01燃气轮机热力循环原理

合集下载

燃气轮机装置的工作原理

燃气轮机装置的工作原理

燃气轮机装置的工作原理燃气轮机装置是一种比较新型的动力装置。

最简单的燃气轮机装置包括三个主要部件:压气机、燃气轮机和燃烧室,下图是其流程示意图。

空气和燃料分别经压气机与泵增压后送入燃烧室,在其中燃料与空气混合并燃烧,释放出热能。

燃烧所产生的燃气吸热后温度升高,然后流入燃气轮机边膨胀边作功,作功后的气体排向大气并向大气放热。

重复上述升压、吸热、膨胀与放热过程,连续不断地将燃料的化学能转换成热能,进而转换成机械能。

第一章概述1. 1 燃气轮机简介燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。

走马灯(见图1—1)是燃气轮机的雏形,我国在11世纪就有走马灯的记载,它靠蜡烛在空气中燃烧后产生的亡升热气推动顶部风车及其转轴上的纸人马一起旋转。

15世纪末,意大利人列奥纳多·达芬奇设计的烟气转动装置,其原理与走马灯相同。

现代燃气轮机发动机主要山压气机、燃烧室和透平三大部件组成。

当它正常丁作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功转化的热力循环。

图1—2所示为开式简单循环燃气轮机工作原理图。

压气机从外界大气环境吸人空气,并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷人的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后图l—1 走马灯是工质放热过程,透平排气可直接排到大气,自然放热给外界环境,也可通过各种换热没备放热以回收利用部分余热。

在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。

一般,透平的膨胀功约2/3用于带动压气第1页机,1/3左右才是驱动外界负荷的有用功。

燃气轮机有重型与轻型两类结构型式,重型的零部件较厚重,设计寿命与大修寿命都长;轻型的结构紧凑而轻,所用的材料较好,但寿命较短。

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施

燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施专业:热能与动力姓名:学号:燃气轮机热力循环的分类与改善燃气轮机性能的热力循环措施摘要:燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。

本文主要介绍了燃气轮机的工作原理,基本结构,热力循环的分类及热力循环措施。

关键词:燃气轮机分类性能改善引言:燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。

燃气轮机是一种先进而复杂的成套动力机械装备,是典型的高新技术密集型产品。

作为高科技的载体,燃气轮机代表了多理论学科和多工程领域发展的综合水平,是21世纪的先导技术。

发展集新技术、新材料、新工艺于一身的燃气轮机产业,是国家高技术水平和科技实力的重要标志之一,具有十分突出的战略地位。

正文:燃气轮机(Gas Turbine)是一种以连续流动的气体作为工质、把热能转换为机械功的旋转式动力机械。

在空气和燃气的主要流程中,只有压气机(Compressor)、燃烧室(Combustor)和燃气透平(Turbine)这三大部件组成的燃气轮机循环,通称为简单循环,如图1。

大多数燃气轮机均采用简单循环方案。

因为它的结构最简单,而且最能体现出燃气轮机所特有的体积小、重量轻、起动快、少用或不用冷却水等一系列优点。

一、工作原理压气机从外界大气环境吸入空气,并经过轴流式压气机逐级压缩使之增压,同时空气温度也相应提高;压缩空气被压送到燃烧室与喷入的燃料混合燃烧生成高温高压的燃气;然后再进入到透平中膨胀做功,推动透平带动压气机和外负荷转子一起高速旋转,实现了气体或液体燃料的化学能部分转化为机械功,并输出电功。

从透平中排出的废气排至大气自然放热。

这样,燃气轮机就把燃料的化学能转化为热能,又把部分热能转变成机械能。

通常在燃气轮机中,压气机是由燃气透平膨胀做功来带动的,它是透平的负载。

燃气轮机的实际热力循环

燃气轮机的实际热力循环
燃气轮机的实际热力循环
作者:水之北
1. 燃气轮机的实际循环 1.1. 燃气轮机的实际循环如图 1 的实线所示,包括四个热力过程:
n n n
熵增的多变压缩过程:空气从 p1 压缩至 p2; 略有压降的的加热过程:燃烧后的烟气温度从 T2 升至 T3,压力从 p2 略降至 p3; 熵增的多变膨胀过程,热烟气从 p3 膨胀至 p4=p1,烟温从 T3 降至 T4; 等压放热过程,膨胀后的烟气从 T4 冷却至 T1。
h 02 h 01 1 h 02s h 01 c
(1)
其中ηc 是压气机的效率。那么:
h 02 h 02s 1 c h01 c
~1~
(Байду номын сангаас)
过程 1—2 的空气压缩功为:
L c 1 h 02 h 01
(3)
2.2. 略有压降的加热过程 2—3 已知参数:p2,T2,T3; 求解参数:p3,q2-3。 设燃烧室总压恢复系数为 σb,则:
(8)
将(8)带入(5) ,得到:
mf h 03 h 02 b H f K 03h 03 h f 2
(9)
2.3. 熵增膨胀过程 3—4 已知参数:p3,T3,p4; 求解参数:T4。
~2~
与式(1)类似,3—4 的等熵和熵增过程之间的关系为:
h g3 h g4 T h g3 h g4s h g4 1 T h g3 h g4s
p3 b p2
(4)
设喷油量为 mf,燃油的低发热值为 Hf,燃烧室燃烧效率为ηb,则:
q 23 b m f H f m f h f 2 1 m f h g3 h 02
(5)

《燃气轮机与联合循环》第二章 燃气轮机的热力循环解析

《燃气轮机与联合循环》第二章 燃气轮机的热力循环解析

燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
(3)燃烧过程有不完全燃烧损失
燃烧不完全,燃烧效率b<1.0 (0.96~0.99)
实际吸热量降低
qb b f Hu
qb f Hu
(4)比热容是随温度变化的,空气和燃气的 等熵指数是不一样的。
燃气轮机与联合循环
能源与动力学院
T3 T2
循环增温比
3-4 等熵膨胀(燃气透平内) 4-1 定压放热(排气,假想换热器)
燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
假设条件:
工质为理想气体; 热力过程均是可逆的,无能量损耗; 工质的比热容和流量不变。
组成:2个可逆绝热过程 2个可逆定压过程
1-2s 等熵压缩 3s-4s 等熵膨胀 2s-3s 等压加热 4s- 1 等压放热
燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
一、实际循环与理想循环的差别
(2)工质流动过程是有压力损失的
* * * * * * p0 p1 , p2 p3 , p4 p0 pc 压气机进气道压损率: c * 0.01-0.015 p0
燃烧室压损率: 0.03-0.06
用滞止温度(总温)表示:
T T
* 3 * 1
决定循环性质的最重要参数
愈高,性能愈好,但对耐高温材料或冷却技术的要求越高。
燃气轮机与联合循环 能源与动力学院
第二章 燃气轮机的热力循环
二、性能指标
1、比功和功率
比功w—单位质量工质所做的功,kJ/kg; wc—压气机的比功, kJ/kg; wt —涡轮比功, kJ/kg。 功率N—单位时间内工质所做的功,kW。

第3章 燃气轮机热力循环-4.

第3章  燃气轮机热力循环-4.

3.1.2燃气轮机热力循环的性能参数
(1)标准额定功率 (2)合同额定功率 (3)现场额定功率 (4)尖峰功率 通常将前三项统称为基本负荷。 ANSI B1336“额定值及性能”将基本负荷 定义为:每年运行8000h和每次启动运行800h。 而将尖峰负荷定义为:每年运行1250h和每次 启动运行5h。
§3.1.1燃气轮机热力循环
开式循环燃气轮机从大气连续地吸取空气 作工质,经过压缩、加热、膨胀作功后排回大 气放热而不断地循环工作。膨胀过程所作的功, 要扣除压缩过程耗功及其它损耗所需的耗功之 后才是装置的输出功。开式循环燃气轮机通常 采用内燃方式加热,把燃料直接喷入空气工质 中燃烧。
开式循环燃气轮机
燃气轮机排气温度较高,可达500℃左右, 因此还可利用其热量来加热压缩后的空气,从而 在燃烧室加热时就可节省一部分燃料,故能较多 地提高装置效率,这种循环称为回热循环。燃气 轮机还能采用把间冷、回热和再热组合起来的复 杂循环以提高性能。也可同其它工作循环结合起 来提高综合经济性能,例如涡轮增压柴油机循环、 燃气蒸汽联合循环和化工流程燃气轮机循环等。
(二)压比
π=P2*/ P1*
压比π是压气机出口气体全压P2*与进口气体全 压P1* 之比值。
§3.2燃气轮机理想简单循环分析
• §3.2.1燃气轮机理想简单循环 • §3.2.2燃气轮机理想简单循环分析
§3.2.1燃气轮机理想简单循环
所谓理想简单热力循环是指循环中的工质假 定为满足气体状态方程的理想气体,并认为在 理想热力循环中所进行的各热力过程,除了有 不可避免的给冷源的放热损失外,和外部介质 既不发生热量的交换,也不存在摩擦损失。
3.3.1提高燃气轮机热效率的措施
理想回热循环的比功仍用式(2-4)计算。由

内燃机热力循环-打印版

内燃机热力循环-打印版

内燃机热力循环一、燃气轮机循环燃气轮机理想循环为布雷顿循环(Brayton Cycle) ,它是工质连续流动做功的一种轮机循环,如图1所示 。

它既可作内燃布雷顿循环,又可作外燃布雷顿循环。

内燃的布雷顿循环为开式循环,常用工质为空气或燃气。

外燃的布雷顿循环是闭式循环,通过热交换器对工质加热,在另一热交换器排出工质余热。

循环过程为:工质在压气机中等熵压缩1-2,在燃烧室(或热交换器中)等压加热2-3 ,在燃气轮机中等熵膨胀3-4和等压排气4-1 。

图1 燃气轮机循环燃气轮机循环的指示热效率为11k k i c ηπ-=-式中,c π为压气机中气体的压比,k 为比热比。

燃气轮机开式循环常与内燃机基本循环配合使用。

二、涡轮增压内燃机热力循环将涡轮增压技术(或燃气轮机技术)应用到内燃机上是内燃机循环的一项重大技术发展。

一方面内燃机希望获得更多的进气(或可燃混合气)充量,以提高内燃机的功率和热效率;另一方面从内燃机排出的高温、高压废气能导入燃气涡轮中再作功,推动与燃气涡轮相连(同轴)的压气机来提高进气(或可燃混合气)的压力供给内燃机,这样就成为涡轮增压内燃机。

涡轮增压内燃机有等压涡轮和变压涡轮两种系统,它们的热力循环也有所不同。

1.恒压涡轮增压内燃机热力循环图2是等压涡轮增压内燃机热力循环。

它由内燃机基本循环1→2→3’→3→4→1和燃气轮机循环7→1→5→6→7组成。

图2 等压涡轮增压内燃机热力循环压气机将气体从状态7(大气压力p0)等熵压缩到状态1(压力为p s)之后进入内燃机。

按内燃机热力循环到达状态4。

气体在排气过程进入等压涡轮时由于排气门的节流损失和排气动能在排气总管内的膨胀、摩擦、涡流等损失而变成热能,气体温度升高,体积膨胀而到达状态5。

气体从4→5 这部分能量没有利用,对内燃机来说相当于从状态4直接回到状态1。

气体在等压涡轮中从状态5等熵膨胀到状态6,然后排入大气。

2 .变压涡轮增压内燃机热力循环变压涡轮增压内燃机热力循环如图3 。

燃气轮机-热力循环

燃气轮机-热力循环

p* T2*s 2 * * T1 p 1
k-1 k

k 1 * k
q (i i ) Ls
* 2 * 1
②2s-3s 燃烧室中的等压加热过程 从外界吸收的热量为q1 与外界没有功的交换 L2s-3s= 0 ;
q1 q2s3s i i
* 3s
三、实际简单循环
特点:
热力过程中有各种能量损耗,是不可逆的; 工质的热力性质和数量因燃烧而变。

假定条件(为便于与理想循环比较):
①具有相同的压比C*和初始温度T1* ;
②涡轮前燃气初温相同, T3* = T3s* ; ③环境参数均为p0、T0, 即p1* = p0 、T1* = T0 。




LCs 1 LTs
1
c p (T2*s T1* ) c p (T T )
* 3 * 4s
1
T1* ( π* - 1) T (1 - π
* * 1
m
*m
)
= 1- *m/* = f(*,*)
规律: (1) 压比 *一定时 , 随温比 *增加而增加 ; (2) 温比 *一定时 , 随压比 *增加而减少 。
* 2 * 1
④4s-1 大气中的等压放热过程
与外界没有功的交换 L4s-1= 0 ;向外界放出的热量为q2
* * q2 q4s1 i4 i s 1 kJ/kg
q1
c p (T T )
* 4s * 1
c pT1* ( π
k 1 * * k
-1)
q2
k 1 T4*s * k * T3s
复习内容


1、什么是稳定流动?其条件是什么?

燃气轮机热力计算方法

燃气轮机热力计算方法

燃气轮机热力计算方法燃气轮机是一种常见的热力动力装置,其基本原理是通过燃烧燃料产生高温高压气体,然后利用这些气体的能量驱动轴上的涡轮旋转,最终将能量转化为机械功。

燃气轮机的热力计算方法主要包括燃烧过程的热力分析和性能参数的计算。

下面将从这两个方面进行详细介绍。

1.燃烧过程的热力分析:燃烧过程是燃气轮机中最重要的能量转换过程之一、其基本步骤包括燃料的混合、燃烧和燃气的膨胀。

热力分析主要涉及燃料的供给、燃烧温度和燃料消耗等方面的计算。

1.1燃料供给计算:燃烧过程中,需要按照一定的比例和速度供给燃料。

燃料供给的计算主要涉及燃烧室内的燃料流量和燃烧温度的特点。

根据燃烧室的结构和燃烧运行参数,可以通过质量守恒和能量守恒等原理计算燃料供给的量。

1.2燃料燃烧计算:燃料在燃烧室内与空气发生化学反应,产生燃烧产物和燃烧热。

燃料燃烧的计算主要涉及燃烧反应的热力学性质和燃烧室内的热量传递过程。

可以通过热力学平衡和改良热力学循环等方法,计算燃料的燃烧温度和热量释放。

1.3燃气膨胀计算:在燃烧过程后,高温高压燃气需要经过涡轮的膨胀工作,将能量转化为机械功。

燃气膨胀计算主要涉及涡轮的热力学特性和流体力学特性。

可以通过欧拉方程和涡轮参数的试验数据,计算燃气的温度降和功率输出。

2.性能参数的计算:燃气轮机的性能参数主要包括热效率、功率输出和燃料消耗等。

这些参数的计算可以根据燃气轮机的热力特性和工作参数进行估算。

2.1热效率计算:热效率是燃气轮机性能评价的重要指标之一、可以通过热力分析的结果,计算燃料的燃烧热和输入热量的比值,即可得到燃气轮机的热效率。

2.2功率输出计算:功率输出是燃气轮机性能的直接体现。

可以通过膨胀过程的分析,计算涡轮的工作参数,如转速和压力比等,然后再结合涡轮的机械效率,得到燃气轮机的功率输出。

2.3燃料消耗计算:燃料消耗是燃气轮机运行成本的重要因素。

根据燃料供给和燃烧过程的计算结果,可以得到燃烧室内的燃料消耗量。

《燃气轮机与联合循环》第二章 燃气轮机的热力循环解析

《燃气轮机与联合循环》第二章 燃气轮机的热力循环解析

第二章 燃气轮机的热力循环
2-3 实际简单循环的特性
特点: 热力过程中有各种能量损耗,是不可逆的;
工质的热力性质和数量因燃烧而变。
假定条件(为便于与理想循环比较): ①具有相同的压比C*和初始温度T1* ; ②涡轮前燃气初温相同, T3* = T3s* ; ③环境参数均为p0、T0, 即p1* = p0 、T1* = T0 。
一、热力参数
1、压比
—说明工质在压气机内受压缩的程度。
—压气机出口的气流压力与其进口的气流压力的比值。
用滞止压力(总压)表示:
p p
燃气轮机与联合循环
* 2 * 1
决定循环性能的重要参数
能源与动力学院
第二章 燃气轮机的热力循环
2、温比
—说明工质被加热的程度。
—透平前进口燃气温度与压气机进 口气流温度的比值
燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
二、性能参数与压比和温比的关系
1、比功与温比压比的关系
wc cp (T2* T1* ) wt cp (T3* T4* )
wn c p (T3* T4* ) c p (T2* T1* ) * T 1 * * 2 c pT3 1 * c pT1 * 1 T3 T1 * T 4
燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
k 1 1 wn c pT1* (1 k 1 ) ( k 1) k
( 1)压比
一定时,温比 增大,循环比功w 增大(公式上看)。
n
4*
一定时,有一最佳压比 (3) 时, 。

燃气轮机-热力循环

燃气轮机-热力循环

影响理想简单循环 循环比功Ls的重要因素:压比*和温比* 影响
(1)压比

*
*
一定时,温比

*
增大,循环比功 Ls增大。
L
规律:( 2 ) 温比 * 一定时,有一最佳压比 * 使比功最大,

* L


1 * 2m


时,

* L

[

* L


1 * 2m
]
4* 3* 2* 1*
* * p p 存在摩擦和热阻力,总压有所降低 3 2
压降
* * * p B p3 p2 (0.02 ~ 0.08) p2
* p3 压力保持系数 B * 0.92 ~ 0.98 p2
燃烧不完全,燃烧效率B<1.0 (0.90~1.0)
实际吸热量降低 q1=q1sB
* T c pBT1* * (1 *2 * ) T1



组成:2个可逆绝热过程 2个可逆定压过程
1-2s 等熵压缩 3s-4s 等熵膨胀 2s-3s 等压加热 4s- 1 等压放热
q (i i ) Ls
* 2 * 1
1、分析热力过程
q1-2s= 0 压气机消耗的功用来压缩气体,称为压缩功Lcs
①1-2s 压气机中的可逆绝热压缩过程
*k 1 k
)
* * p v图上,LTs 面积3s - 4s - p1 - p2 - 3s
T3*s * T1*
k-1 k
p* T4*s 4s * * T3s p 3s
p1* * p 2
k-1 k

01燃气轮机热力循环原理

01燃气轮机热力循环原理

01燃气轮机热力循环原理燃气轮机是一种常用的热机,利用燃气燃烧产生高温高压气体,然后将这种高温高压气体通过涡轮叶片的作用转化为机械能,最后将机械能转换为电能或机械功。

燃气轮机的热力循环原理可以分为以下几个步骤:1.空气进气:燃气轮机的工作气体是空气,空气通过进气道进入燃烧室。

为了提高空气的进气能力,通常会采用压气机将空气压缩,然后再送入燃烧室。

2.燃烧:在燃烧室中,燃料和空气混合燃烧,产生高温高压气体。

这个过程可以通过喷嘴将燃料和空气喷射到燃烧室中,然后点燃燃料。

燃料可以是天然气、柴油、煤气等。

3.膨胀过程:高温高压气体通过涡轮叶片的作用产生转动力,驱动涡轮转动。

同时,气体在涡轮上进行膨胀,降低温度和压力。

涡轮的转动将机械能传给轴承,进而传给发电机或其他负载。

4.排出废气:流过涡轮后的低温废气,被排出燃气轮机系统,可以用于加热水或其他用途,以提高能量利用效率。

废气中仍然有一定能量可以利用。

5.返压涡轮:在一些使用燃气轮机供热和供电的应用中,还可以增加返压涡轮,将排出废气进一步膨胀,降低废气的温度和压力。

这样可以进一步提高系统的热利用效率。

燃气轮机的热力循环原理基于热力学第一定律,即能量守恒定律。

通过燃烧产生的高温高压气体,通过涡轮叶片的作用将热能转化为机械能,然后再将机械能转化为电能或机械功。

这个循环过程中,废气排放出去的同时,仍然有一定的剩余热能可以利用,提高热机的能量利用效率。

燃气轮机的热力循环原理具有以下几个特点:1.高效率:由于燃气轮机能够将热能高效地转化为机械能,再转化为电能或机械功,因此其能量利用效率非常高,一般可达40%~50%以上。

2.快速启动:相比于蒸汽动力系统,燃气轮机的启动时间较短,一般只需几分钟,从而方便应对突发情况和高峰用电需求。

3.环保性好:燃气轮机燃烧的是燃气,相比于传统的煤炭燃烧,废气中的污染物排放较少,对环境污染较小。

总之,燃气轮机的热力循环原理基于燃气的燃烧产生高温高压气体,通过涡轮叶片的作用将热能转化为机械能,最终将机械能转化为电能或机械功。

燃气轮机原理、循环及分析

燃气轮机原理、循环及分析

089339-005
双轴燃机的功率分配
089339-005
影响燃气轮机性能的因素
空气温度-压气机入口温度 安装海拔高度-压气机入口压力 燃料类型 相对湿度 入口和出口损失 性能退化 燃料加热 稀释剂喷注 空气抽取
089339-005
一些参量
L=specific work比功(kj/kg) P=power功率(kw) T=absolute temperature绝对温度(k) p=pressure压力(bar) Cpm=medium specific heat at constant pressure介质质量定压热容(kj/kg*k) G=mass flow per unit time质量流量(kg/sec) Q1=specific heat supplied比热供给(kj/kg) Q2=specific heat discharged比热释放(kj/kg) alpha=Ga/Gf eta=efficiency效率=Lu/Q1; HR=Q1/Lu=heat rate (kj/kwh) c=compressor压缩机 t=turbine透平 u=useful有用 a=air空气; f=fuel gas燃料气; g=gas气体(燃气)
压气机入口温度
入口温度的影响
T
如果T1 升高
2
2’
1’ 1
089339-005
3
3`
4’ 4
Gair 原因:空气密度
S
压比
有用功率 P
G 原因: air
以及 Lu
Lu
原因: Lt 以及 Lc
HR 原因: Lu
089339-005
压气机入口温度
绝对高度
绝对高度(入口压力)的 影响

燃气轮机理想循环

燃气轮机理想循环

燃气轮机理想循环燃气轮机是一种利用燃气燃料产生动力的装置。

它是一种理想的能量转换循环,广泛应用于发电、航空和工业领域。

本文将详细介绍燃气轮机的循环过程以及其特点和应用。

燃气轮机的循环过程包括四个主要步骤:压缩、燃烧、膨胀和排气。

首先,进气口吸入空气,并经过压缩机进行压缩。

压缩机通过旋转叶片将空气加压,提高了空气的能量。

随后,压缩后的空气进入燃烧室,与燃料混合并点燃。

燃烧产生的高温高压气体推动了涡轮,使其旋转并产生动力。

在涡轮中,气体通过涡轮叶片的作用产生动能,并推动涡轮旋转。

涡轮上的动力转换装置(如发电机)便可利用涡轮旋转产生的动力来产生电力。

此时,一部分能量被转化为电能,另一部分则用于带动燃气轮机的压缩机和涡轮。

最后,经过膨胀后的气体流出燃气轮机,形成排气。

这部分气体中的热能和动能都被转化为了机械能,为整个循环提供了动力。

排气中的高温高压气体可以被利用,用于加热水蒸汽进行发电,提高能源利用效率。

燃气轮机的循环具有许多优点。

首先,它具有高效率和快速启动的特点。

相比于传统的蒸汽动力系统,燃气轮机能够更快速地启动和停止,使其在应对电网需求峰值或紧急发电时具有独特的优势。

其次,燃气轮机的排放非常低,利于环境保护。

燃烧过程几乎没有产生固体废物,大大减少了对环境的污染。

此外,燃气轮机的维护比较简单,寿命较长,减少了运营成本。

由于这些优点,燃气轮机在各个领域都有广泛的应用。

在发电领域,燃气轮机可以用于基础电力与备用电力系统,提供稳定可靠的电力供应。

在航空领域,燃气轮机被广泛应用于喷气式飞机,提供高效可靠的飞行动力。

在工业领域,燃气轮机可以用于驱动压缩机、泵和发电机,满足各种生产和能源需求。

总之,燃气轮机是一种理想的能量转换循环,具有高效率、快速启动、低排放和简单维护的特点。

它在发电、航空和工业领域都有广泛的应用,并为能源转型和环境保护做出了贡献。

未来,随着技术的不断发展,燃气轮机将继续发挥重要作用,为人类的生活和工作带来更多便利和可持续的能源。

燃气轮机工作原理

燃气轮机工作原理

燃气轮机工作原理
燃气轮机是一种将燃料的化学能转化为机械能的设备。

其工作原理基于布雷顿循环原理,包括压缩、燃烧和膨胀三个过程。

在压缩过程中,气流通过压气机被压缩,使其温度和压力升高。

这一过程增加了气流的能量,并将气流推向燃烧室。

在燃烧过程中,压缩后的气流进入燃烧室,与燃料混合并点燃。

燃烧产生的高温高压气体使气流膨胀,并进一步增加气流的能量。

在膨胀过程中,燃烧产生的高温高压气体推动涡轮旋转,涡轮通过轴将机械能传递给外部设备,如发电机或驱动直接驱动设备。

最后,膨胀后的气流排出,进入排气系统,排放到大气中。

整个过程是连续进行的,通过燃料的不断供应和气流的循环,燃气轮机能够持续地转化燃料的能量为机械能,实现能源转换。

01燃气轮机热力循环原理

01燃气轮机热力循环原理

14:33:55
59
14:33:55
60
涡扇发动机
• 涡扇与涡喷发动机工作原理的区别 • 涡扇发动机推进效率高的原因是什么? • 涡扇发动机的热力循环
14:33:55
61
涡桨发动机
• 涡桨与涡喷、涡扇发动机的主要区别 • 涡桨发动机的热力循环
14:33:55
62
一. 燃气轮机简单循环热力过程 二. 燃气轮机的复杂循环 三. 航空燃气轮机循环 四. 燃机热力循环计算方法
取决于循环增压比,并随着π的增大而增加。
实际简单循环性能分析
14:33:55
30
14:33:55
31
比较图7.7 和图7.2 比较图7.8 和图7.4 比较图7.7 和图7.8
14:33:55
32
压气机和涡轮的效率
对比功的影响,谁更大一些? 目前,压气机和涡轮的效率范围
14:33:55
33
燃烧室的损失主要表现 在那两个方面,目前的 情况怎样?
压气机出口 = 燃烧室进口 ? 透平进口 = 燃烧室出口 ?
14:33:55
6
电站燃气轮机循环的主要性能指标
1. 压比 2. 温比 3. 比功 4. 单机功率 5. 热效率
14:33:55
7
1、压比
压气机出口的气体压力P2*与进口的气体压力 P1*之比值,反映工质被压缩的程度。
14:33:55
8
2、温比
温比是指循环最高温度t3*(燃气初温)与 最低温度t1*之比值。
14:33:55
9
3、比功
比功是指相应于进入燃气轮机的每lkg 空气,在燃气轮机中完成一个循环后所能 对外输出的功。
比功反映燃机哪方面信息?

燃气轮机原理概述及热力循环

燃气轮机原理概述及热力循环
中排放的气体在透平中膨胀作功的装置。 7、1939年,瑞士制成了效率达18%的4兆瓦发电用燃气轮机
(简单循环);德国生产装有涡轮喷气发动机的第一架飞机 试飞。 8、1941年,瑞士BBC制造的第一辆燃气轮机车通过了交货试 验。 9、1947年,英国制造的第一艘装备燃气轮机的舰艇下水。 10、1950年,英国制成第一辆燃气轮机汽车。
[3]、《燃气-蒸汽联合循环的理论基础》.焦树建主编.北 京:清华大学出版社,2003.11
焦树建 2007.8
黄庆宏 2005.11
第一章 概述
第一节 燃气轮机简介 第二节 国外燃气轮机的发展和应用
概况 第三节 我国燃气轮机的简况
第一节 燃气轮机简介
一、燃气轮机的定义及组成
忽略机械损失时,燃气轮机比功Wn近似等于透平比功 与压气机比功之差,即 :Wn=WT-Wc (反应同样工质流量和装置尺寸下燃气轮机的功率。)
–(2)燃气轮机的热效率η ——装置输出功与输入的燃料能量之比,即: η=Wn/qb=Wn/(f×Hu) 式中:f —燃料空气比;Hu —每千克燃料的低热值。 (反应将燃料能量转化为机械功的热经济性。)
鉴于我国目前的电力发展及其分布不很均衡以及微型燃 气轮机的技术特点及其优越性,微型燃气轮机将在我国 得到广泛的重视与应用。此外,微型燃气轮机在民用交 通运输(混合动力汽车)以及军车以及陆海边防方面均 具有优势,受到美、俄等军事大国的关注,因此,从国 家安全看发展微型燃气轮机也非常重要。
五、当前世界上发电用工业型燃气轮机 技术派系 --四大体系
——基于革命性新材料的构思中的更新一代 的燃气轮机。
微型燃气轮机 (Microturbine或Micro一turbines)
一类新近发展起来的小型热力发动机,其单机 功率范围为25~300 kW。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14:33:55
67
以上有不当之处,请大家给与批评指正, 谢谢大家!
68
14:33:55
43
间冷循环
中间冷却器(IC):Intercooler
14:33:55
44
理论上,间冷次数元穷多时,压缩过程 就变为等温压缩,压缩耗功降至最低, 循环比功增加最多。
最佳压比分配使循环比功最大
14:33:55
45
间冷循环:
优点:提高比功 缺点:
1、增加了冷却器设备 2、间冷循环宜选取较高的压比 3、一般只能用一次 4、降低热效率
14:33:55
15
5、热效率 当工质完成一循环时,把外界加给工质的热量
转化成为机械功或电功的百分数。 有三种计算方法:
14:33:55
16
q : 每1kg空气,加给机组的热量;
f : 每1kg空气,加入的燃料量;
Hu :燃料的低热值;
Gf :每秒钟加给机组的燃料量;
PGTG:单机输出电功率
14:33:55
14:33:55
59
14:33:55
60
涡扇发动机
• 涡扇与涡喷发动机工作原理的区别 • 涡扇发动机推进效率高的原因是什么? • 涡扇发动机的热力循环
14:33:55
61
涡桨发动机
• 涡桨与涡喷、涡扇发动机的主要区别 • 涡桨发动机的热力循环
14:33:55
62
一. 燃气轮机简单循环热力过程 二. 燃气轮机的复杂循环 三. 航空燃气轮机循环 四. 燃机热力循环计算方法
压气机出口 = 燃烧室进口 ? 透平进口 = 燃烧室出口 ?
14:33:55
6
电站燃气轮机循环的主要性能指标
1. 压比 2. 温比 3. 比功 4. 单机功率 5. 热效率
14:33:55
7
1、压比
压气机出口的气体压力P2*与进口的气体压力 P1*之比值,反映工质被压缩的程度。
14:33:55
8
14:33:55
46
再热循环
14:33:55
47
理论上,再热次数元穷多时,膨胀过程 就变为等温膨胀,膨胀功达到最大,循 环比功增加最多。
最佳膨胀比分配使比功最大
14:33:55
48
再热循环:
优点:提高比功 缺点:
1、增加了再热燃烧室设备 2、再热循环宜选取较高的压比 3、一般只能用一次
14:33:55
发电机能够保证的出力。
14:33:55
13
单机功率
• 现场额定功率 指在燃气轮机发电厂所处的当前环境
的条件下,诸如大气压、大气温度、压力 损失等条件下的最大持续功率。
14:33:55
14
单机功率
• 尖峰功率 在规定的运行条件下,保持一个约定
的短时间内,燃气轮机以高于连续额定功 率安全运行的最大功率。
取决于循环增压比,并随着π的增大而增加。
实际简单循环性能分析
14:33:55
30
14:33:55
31
比较图7.7 和图7.2 比较图7.8 和图7.4 比较图7.7 和图7.8
14:33:55
32
压气机和涡轮的效率
对比功的影响,谁更大一些? 目前,压气机和涡轮的效率范围
14:33:55
33
燃烧室的损失主要表现 在那两个方面,目前的 情况怎样?
17
什么是燃料的低热值?燃料的高热值?
燃料的热值是指单位燃料在量热计中燃烧后测得 的热量数值。由于燃料燃烧产物中的H2O在冷凝 的过程中会放出潜热包括在量热计所测的数值中, 所以测出的数值称为高热值。这部分潜热在发动 机中是无法利用的,因此要将这部分热量从高热 值中减去。燃料在气缸中燃烧后发出的有效热量 称为低热值。
2、温比
温比是指循环最高温度t3*(燃气初温)与 最低温度t1*之比值。
14:33:55
9
3、比功
比功是指相应于进入燃气轮机的每lkg 空气,在燃气轮机中完成一个循环后所能 对外输出的功。
比功反映燃机哪方面信息?
WGT 与 WT 和 WC 的关系?
14:33:55
10
4、单机功率
燃气轮发电机组的输出电功率PGTG,为
14:33:55
54
涡轮螺旋桨发动机的飞机
14:33:55
55
涡喷发动机
14:33:55
56
14:33:55
57
涡喷发动机
• 涡喷发动机的工作原理 • 涡喷发动机的进口与地面燃机的进口:
气流流动有何不同? • 涡喷发动机的热力循环 • 涡喷发动机可采用何种复杂循环?
14:33:55
58
涡扇发动机
c
pT4
T3 T4
1
c pT4
p3 p4
k
1
c pT4
p2 p1
k
1
k 1
cpT4( k 1)
由: 可得:
WwGT0
cp
[T3
(1
1
( 1)
/
) T1( ( 1)/
1)]
此式说明,当温度T3和T1一定时,循环 净功决定于增压比。为找出循环净功随增
压比变化的关系,通过求wGT的一阶及二阶 导数,可以求得最大WGT增压比.
49
• 间冷再热回热循环
14:33:55
50
回热、间冷、再热三个循环 热力系统示意图、温熵图、优缺点
14:33:55
51
一. 燃气轮机简单循环热力过程 二. 燃气轮机的复杂循环 三. 航空燃气轮机循环 四. 燃机热力循环计算方法
14:33:55
52
涡轮喷气发动机的飞机
14:33:55
53
涡轮风扇发动机的飞机
39
一. 燃气轮机简单循环热力过程 二. 燃气轮机的复杂循环 三. 航空燃气轮机循环 四. 燃机热力循环计算方法
14:33:55
40
回热循环
回热器(R):Regenerator
14:33:55
41
14:33:55
理想
42
回热循环: 优点:提高热效率 缺点:1、尺寸大,增加维护费用 2、不适用高压比燃机
不完全燃烧;散热损失
14:33:55
34
14:33:55
35
如何提高燃机的比功和效率? 提高温比、压比和效率 设计工作
14:33:55
36
一般来说,T3*每提高 100℃,机组比功大约增加
20%~40%,热效率增加
2%~5%
大气温度Ta每降低 10℃,机组比功大约增
加4%~10%,热效率增
加1%~2%
推导上式
14:33:55
21
压气机耗功的计算:
3 T
wc h2 h1 c p (T2 T1 )
k1
c
pT1
T2 T1
1
c pT1
p2 p1
k
1
p 4
2 p
1
k 1
cpT1( k 1)
s
燃气轮机作功量的计算:
wT h3 h4 c p (T3 T4 )
k1
k1
第二章 燃机的热力循环
14:33:55
1
燃烧室 燃料
燃气轮机发电装置示意图
1800-2300K 3 2
q1
压气机
涡轮(透平)
发电机
1 进气口

q2
4
排气
一. 燃气轮机简单循环热力过程 二. 燃气轮机的复杂循环 三. 航空燃气轮机循环 四. 燃机热力循环计算方法
14:33:55
3
一、燃气轮机理想简单循环
热力系统 示意图
14:33:55
4
1-2 等熵压缩(压气机内) 2-3 定压吸热(燃烧室内) 3-4 等熵膨胀(透平内) 4-1 定压放热(排气)
14:33:55
5
约定:
1. 压气机进口处空气的状态参数,以下标“1”表示; 2. 压气机出口(燃烧室进口)状态,以下标“2”表示; 3. 透平进口(燃烧室出口)状态,以下标“3”表示; 4. 透平的排气状态,以下标“4”表示。
主要的性能指标。
① 标准额定功率 ② 合同额定功率 ③ 现场额定功率 ④ 尖峰功率
14 标准额定功率 是指在IS0工况下,即环境温度15℃、
海平面高度、相对湿度为60%、以及燃用 天然气的工况下连续运行,发电机出线端 的最大持续功率。
14:33:55
12
单机功率
• 合同额定功率 指在事先确定的运行工况下连续运行,
14:33:55
18
• 热耗率 机组每输出产生l kW·h的功需要多
少焦耳的热量。
• 油耗 每产生lkW·h的功所消耗的标准燃
油(是指发热量为43124kJ/kg的燃油) 的克数。
14:33:55
19
燃气轮机理想简单循环性能分析
14:33:55
20
理想简单循环比功
wGT cpT1*[ (1 m) ( m 1)]
14:33:55
63
主要内容
• 循环计算的顺序(目的) • 循环计算的结果(图7.40) • 单轴燃机循环计算的框图 • 表7.1所示循环计算过程
14:33:55
64
14:33:55
65
14:33:55
66
小结
一. 燃气轮机简单循环热力过程 二. 燃气轮机的复杂循环 三. 航空燃气轮机循环 四. 燃机热力循环计算方法
14:33:55
37
工质流量的差别 为什么涡轮进口燃气的流量比压气 机中的空气流量小?
为什么wT不能和wC直接作减法运算? 为什么T3*提高通常会造成效率下降?
相关文档
最新文档