燃气轮机相关热力循环

合集下载

2-燃气轮机-第二讲(热力循环)

2-燃气轮机-第二讲(热力循环)

比功与压比、温比的关系: 比功与压比、温比的关系:
结论2——效率与压比、温比的关系: 结论2——效率与压比、温比的关系: 效率与压比 仅取决于压比π,而与温比τ (1)燃气轮机的循环效率 仅取决于压比 ,而与温比 )燃气轮机的循环效率η仅取决于压比 无关; 无关; 随压比增大而增大。 (2)效率 随压比增大而增大。 )效率η随压比增大而增大
其他多种热力循环组合的联合循环
–必要性:单独的一种热力循环各有优缺点,而几种 必要性:单独的一种热力循环各有优缺点, 必要性 热力循环结合使用则可扬长避短,达到理想效果。 热力循环结合使用则可扬长避短,达到理想效果。 –多种热力循环组合的联合循环方式: 多种热力循环组合的联合循环方式: 多种热力循环组合的联合循环方式 间冷再热循环 间冷回热循环 再热回热循环 间冷再热回热循环 燃气-蒸汽联合循环
第二讲
燃气轮机热力循环
一、燃气轮机的理想简单循环 二、理想简单循环效率的影响因素 三、燃气轮机的实际简单循环 四、燃气轮机常见其他热力循环
第一节 燃气轮机的简单循环
思考题一:何为理想循环? 思考题一:何为理想循环? 1、理想气体 、 2、稳定流动 、 3、可逆过程 、
二、理想简单循环
思考题二:简单循环的组成? 思考题二:简单循环的组成?
q3-4= 0
工质在涡轮中膨胀做功,称为膨胀功wT
= c p (T3* − T4* )
= c pT3* (1 − π* -m )
* * p − v图上,wT = 面积3-4-p1 -p2 -3
④4s-1 大气中的等压放热过程
q2 = q4−1 = h − h
* 4
* 1
kJ/kg
q1
= c p (T4* − T1* )

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施专业:热能与动力姓名:学号:燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施摘要:燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。

本文主要介绍了燃气轮机的工作原理,基本结构,热力循环的分类及热力循环措施。

关键词:燃气轮机分类性能改善引言:燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。

燃气轮机是一种先进而复杂的成套动力机械装备,是典型的高新技术密集型产品。

作为高科技的载体,燃气轮机代表了多理论学科和多工程领域发展的综合水平,是21世纪的先导技术。

发展集新技术、新材料、新工艺于一身的燃气轮机产业,是国家高技术水平和科技实力的重要标志之一,具有十分突出的战略地位。

正文:燃气轮机(Gas Turbine)是一种以连续流动的气体作为工质、把热能转换为机械功的旋转式动力机械。

在空气和燃气的主要流程中,只有压气机(Compressor)、燃烧室(Combustor)和燃气透平(Turbine)这三大部件组成的燃气轮机循环,通称为简单循环,如图1。

大多数燃气轮机均采用简单循环方案。

因为它的结构最简单,而且最能体现出燃气轮机所特有的体积小、重量轻、起动快、少用或不用冷却水等一系列优点。

一、工作原理压气机从外界大气环境吸入空气,并经过轴流式压气机逐级压缩使之增压,同时空气温度也相应提高;压缩空气被压送到燃烧室与喷入的燃料混合燃烧生成高温高压的燃气;然后再进入到透平中膨胀做功,推动透平带动压气机和外负荷转子一起高速旋转,实现了气体或液体燃料的化学能部分转化为机械功,并输出电功。

从透平中排出的废气排至大气自然放热。

这样,燃气轮机就把燃料的化学能转化为热能,又把部分热能转变成机械能。

通常在燃气轮机中,压气机是由燃气透平膨胀做功来带动的,它是透平的负载。

燃气轮机的实际热力循环

燃气轮机的实际热力循环
燃气轮机的实际热力循环
作者:水之北
1. 燃气轮机的实际循环 1.1. 燃气轮机的实际循环如图 1 的实线所示,包括四个热力过程:
n n n
熵增的多变压缩过程:空气从 p1 压缩至 p2; 略有压降的的加热过程:燃烧后的烟气温度从 T2 升至 T3,压力从 p2 略降至 p3; 熵增的多变膨胀过程,热烟气从 p3 膨胀至 p4=p1,烟温从 T3 降至 T4; 等压放热过程,膨胀后的烟气从 T4 冷却至 T1。
h 02 h 01 1 h 02s h 01 c
(1)
其中ηc 是压气机的效率。那么:
h 02 h 02s 1 c h01 c
~1~
(Байду номын сангаас)
过程 1—2 的空气压缩功为:
L c 1 h 02 h 01
(3)
2.2. 略有压降的加热过程 2—3 已知参数:p2,T2,T3; 求解参数:p3,q2-3。 设燃烧室总压恢复系数为 σb,则:
(8)
将(8)带入(5) ,得到:
mf h 03 h 02 b H f K 03h 03 h f 2
(9)
2.3. 熵增膨胀过程 3—4 已知参数:p3,T3,p4; 求解参数:T4。
~2~
与式(1)类似,3—4 的等熵和熵增过程之间的关系为:
h g3 h g4 T h g3 h g4s h g4 1 T h g3 h g4s
p3 b p2
(4)
设喷油量为 mf,燃油的低发热值为 Hf,燃烧室燃烧效率为ηb,则:
q 23 b m f H f m f h f 2 1 m f h g3 h 02
(5)

热力学循环的分类和工作原理

热力学循环的分类和工作原理

热力学循环的分类和工作原理热力学循环是指通过一系列的热能转换过程,将热能转化为机械能的过程。

它在能源领域扮演着重要的角色,广泛应用于发电、制冷、加热等领域。

热力学循环可以根据工作介质、工作原理等方面进行分类。

在本文中,我们将探讨几种常见的热力学循环分类及其工作原理。

一、卡诺循环卡诺循环是热力学循环中最为理想的循环,它由两个等温过程和两个绝热过程组成。

在卡诺循环中,工作介质通常是气体,如理想气体。

首先,气体在恒温高温热源中吸热,然后通过绝热膨胀过程将热能转化为机械能,接着在恒温低温热源中放热,最后通过绝热压缩将剩余的热能排出。

卡诺循环的工作原理是利用热能从高温区流向低温区的自发性,实现热能转化为机械能的目的。

二、斯特林循环斯特林循环是一种基于气体的热力学循环,它通过气体的等温膨胀和等温压缩过程来实现热能转化。

斯特林循环的工作原理是利用气体在不同温度下的体积变化,通过循环过程将热能转化为机械能。

在斯特林循环中,气体首先在高温热源中吸热膨胀,然后通过冷却过程将热能转移到低温热源中,最后再通过等温压缩过程将剩余的热能排出。

斯特林循环的独特之处在于它可以通过外部燃烧产生的热源或太阳能等可再生能源来驱动。

三、朗肯循环朗肯循环是一种常见的蒸汽动力循环,广泛应用于发电厂和工业领域。

在朗肯循环中,工作介质是水蒸汽。

循环的工作原理是通过蒸汽的膨胀和压缩过程来实现热能转化。

首先,水蒸汽在锅炉中受热产生高温高压蒸汽,然后通过膨胀机将蒸汽膨胀,将热能转化为机械能。

接着,蒸汽进入冷凝器中被冷却,变成液体状态,最后通过泵将液体压缩为高压蒸汽,重新进入锅炉循环。

四、布雷顿循环布雷顿循环是一种常见的燃气轮机循环,常用于发电厂和航空领域。

它的工作原理是通过燃气轮机和蒸汽轮机的组合来实现热能转化。

首先,燃气轮机通过燃烧燃料产生高温高压燃气,然后将燃气驱动轮叶转动,产生机械能。

接着,燃气进入余热锅炉中,产生蒸汽,再通过蒸汽轮机将蒸汽的热能转化为机械能。

第3章 燃气轮机热力循环-4.

第3章  燃气轮机热力循环-4.

3.1.2燃气轮机热力循环的性能参数
(1)标准额定功率 (2)合同额定功率 (3)现场额定功率 (4)尖峰功率 通常将前三项统称为基本负荷。 ANSI B1336“额定值及性能”将基本负荷 定义为:每年运行8000h和每次启动运行800h。 而将尖峰负荷定义为:每年运行1250h和每次 启动运行5h。
§3.1.1燃气轮机热力循环
开式循环燃气轮机从大气连续地吸取空气 作工质,经过压缩、加热、膨胀作功后排回大 气放热而不断地循环工作。膨胀过程所作的功, 要扣除压缩过程耗功及其它损耗所需的耗功之 后才是装置的输出功。开式循环燃气轮机通常 采用内燃方式加热,把燃料直接喷入空气工质 中燃烧。
开式循环燃气轮机
燃气轮机排气温度较高,可达500℃左右, 因此还可利用其热量来加热压缩后的空气,从而 在燃烧室加热时就可节省一部分燃料,故能较多 地提高装置效率,这种循环称为回热循环。燃气 轮机还能采用把间冷、回热和再热组合起来的复 杂循环以提高性能。也可同其它工作循环结合起 来提高综合经济性能,例如涡轮增压柴油机循环、 燃气蒸汽联合循环和化工流程燃气轮机循环等。
(二)压比
π=P2*/ P1*
压比π是压气机出口气体全压P2*与进口气体全 压P1* 之比值。
§3.2燃气轮机理想简单循环分析
• §3.2.1燃气轮机理想简单循环 • §3.2.2燃气轮机理想简单循环分析
§3.2.1燃气轮机理想简单循环
所谓理想简单热力循环是指循环中的工质假 定为满足气体状态方程的理想气体,并认为在 理想热力循环中所进行的各热力过程,除了有 不可避免的给冷源的放热损失外,和外部介质 既不发生热量的交换,也不存在摩擦损失。
3.3.1提高燃气轮机热效率的措施
理想回热循环的比功仍用式(2-4)计算。由

内燃机热力循环-打印版

内燃机热力循环-打印版

内燃机热力循环一、燃气轮机循环燃气轮机理想循环为布雷顿循环(Brayton Cycle) ,它是工质连续流动做功的一种轮机循环,如图1所示 。

它既可作内燃布雷顿循环,又可作外燃布雷顿循环。

内燃的布雷顿循环为开式循环,常用工质为空气或燃气。

外燃的布雷顿循环是闭式循环,通过热交换器对工质加热,在另一热交换器排出工质余热。

循环过程为:工质在压气机中等熵压缩1-2,在燃烧室(或热交换器中)等压加热2-3 ,在燃气轮机中等熵膨胀3-4和等压排气4-1 。

图1 燃气轮机循环燃气轮机循环的指示热效率为11k k i c ηπ-=-式中,c π为压气机中气体的压比,k 为比热比。

燃气轮机开式循环常与内燃机基本循环配合使用。

二、涡轮增压内燃机热力循环将涡轮增压技术(或燃气轮机技术)应用到内燃机上是内燃机循环的一项重大技术发展。

一方面内燃机希望获得更多的进气(或可燃混合气)充量,以提高内燃机的功率和热效率;另一方面从内燃机排出的高温、高压废气能导入燃气涡轮中再作功,推动与燃气涡轮相连(同轴)的压气机来提高进气(或可燃混合气)的压力供给内燃机,这样就成为涡轮增压内燃机。

涡轮增压内燃机有等压涡轮和变压涡轮两种系统,它们的热力循环也有所不同。

1.恒压涡轮增压内燃机热力循环图2是等压涡轮增压内燃机热力循环。

它由内燃机基本循环1→2→3’→3→4→1和燃气轮机循环7→1→5→6→7组成。

图2 等压涡轮增压内燃机热力循环压气机将气体从状态7(大气压力p0)等熵压缩到状态1(压力为p s)之后进入内燃机。

按内燃机热力循环到达状态4。

气体在排气过程进入等压涡轮时由于排气门的节流损失和排气动能在排气总管内的膨胀、摩擦、涡流等损失而变成热能,气体温度升高,体积膨胀而到达状态5。

气体从4→5 这部分能量没有利用,对内燃机来说相当于从状态4直接回到状态1。

气体在等压涡轮中从状态5等熵膨胀到状态6,然后排入大气。

2 .变压涡轮增压内燃机热力循环变压涡轮增压内燃机热力循环如图3 。

燃机相关练习题—判断题

燃机相关练习题—判断题

1.在可逆的理想条件下,燃气轮机的热力循环被称为“朗肯循环”。

(×)2.燃气轮机热力循环主要由四个过程组成:即压气机中的压缩过程、燃烧室中的燃烧加热过程、透平中的膨胀过程、以及排气系统中的放热过程。

(√)3.燃机等压燃烧过程的结果是使空气从外界吸入热能,并增高燃气的温度。

(√)4.燃机等压放热过程的结果是使燃气对外界放出热能,并使燃气的温度逐渐降低到压气机入口的初始状态。

(√)5.燃气轮机的压气机中空气被压缩,比容增加,压力增加。

(×)6.燃气-蒸汽联合循环发电机组在运行中,若其进排气参数、流量、转速、功率都与热力设计的参数相同,这种工况称为设计工况。

(√)7.压气机是燃气轮机的重要部件之一,其作用是向燃烧室连续不断地供应压缩空气。

(√)8.燃气轮机燃烧加热过程中,工质与外界有热量交换,并对机器做功。

(×)9.在正常运行中,燃气轮机透平功率的三分之一用来拖动压气机,其余的用来发电。

(×)10.燃气轮机的水洗目的是保护设备和提高机组效率。

(√)11.燃机清吹的目的是吹掉可能漏进机组中的燃料气或因积油产生的油雾,避免爆燃。

(√)12.燃气轮机使用的燃料由于具有可燃性,因此被当作危险品对待。

(√)13.燃气轮机跳机是通过释放润滑油压力,从而使得燃料截止阀关闭来实现的。

(×)14.燃气在空气中的浓度大于下限和小于上限时,均不会发生爆炸。

(×)15.天然气成分中甲烷、乙烷等属于饱和碳氢化合物。

(√)16.天然气属于中热值气体燃料。

(×)17.常规余热锅炉型燃气-蒸汽联合循环发电系统可为“一拖一”方案和“多拖一”方案。

(√)18.运行人员应根据负荷的变化,对运行机组间的负荷进行合理分配,调整燃气轮机、余热锅炉、汽轮机在变工况时的参数,并完成相应的调整操作。

(√)19.钠和钾对燃气轮机透平叶片的危害主要是它们可以与钒结合形成低熔点的共熔化合物,还与硫化合形成硫酸盐,以熔融状态积存在透平叶片上,从而腐蚀机组热通道金属,严重缩短热通道部件的寿命。

《燃气轮机与联合循环》第二章 燃气轮机的热力循环解析

《燃气轮机与联合循环》第二章 燃气轮机的热力循环解析

第二章 燃气轮机的热力循环
2-3 实际简单循环的特性
特点: 热力过程中有各种能量损耗,是不可逆的;
工质的热力性质和数量因燃烧而变。
假定条件(为便于与理想循环比较): ①具有相同的压比C*和初始温度T1* ; ②涡轮前燃气初温相同, T3* = T3s* ; ③环境参数均为p0、T0, 即p1* = p0 、T1* = T0 。
一、热力参数
1、压比
—说明工质在压气机内受压缩的程度。
—压气机出口的气流压力与其进口的气流压力的比值。
用滞止压力(总压)表示:
p p
燃气轮机与联合循环
* 2 * 1
决定循环性能的重要参数
能源与动力学院
第二章 燃气轮机的热力循环
2、温比
—说明工质被加热的程度。
—透平前进口燃气温度与压气机进 口气流温度的比值
燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
二、性能参数与压比和温比的关系
1、比功与温比压比的关系
wc cp (T2* T1* ) wt cp (T3* T4* )
wn c p (T3* T4* ) c p (T2* T1* ) * T 1 * * 2 c pT3 1 * c pT1 * 1 T3 T1 * T 4
燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
k 1 1 wn c pT1* (1 k 1 ) ( k 1) k
( 1)压比
一定时,温比 增大,循环比功w 增大(公式上看)。
n
4*
一定时,有一最佳压比 (3) 时, 。

燃气轮机-热力循环

燃气轮机-热力循环

影响理想简单循环 循环比功Ls的重要因素:压比*和温比* 影响
(1)压比

*
*
一定时,温比

*
增大,循环比功 Ls增大。
L
规律:( 2 ) 温比 * 一定时,有一最佳压比 * 使比功最大,

* L


1 * 2m


时,

* L

[

* L


1 * 2m
]
4* 3* 2* 1*
* * p p 存在摩擦和热阻力,总压有所降低 3 2
压降
* * * p B p3 p2 (0.02 ~ 0.08) p2
* p3 压力保持系数 B * 0.92 ~ 0.98 p2
燃烧不完全,燃烧效率B<1.0 (0.90~1.0)
实际吸热量降低 q1=q1sB
* T c pBT1* * (1 *2 * ) T1



组成:2个可逆绝热过程 2个可逆定压过程
1-2s 等熵压缩 3s-4s 等熵膨胀 2s-3s 等压加热 4s- 1 等压放热
q (i i ) Ls
* 2 * 1
1、分析热力过程
q1-2s= 0 压气机消耗的功用来压缩气体,称为压缩功Lcs
①1-2s 压气机中的可逆绝热压缩过程
*k 1 k
)
* * p v图上,LTs 面积3s - 4s - p1 - p2 - 3s
T3*s * T1*
k-1 k
p* T4*s 4s * * T3s p 3s
p1* * p 2
k-1 k

燃气轮机热力循环性能的分析计算

燃气轮机热力循环性能的分析计算

燃气轮机热力循环性能的分析计算【摘要】本文基于热力学第二定律,从能量利用的角度出发,引入无量纲熵参数,对燃气轮机装置热力性能参数进行热力性能完善程度评价与分析,为燃气轮机装置的热力性能优化设计提供技术途径。

【关键词】燃气轮机;热力循环;性能;分析;计算【abstract 】this paper based on the second law of thermodynamics, from the Angle of energy use, introducing the dimensionless parameter entropy, the gas turbine thermal performance parameters device thermal performance perfect degree evaluation and analysis, the device for gas turbine thermal performance optimization design provides technical way.【key words 】gas turbine; Heat engine cycle; Performance; Analysis; calculation1 引言二十世纪80年代以来,燃气轮机热力循环方面的研究取得了长足的进步,其中热点之一是注蒸汽燃气轮机循环的研究。

它不仅具有高效率、高比功的特点,而且它在变工况性能、污染控制等方面的优越性也倍受国内外研究者的青睐。

目前世界上正研制和开发的、比较先进的燃煤发电技术是整体煤气化联合循环和增压流化联合循环。

本文将整体煤气化联合循环中的先进燃煤技术与注蒸汽循环结合起来,对循环进行了热力学分析计算,就各参数对循环性能的影响进行了探讨。

2循环过程简介煤在气化炉中形成粗煤气,经过热交换器,降温放热以加热给水产生回注用蒸汽,再经过脱硫、除尘变为洁净煤气,作为循环所用的燃料进入燃烧室。

燃气轮机原理 第二章 循环理论2-3&2-4&2-5

燃气轮机原理 第二章 循环理论2-3&2-4&2-5

3).等压放热过程(4-1)放出的热量
q2, 41 = Cp(T4 − T1 ) = Cp( T3
k −1 k

π
− T1 ) = CpT1 (
τ π
k −1 k
− 1)
等温压缩理想燃气轮机循环的比功为
wi ' = q1, 2 ' 3 − q2,12 ' − q2, 41 ⎡ ⎤ 1 k −1 ln π ⎥ = CpT1 ⎢τ (1 − k −1 ) − k ⎢ ⎥ π k ⎣ ⎦
k −1 k
τ一定的条件下,π越小,ηt,R,i越高。原因是: π越小,压气机出口温度也越低,在回热器中排气 余热就利用得越充分。然而,很低的π对循环来讲 是没有意义的。 π增加,ηt,R,i下降。当π增加到使T2=T4时,排气余 热无法利用,理想回热循环退化为理想简单循环。 此时的压比定义为临界增压比πcr。
根据达到临界增压比πcr的条件: T2 = T4, 则有:
T 1 ( π cr )
k −1 k
=
T3
( π cr )
k −1 k
π cr = τ
k 2 ( k −1 )
此时,理想回热循环的热效率为:η t ,R ,i = 1 −
1
( π cr )
k −1 k
理想回热循环蜕化为理想简单燃气轮机循环。
虚线代表简单理想燃气轮机循环的比功
1
π
将π1=π1/2代入比功 表达式,可求出τ 值一定时比功达最 大值的总的最佳增 压比πWmax,opt
对热效率进行类似分析,存在一个使热效 率达到最大值的总的最佳增压比πηmax,opt, 且存在
πηmax,opt > πWmax,opt

燃气轮机的工作原理

燃气轮机的工作原理

燃气轮机的工作原理燃气轮机是一种将化学能转化为机械能的热能转换装置。

它利用燃料燃烧产生的高温高压气体来驱动涡轮,使其旋转,从而带动轴上的负载实现能量转换。

燃气轮机具有高效率、简单结构、启动迅速等优点,在发电、航空、船舶等领域得到广泛应用。

燃气轮机的工作原理可以分为四个基本过程:压缩、燃烧、膨胀和排气。

首先是压缩过程,燃气轮机的空气与燃料混合物首先经过一个压缩机。

压缩机将大量空气压缩成高压气体,并相应提高了气体的温度。

接下来是燃烧过程,压缩后的气体进入到燃烧室中。

燃烧室内喷入燃料并点燃,燃烧产生的高温高压气体使得燃气轮机的温度和压力急剧上升。

然后是膨胀过程,高温高压气体经过燃气轮机上的涡轮膨胀工作。

膨胀工作使得涡轮旋转,并将能量转化为机械能,用于驱动轴上的负载工作,如发电机、风扇,或直接驱动船舶等。

最后是排气过程,膨胀后的低温低压气体通过排气系统排出。

有些燃气轮机还可以利用废热产生蒸汽,用于热能回收,提高系统热效率。

燃气轮机的工作过程遵循热力学循环原理,通常采用布雷顿循环或奥特曼循环。

布雷顿循环是最常见的循环方式,它包括四个过程:压缩、燃烧、膨胀和排气。

压缩和膨胀过程是等熵过程,燃烧过程是定压过程,排气过程是等熵过程。

燃气轮机的性能主要由压缩比、热效率和功率密度等指标衡量。

压缩比是指压缩机出口气体的最高压力与进口气体的压力之比。

热效率是指燃气轮机输出功率与供给燃料热值之比。

功率密度是指单位体积或单位质量内燃气轮机的输出功率。

燃气轮机的工作原理可以通过物理、化学和热力学原理来解释。

其中燃烧过程涉及到燃料的氧化反应,其化学反应方程式为燃料加氧气生成二氧化碳、水和燃烧产物的能量。

燃气轮机的性能与内外部参数的优化调整密切相关,包括空气与燃料的混合比例、压缩机和涡轮的设计和材料选择等。

总之,燃气轮机是一种通过燃料燃烧产生动力并转换为机械能的装置。

它基于燃烧室、涡轮和压缩机等组件,以压缩、燃烧、膨胀和排气的工作原理实现能量转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

36
回热循环
回热器(R):Regenerator
37
理想
38
回热循环: 优点:提高热效率
缺点:1、尺寸大,增加维护费用
2、不适用高压比燃机
39
间冷循环
中间冷却器(IC):Intercooler
40
理论上,间冷次数无穷多时,压缩过程 就变为等温压缩,压缩耗功降至最低, 循环比功增加最多。 最佳压比分配使循环比功最大
基于负荷估算,负荷变化的思考,
发电功率100%--70%---50%,T3,压比,温度,流量的变化
25
二、航空燃机的热力循环
26
燃机热力循环的相似性
涡轮喷气发动机的飞机
28
涡轮风扇发动机的飞机
29
涡轮螺旋桨发动机的飞机
30
涡喷发动机
31
32
涡扇发动机
33
涡桨发动机
34
35
三、燃机的复杂热力

单轴布置的不足之处是不能采用前 期安装简单循环的燃气轮机,先行 投入运行。而后期建设增加蒸汽循 环的分期建设方案,也基本上不适 用于对已有的汽轮发电机组进行提 高效率、增大容量的技术改造。
69
多轴布置

多轴布置能适应燃机(简单循环) 前期先上、后期再上蒸汽循环的分 期建设需要,运行灵活性好。多轴 布置能适应对老电厂己有机组的技 术改造,能满足各种不同用户的需 要。
70
多轴联合循环电厂厂房布置
71
多轴联合循环电厂
72
Generator loads
73
74
75
余热锅炉型联合循环电厂(多轴)
76
77
78
END
79
GUD是德文Gas und Dampf的缩写,意 为“燃气和蒸汽”
67
单轴布置

单轴联合循环机组具有以下优点:
①系统简化,设备费用降低; ②变工况下效率下降较少; ③控制系统简化; ④运行维护简化; ⑤高的可靠性和利用率。

因而,近年来被迅速推广应用,特 别是在新一代大功率联合循环中广 泛采用单轴机组。


透平轴向排气可降低排气损失,提高机组效率,降低 厂房高度; 加强透平排气的对称性,有利于余热锅炉的设计和快 速启停机。

60
【3】单轴布置两种方式

单轴布置只有一台发电机 及相关的输变电设备,余 热锅炉一般不需加装旁通 烟囱和挡板,同时使辅助 设施(如冷却水系统)可 以统一布置,使设备简化, 布置紧凑,厂房面积小, 土建成本降低,使整个电 厂紧凑高效,电站投资降 低。西门子公司认为,单 轴机组设备造价可比多轴 机组低约5%。
• 特征:
– – – – – – – 是热效率最好的一种方式。 启动时间短。 由较小容量的设备构成,容易起停和调整出力。 燃气轮机与总出力的出力比例为2/3,比较大。 单位出力的温排水量少。 最大出力根据大气温度变化。 汽轮机不能单独运行。
53
余热锅炉型联合循环(单轴)
54
余热锅炉型联合循环(多轴)
55
【1】单轴、分轴;“几拖一”
56
【2】冷端输出与热端输出

冷端输出: 当发电机由温度变化较小的压气机端驱动 例如:Siemens KWU、Siemens WH、Alstom的重型燃 气轮机,GE公司近年推出的F、FA、H系列燃气轮机也 采用这种方式。 热端输出: 采用透平排气端连接发电机的方式通常叫做,例如: GE公司的MS6001B、MS9001E系列燃气轮机采用。
61
单轴联合循环机组轴系
62
单轴联合循环机组轴系
位于发电机和汽轮机之 间的自同步离合器,大大提 高了电厂运行灵活性。由于 离合器的采用,在启动过程 中,燃机可以先按简单循环 方式启动和运行,汽轮机处 于脱开状态。一旦汽轮机转 速升至额定转速,离合器就 自动同步燃气轮发电机和汽 轮机。由此实现更短的启动 和停机时间,更短的维修停 运时间和更高的净出力系数。 63
41
间冷循环:
优点:提高比功 缺点: 1、增加了冷却器设备 2、间冷循环宜选取较高的压比 3、一般只能用一次
42
再热循环
43
Alstom GT24 / 26
M701F3 270MW 17 压比 1290摄氏度 GE 9351FA 256MW 15.4 压比 1318摄氏度
GT 26 265MW 30压比 1235摄氏度
= 580MW - 267MW = 313MW
基于负荷估算,负荷变化的思考, 发电功率100%--70%---50%,T3,压比,温度,流量的变化
24
型 号 GE PG9351 (FA)
首台 ISO额定功率 年份 KW
压比
流量 kg/s
透平前 温度 ℃
进气温 度 ℃
排气温 度 ℃
1996
255600
1. 2. 3. 4. 5. 压比 温比 比功 单机功率 热效率
4
1、压比
压气机出口的气体压力P2*与进口的气体压力 P1*之比值,反映工质被压缩的程度。
5
2、温比
温比是指循环最高温度t3*(燃气初温)与 最低温度t1*之比值。
燃气初温: 在第一级喷嘴 后缘平面处的 燃气的平均滞 止温度
6
3、比功 比功是指相应于进入燃气轮机的每lkg 空气,在燃气轮机中完成一个循环后所能 对外输出的功。
燃料的热值是指单位燃料在量热计中燃烧后测得 的热量数值。由于燃料燃烧产物中的H2O在冷凝 的过程中会放出潜热包括在量热计所测的数值中,
所以测出的数值称为高热值。这部分潜热在发动
机中是无法利用的,因此要将这部分热量从高热 值中减去。燃料在气缸中燃烧后发出的有效热量 称为低热值。
12
• 热耗率 机组每输出产生l kW· h的功需要多 少焦耳的热量。
同步离合器使燃气轮机能 保持其灵活的运行特性, 还可以补偿轴系膨胀。 快速变负荷能力增加了 电厂效益,尤其是当电网 需要调峰和短时稳频运行 时,电厂可以快速回应电 网需求,为用户带来额外 的收益,因为峰电具有更 高的电价。
单轴联合循环电厂蒸汽系统
64
单轴联合循环电厂厂房布置
65
66
单轴联合循环电厂布置图
9
5、热效率
当工质完成一循环时,把外界加给工质的热量
转化成为机械功或电功的百分数。 有三种计算方法:
10
q
: 每1kg空气,加给机组的热量;
f
: 每1kg空气,加入的燃料量;
Hu :燃料的低热值; Gf :每秒钟加给机组的燃料量; PGTG:单机输出电功率
11
什么是燃料的低热值?燃料的高热值?

注:GE热端输出调整为冷端输出时付出了沉重的代价
57
58
59
冷端输出(结合推力轴承和绝对死点)的好处

机组对外输出端运行时因温度较低,相对位移较小, 有利于安全运行。 推力轴承的油量大(为支持轴承的2~2.5倍),回油 不需要通过高温的外壁引出(热端输出时),处于低 温部分,这样无论对轴承座的设计或回油管的布置都 比较有利。
• 油耗 每产生lkW· h的功所消耗的标准燃 油(是指发热量为43124kJ/kg的燃油) 的克数。
13
• 某发电厂平均生产1度电需消耗350克标准 煤,已知标准煤的热值为29308kJ/kg,试 求这个电厂的平均热效率是多少? 收益:1度电=1kW· h=1kJ/s×3600s=3600kJ 代价:350克标准煤发热量 =0.35kg×29308kJ/kg=10257.8kJ
第二部分 燃机相关热力循环
第一章 发电燃机的热力循环
第二章 航空燃机的热力循环
第三章 燃机的复杂热力循环 第四章 燃气-蒸汽联合循环
1
燃料
燃烧室
燃气轮机发电装置示意图
1800-2300K 3 2
压气机
q1
涡轮(透平) 发电机

q2
1 进气口
4 排气
2
一、发电燃机的热力循环
热力系统 示意图
3
电站燃气轮机循环的主要性能指标
48
1-2过程 2-3过程 3-4过程 4-5
燃机压气机 燃机燃烧室 燃机透平
余热锅炉 燃气
C-平-a 余热锅炉 水-蒸汽 a-b b-c 余热锅炉就是换热器! 汽轮机 凝汽器
49
余热锅炉换热应用逆流还是顺流?
50
51
52
余热锅炉型联合循环
• 余热利用方式
– 把燃气轮机做完功的排气引入余热锅炉,回收其余热,以产生蒸汽, 来驱动汽轮机的方式,这是联合循环发电最为简单的一种方式,也 是在国内外,引用数量最多的一种方式,通常说起联合循环发电, 就多指这种方式。
wnet 3600 35.10% 热效率: t q1 10257.8
14
• 某燃机电厂,燃机发电效率39%,天然气 热值37700KJ/Nm3,天然气密度0.6kg/m3 求:平均生产1度电需消耗天然气的质量? 收益:1度电=1kW· h=1kJ/s×3600s=3600kJ
15
16
燃气轮机理想简单循环性能分析
17
理想简单循环比功
如何提高燃机的比功和效率?
18
实际简单循环性能分析
19
实际简单循环性能分析
3 T 3!
4! 2 2!
4
1
1!
s
20
21
燃烧室的损失主要表现在那两个方面,目前的 情况怎样?
22
燃气轮机输出功率的计算
为什么涡轮进口燃气的流量比压气 机中的空气流量大?
15.4
624
1327
15
609
= 624*1004*1600*(1-0.5076)*0.90 – 624*1004*288*(2.184-1)/0.88
相关文档
最新文档