和状态。
就像盐水一样,最开头我们把盐放到水里面,盐会溶于水,但是随着我们盐投入的越来越多,直到某一时刻,盐不再溶于水了,水里面消失结晶了,我们就说盐水饱和了,三极管的饱和和这个道理是一样的。
放大状态我们这时候固定R1不变,也就是流过B极的电流不变。
我们把12V渐渐变大,最开头由于电源的增大,流过CE的电流渐渐变大。
假如始终增大的,后面会有一个值,无论我们怎么增大电源,这一路的电流都不会变化了,为什么呢?由于三极管让电源增大的电压,施加给了它自己,此时CE之间电压会增大,它之所以增大,是为了保持整个电路的电流保持不变,,比如说电源从12V-20V之间变化时,流过这一路的电流会保持恒定,这就是三极管的放大状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NPN:放大,集电结反偏,发射结正偏;
截止,集电结反偏,发射结反偏;
饱和,集电结正偏,发射结正偏;
PNP:放大,集电结正偏,发射结反偏;
截止,集电结正偏,发射结正偏;
饱和,集电结反偏,发射结反偏;
这是我脑子里的东西,你自己看一下是不是相反吧
简单的办法就是判断他们的电位变化的情况。
以下以NPN硅管为例,PNP管正好相反。
(1)截止,Ube<0.7V,也就是发射结反偏,Ube<0的时候是可靠截止。
(2)放大,Ube>0.7V,Uce>Ube,Ubc<0,也就是发射结正偏,集电结反偏。
(3)饱和,Ube>0.7V,Uce<Ube,
Ubc<0,也就是发射结正偏,集电结也正偏。
这个时候饱和了,Ib怎么变化,Ic也不怎么变化了。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
三极管做开关时,工作在截至和饱和两个状态。
一般是通过控制三极管的基极电压Ub来控制三极管的导通与断开。
就PNP来说,工作在饱和区的条件是,Ueb>Uon,Ub<Uc,可以工作在饱和状态。
当加在三极管发射结的电压大于PN结的导通电压,三极管放大,并且当基极的电流增大到一定程度时,三极管失去电流放大作用,集电极和发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态,即为三极管的导通状态。
PNP满足发射结正偏UE>UB,极电结正偏UC>UB,饱和
截止状态:
当“≤0时,集电极电流很
小,三极管相当于截止,电源电
压丘几乎全部加在管子两端
放大状态:
“从O逐渐增大,集电极电流
J。
也按一定比例增加,很小的
I变化引起很大的,;变化,三
极管起放大作用
饱和状态:
三投管饱和时,管子两端压降很
小,电源电压E几乎全部加在集电
极负载电阻磁两端I口越大,控制越
灵敏。