温度传感器的温度特性测量实验

合集下载

实验十二 集成电路温度传感器特性测量

实验十二 集成电路温度传感器特性测量

实验十二集成电路温度传感器特性测量一.概述温度传感器的特性测量和定标是大学普通物理热学实验和电磁学实验中的一个基本内容,是新的全国理工科物理实验教学大纲中一个重要实验。

为开设好此实验,由复旦大学物理实验教学中心和上海复旦天欣科教仪器有限公司协作,联合研制了采用DS18B20单线数字温度传感器为测量元件的新一代恒温控制仪。

新仪器与同类其它仪器相比,有以下四个优点:1)传感器体积小;2)控温精度高;3)无污染及噪声(无水银污染且不用继电器);4)设定温度和测量温度均用数字显示。

本实验仪器可用于各种温度传感器的特性测量和各种材料的电阻与温度关系特性测量实验,本仪器也可用于物理化学实验做恒温仪用,它是理工科大学普通物理实验必备重要实验装置之一。

二.用途1.电流型集成温度传感器AD590的特性测量和应用:(1)测量AD590输出电流和温度的关系,计算传感器灵敏度及0?C 时传感器输出电流值。

(2)用AD590传感器,电阻箱,数字电压表和直流电源等设计并安装数字式摄氏温度计。

(3)测量集成温度传感器AD590在某恒定温度时的伏安特性曲线,求出AD590线性使用范围的最小电压Ur。

三.仪器组成与技术指标1.仪器组成如图1所示,本机为有单片控制的智能式数字恒温控制仪、量程为0-19.999V四位半数字电压表、直流1.5V-12V稳压输出电源、可调式磁性搅拌器以及2000ml烧杯、加热器、玻璃管(内放变压器油和被测集成温度传感器)等组成。

图12.技术指标:A.温控仪(1)温度计显示工作温度:0℃-100℃(2)恒温控制温度:室温-80oC(3)控制恒温显示分辨精度:≤±0.1℃B.直流数字电压表(1)量程:0-19.999V(2)读数准确度:量程0.03%±5个字(3)输出电阻:20Ω(为了防止长时间短路内接电阻)C.温度传感器DS18B20的结构与技术特性(控温及测温用):(1)温度测量范围:-55℃-125℃(2)测温分辨率:0.0625℃(3)引脚排列(如图2所示):1(GND):地2(DQ):单线运用的数据输入输出引脚3(VDD):可选的电源引脚图2- 2 -(4)封装形式:TO-92详细应用请参阅相关资料D.待测温度传感器AD590技术特性:(1)工作温度:—55℃—150℃(2)工作电压:4.5V—24V(3)灵敏度:1μA/℃,线性元件(4)0℃时输出电流约273μAE.加热器:(1)工作电压:交流10V—150V(2)工作电流:交流最大1.5A四.仪器使用方法1.使用前将电位器调节旋钮逆时针方向旋到底,把接有DS18B20传感器接线端插头插在后面的插座上,DS18B20测温端放入注有少量油的玻璃管内(直径16mm);在2000ml大烧杯内注入1600ml的净水,放入搅拌器和加热器后盖上铝盖并固定。

大学物理实验-温度传感器实验报告

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。

本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。

热电偶的温差电动势关于温度有很好的线性性质。

PN节作为常用的测温元件,线性性质也较好。

本实验还利用PN节测出了波尔兹曼常量和禁带宽度,与标准值符合的较好。

关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。

温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。

作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。

2.热电阻的特性2.1实验原理2.1.1Pt100铂电阻的测温原理和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。

利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。

铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。

按IEC751国际标准,铂电阻温度系数TCR定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。

Pt100铂电阻的阻值随温度变化的计算公式如下:Rt=R0[1+At+B t2+C(t-100)t3] (-200℃<t<0℃) (1.2)式中Rt表示在t℃时的电阻值,系数A、B、C为:A=3.908×10−3℃−1;B=-5.802×10−7℃−2;C=-4.274×10−12℃−4。

PN结温度传感器温度特性实验

PN结温度传感器温度特性实验

PN结温度传感器温度特性实验
实验三十四、PN结温度传感器温度特性实验 1、实验目的了解PN结温度传感器的特性及工作情况。

2、实验原理晶体二极管或三极管的PN结电压是随温度变化的。

如硅管的PN结的结电压在温度每升高1℃时下降约-2.2mV利用这种特性可做成各种各样的PN结温度传感器。

它具有线性好、时间常数小(0.2~2秒)。

灵敏度高等特点测温范围为- 50℃~+150℃。

3、所需器件及模块 +5V直流电源、0-2V数电压表、9号温度传感器特性实验模块。

4、实验步骤(1)温控部分电源开关打开。

(2)连接24V~ 2A与K型温控热电偶传感器。

(3)接+5V电源按图9-1接电路。

(4)观察PN结传感器OUT用0-2V数字表测量“二极管”PN结正向的结电压得出其结果。

(5)恒温箱从室温至+100℃每5℃作一次记录。

(表9-1)温度℃ 40 45 50 55 60 65 70 75 80 85 二极压降(Mv)
第 1 页共 1 页。

PN结温度传感器温度特性实验

PN结温度传感器温度特性实验

实验27 PN结温度传感器温度特性实验一,实验目的:定性了解PN结温度传感器的温度特性。

二,基本原理:晶体二极管,三极管的PN结正向电压是随温度变化而变化的,利用PN结的这个温度特性可制成PN结温度传感器。

目前用于制造温敏二极管的主要材料有砷化镓,碳化硅,硅等。

对于晶体二极管,当电流保持不变时,温度每升高1℃,正向电压下降约2mv。

他的温度系数为-2mv/℃,它具有线性度好,时间常数小(0,2~2秒),灵敏度高等优点,测温范围为:-50℃~+120℃。

其不足之处是离散性大,互换性较差。

三,常用器件与单元:机头应变梁中的PN结,加热器,主板中的F/V 表,-15V常用电源,1.2~12V可调电源,加热器,PN结,电桥,差动放大器,数显万用表。

四,实验步骤:1,用自备的万用表测量PN结传感器各引线之间的关系结构。

10.77M2,按图示接线,将F/V表切换开关至20V档检查接线无误后合上主电源,调节1.2~12V可调电源使F/V表显示为2V作为PN结工作电压Vs备用。

关闭主电源。

3,差动放大器调节:在主板上按图示意接线。

将F/V表的量程开关切换到200mV档,将差动放大器的拨动开关拨到开的位置,合上主电源开关。

将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆时针回转1圈,调节调零电位器,使F/V表显示电压为0.关闭主电源。

4,PN结室温时调零:按图27 5接线,将F/V表切换开关至2v档,检查接线无误后合上主电源开关。

调节W2使F/V表显示为0.5,将加热器接到-15V稳压电源上,观察F/V表的显示变化。

再将加热器电源去掉,再观察F/V表显示变化。

由此可见,当温度升高时PN 结电压下降,Vi升高。

当温度下降时,PN结电压升高,Vi下降。

实验完毕,关闭所有电源。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告实验报告:温度传感器实验一、实验目的本实验旨在探究温度传感器的工作原理和特性,通过实际操作来了解温度传感器在温度测量中的应用。

二、实验原理温度传感器是一种将温度变化转化为可测量电信号的装置。

根据测量原理,温度传感器可分为多种类型,如热电偶、热敏电阻、红外线温度传感器等。

本实验中,我们将使用热电偶温度传感器进行实验。

热电偶温度传感器基于热电效应原理,将温度变化转化为热电势差信号。

热电偶由两种不同材料的导体组成,当两种导体连接在一起时,如果它们之间存在温差,就会在电路中产生电动势。

当温度发生变化时,热电势也会相应变化,从而实现对温度的测量。

三、实验步骤1.准备实验器材(1)热电偶温度传感器(2)数据采集器(3)恒温水槽(4)计时器(5)实验用的不同温度的水2.进行实验操作(1)将热电偶温度传感器连接到数据采集器上。

(2)将恒温水槽中的水加热至一定温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(3)将恒温水槽中的水降温至另一不同温度,然后将热电偶温度传感器放入水中,记录数据采集器显示的数值。

(4)重复步骤(3),直至记录下不同温度下的数据。

(5)将实验数据整理成表格,并进行数据分析。

四、实验数据分析实验数据如下表所示:根据热电偶温度传感器的测量原理,我们可以计算出每一组数据的热电势差值ΔT。

将所有热电势差值进行平均,得到平均热电势差值ΔTave。

根据公式T = ΔT / ΔTave × Tref,我们可以计算出实验测量的温度值T。

其中,Tref为参考温度值,本实验中取为25℃。

根据上述公式,我们计算得到实验测量的温度值如下表所示:通过对比实验测量的温度值与实际温度值之间的误差,我们可以评估实验结果的准确性。

同时,我们还可以分析实验数据的变化趋势,例如在不同温度范围内热电势的变化趋势等。

五、实验结论通过本次实验,我们了解了温度传感器的原理和特性,并掌握了热电偶温度传感器的使用方法。

温度传感器特性研究--实验报告

温度传感器特性研究--实验报告

沈阳城市学院物理实验报告实验题目温度传感器特性研究姓名学号专业班级实验室号实验成绩指导教师实验时间年月日物理实验室制请认真填写实验原理(注意:原理图、测试公式)一、直流电桥法测Pt100铂电阻温度特性直流电桥的原理图如图,根据直流电桥的基本 原理有:312t R R R R =,因为R1=R2,所以R3=Rt ,Rt 即为铂电阻。

Pt100铂电阻是一种利用铂金属导体电阻随温度变化的特性制成的温度传感器,在0~100℃范围内Rt 的表达式可近似线性为:01(1)t R R A t =+ 。

二、恒流源法测NTC 热敏电阻温度特性恒流源法电路原理图如图,根据串联电路原理11R RtO Rt t U U R I U R ==,Rt 即为热敏电阻。

热敏电阻是利用半导体电阻阻值随温度变化的特性来测量温度的,在一定的温度范围内(小于450℃)热敏电阻的电阻Rt 与温度T 之间有如下关系:)11(00T T B T eR R -=三、PN 结温度传感器特性PN 结温度传感器实验电路如图,PN 结的正向电压U 和温度t 近似满足下列线性关系U=Kt+Ugo 式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。

请认真填写请在两周内完成,交教师批阅附录110115120125130135电阻/Ω温度/℃直流电桥法测Pt100铂电阻的温度特性图100200300400500600700800900电阻/Ω温度/℃电压/m V温度/℃。

物理实验教案:温度传感器特性综合实验

物理实验教案:温度传感器特性综合实验

温度传感器特性综合实验实验目的1.掌握PT100热电阻的工作原理和特性2. 掌握热敏电阻NTC的工作原理和特性3. 掌握PN结传感器的工作原理和特性实验仪器HLD-WD-III温度传感器特性综合实验仪,铂热电阻PT100,NTC传感器,PN结传感器,数字万用表实验原理:一、PT100热电阻传感器热电阻传感器是利用金属或非金属的电阻随温度变化而变化的特性,来实现温度测量的。

热电阻分为金属热电阻和半导体热电阻两大类,一般称金属热电阻为热电阻,称半导体热电阻为热敏电阻。

热电阻材料的特点作为测量温度用的热电阻材料,必须具备以下特点:(1)电阻温度系数а要尽可能大,且稳定;(2)电阻率p 要高;(3)比热小,亦即热惯性小;(4)电阻值随温度变化关系最好是线性关系;(5)在较宽的测量范围内具有稳定的物理化学性质;(6)良好的工艺性,即特性的复现性好,便于批量生产。

由于铂热电阻的物理化学性能在高温和氧化性介质中很稳定,重复性好,测量精度高,其电阻值与温度之间的关系近似线性关系,它既能作为工业用测温元件,又能作国际温度标准,按国际温标IPTS-68规定,在-259.39~630.74℃温度范围内,用铂热电阻温度计作为基准器。

二、NTC热敏电阻的工作原理热敏电阻是利用半导体电阻值随温度变化而显著变化的一种热敏元件。

热敏电阻的主要特点是:(1)电阻温度系数大,灵敏度高。

通常温度变化1℃,阻值变化1%~6%,电阻温度系数绝对值比一般金属电阻大10~100倍。

(2)结构简单,体积小。

珠形热敏电阻探头的最小尺寸为0.2mm,能测量热电偶和其它温度传感器无法测量的空隙、腔体、内孔等处的点温度。

如人体血管内温度等。

(3)电阻率高,热惯性小,不像热电偶需要冷端补偿,适宜动态测量。

(4)使用方便。

热敏电阻阻值范围在10~105 之间可任意挑选,不必考虑线路引线电阻和接线方式,容易实现远距离测量,功耗小。

(5)阻值与温度变化呈非线性关系。

实验1.4温度传感器温度特性的测量[1]

实验1.4温度传感器温度特性的测量[1]

智能型致冷/加热温度控制仪
1
直流稳压稳流电源
1
数字万用表
1
LCR Meter
1
温度传感器
8
导线
若干
[ 原理概述 ] 温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。常用的温度
传感器的类型、测温范围和特点请翻阅教材的§6.2 节-温度计。本实验将通过测量几种
常用的温度传感器的特征物理量随温度的变化,来学习这些传感器的工作原理。
实验 1.4 温度传感器温度特性的测量
2. 数据处理 (1)作 Cu50 的 RCu ~t(℃)关系曲线并拟合求出电阻温度系数 A。要求写出最小二 乘法拟合的中间过程,而不是用数据处理软件直接得出结果。
中山大学理工学院物理实验教学中心编制
Page学《基础物理实验(I)》课程报告模板
中山大学《基础物理实验(I)》课程报告模板
3. 传感器测量设备
实验 1.4 温度传感器温度特性的测量
图 1.4. 5 JK-31 型直流稳压稳流电源
图 1.4. 6 DM3051 型数字万用表
图 1.4. 7 TH2811D 型 LCR Meter 直流稳压稳流电源提供了三组电源,一个是 0-30V 连续可调的稳压电源,一个是 0-250mA 连续 可调的稳流电源,第三个为集成电路工作电源,输出电压为±(3.3,5,8,12,15)V。DM3051 数字万用表 的使用方法请查阅教材的第 4-15 页,TH2811D 型 LCR Meter 的使用方法请查阅第 4-24 页。
EX =f (t) f (t0 )
(5)
EX 仅与两种导体的材料和两接点处的温度有关,而与导体的粗细、长短及两种导体的
接触面积无关。 EX 和两接点的温度差 t (t t0 ) 一般是非线性的,但温差不大时,可

温度传感器特性测量及应用

温度传感器特性测量及应用

温度传感器特性测量及应用填空题:1.AD590集成电路温度传感器是由多个参数相同的三极管和电阻组成。

该器件的两端当加有某一直流工作电压时,它的输出电流与温度满足如下关系:I=BT+A 2.对一般AD590集成电路温度传感器,当处于0℃时,其输出电流约为 273μA 。

3.由AD590集成电路温度传感器在某恒定温度时的伏安特性曲线,可以求出该温度传感器温度与输出电流线性关系的最小工作电压U r 。

4.AD590集成电路温度传感器是线性元件,其电流灵敏度一般为: 1μA/℃。

5.AD590工作电压4~30V,但不能小于4V,小于4V工作时会出现非线性,通常工作电压10~15V。

6.集成电路温度传感器有电压型和电流型二种,AD590集成温度传感器是电流输出型集成温度传感器,在一定温度下相当于一个恒流源。

问答题1.电流型集成电路温度传感器具有哪些特性?(1)温度变化引起输出量的变化呈现良好的线性关系;(2)性能稳定,灵敏度高,无需补偿;(3)互换性好,抗干扰能力强;(4)可远距离测温且使用简单方便。

2.如何用AD590集成电路温度传感器制作一个热力学温度计,请画出电路图,说明调节方法。

如图所示,直流单臂电桥在平衡时,U BD = 0,各桥臂电阻之间的关系有RRRRx 120如果被测电阻R x的阻值发生改变,而其它参数不变,将导致U BD≠0,U BD是R x的函数,因此可以通过U BD的大小来反映R x的变化。

这种用电桥的非平衡输出来反映桥臂电阻变化量的方法就是非平衡电桥的应用。

把AD590、三只电阻箱、直流稳压电源及数字电压表按电桥电路接好。

将带铝壳密封的AD590传感器浸入冰水混合物中。

比例臂电阻R 1和R 2各取1000Ω,调节比较臂电阻R 0,用标准水银温度计观察,使AD590(1.000μA/o C )处于0oC 时数字电压表示值为零mv ,则AD590处于t oC 时数字电压表示值为tmv 。

2023年大学物理实验温度传感器实验报告

2023年大学物理实验温度传感器实验报告

有关温度传感器特性旳试验研究摘要:温度传感器在人们旳生活中有重要应用,是现代社会必不可少旳东西。

本文通过控制变量法,详细研究了三种温度传感器有关温度旳特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者旳线性性都不好。

热电偶旳温差电动势有关温度有很好旳线性性质。

PN节作为常用旳测温元件,线性性质也很好。

本试验还运用PN节测出了波尔兹曼常量和禁带宽度,与原则值符合旳很好。

关键词:定标转化拟合数学软件EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR1.引言温度是一种历史很长旳物理量,为了测量它,人们发明了许多措施。

温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可持续测量等长处,因此有必要对其进行一定旳研究。

作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化旳关系。

2.热电阻旳特性2.1试验原理2.1.1Pt100铂电阻旳测温原理和其他金属同样,铂(Pt)旳电阻值随温度变化而变化,并且具有很好旳重现性和稳定性。

运用铂旳此种物理特性制成旳传感器称为铂电阻温度传感器,一般使用旳铂电阻温度传感器零度阻值为100Ω(即Pt100)。

铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用旳一种温度检测器,本试验即采用这种铂电阻作为原则测温器件来定标其他温度传感器旳温度特性曲线,为此,首先要对铂电阻自身进行定标。

按IEC751国际原则,铂电阻温度系数TCR定义如下:TCR=(R100-R0)/(R0×100) (1.1)其中R100和R0分别是100℃和0℃时原则电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100旳TCR为0.003851。

Pt100铂电阻旳阻值随温度变化旳计算公式如下:Rt=R0[1+At+B t2+C(t-100)t3] (-200℃<t<0℃) (1.2)式中Rt表达在t℃时旳电阻值,系数A、B、C为:A=3.908×10−3℃−1;B=-5.802×10−7℃−2;C=-4.274×10−12℃−4。

实验3 温度传感器特性实验

实验3  温度传感器特性实验

实验3 温度传感器特性实验【实验目的】1、研究Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。

2、研究比较不同温度传感器的温度特性及其测温原理。

3、掌握单臂电桥及非平衡电桥的原理,及其应用。

4.研究热电偶的温差电动势。

5.、学习热电偶测温的原理及其方法。

【实验仪器】九孔板,DH-VC1直流恒压源恒流源,DH-SJ5型温度传感器实验装置,数字万用表,电阻箱。

【实验原理】1、Pt100铂电阻的测温原理金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。

铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。

2、Cu50铜电阻温度特性原理铜电阻是利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。

铜电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上,当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。

3.热电偶测温原理热电偶亦称温差电偶,是由A、B两种不同材料的金属丝的端点彼此紧密接触而组成的。

当两个接点处于不同温度时,在回路中就有直流电动势产生,该电动势称为温差电动势或热电动势。

当组成热电偶的材料一定时,温差电动势Ex仅与两接点处的温度有关,并且两接点的温差在一定的温度范围内有如下近似关系式:EX ≈α( t-t) (1)式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值上等于两接点温度差为1℃时所产生的电动势。

t为工作端的温度,t为冷端的温度。

为了测量温差电动势,就需要在图中的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质,例如不影响它在一定的温差t-t0下应有的电动势EX值。

实验十二集成电路温度传感器特性测量

实验十二集成电路温度传感器特性测量

实验十二集成电路温度传感器特性测量实验目的:1. 了解热敏电阻的基本工作原理以及热敏电阻的依温度变化的电阻值特性;2. 掌握集成电路温度传感器的结构、特性及应用;3. 学会使用万用表测试温度传感器的特性参数,如输出电压、灵敏度等;4. 了解温度传感器在实际电路中的应用。

实验原理:1. 热敏电阻原理热敏电阻的电阻值随温度的变化而变化,其原理是基于温度引起的电阻率变化。

金属导体是随温度升高而电阻率增大,而很多半导体材料和复合材料,则是随温度的升高而导电能力降低,电阻值增大。

作为热敏材料的锗、硅、氮化硅等半导体材料,用它们制成的电阻叫做热敏电阻。

热传导在热敏电阻发生作用时,从传感器的两个端点传递到插在热敏电阻所在电路的两个连接器处的电压信号。

温度升高时,电阻值就减小,热敏电阻的输出电压就会对应地降低,反之,则会增加。

热敏电阻的电阻值与温度的关系可以通过实验测量来确定。

根据实验结果,可以得到不同温度下热敏电阻的电阻值,从而画出相应的温度-电阻曲线。

在温度相同时,不同的热敏电阻输出的电压各不相同,因此,可以通过热敏电阻的输出电压来检测温度的变化。

集成电路温度传感器是一种微型化的温度测量装置,它的大小只有普通热敏电阻的千分之一,具有温度响应快、输出电压高、稳定性好、精度高等特点。

集成电路温度传感器的常用规格及主要特点如下表所示。

集成电路温度传感器的工作原理是利用集成电路内部的PN结的温度特性,当其温度发生变化时,PN结电压也会随之变化,产生热释电效应,从而改变晶体管等元器件的参数,如电流或电压等。

通过测量这些被改变的参数,可以得到温度信息。

集成电路温度传感器的应用领域广泛,可以应用于汽车、电子设备、医疗设备、生产线及环境监测等领域。

实验内容:实验电路如下:由于不同的热敏电阻表现不同,为了保证实验的准确性,先将热敏电阻调零。

调零是指将热敏电阻的电阻值与测量电路的零点电阻相等的操作。

步骤如下:1、用多用表选择Ω档,测量变阻器的两端相接时的阻值。

实验 2-19 温度传感器的温度特性测量和研究

实验 2-19 温度传感器的温度特性测量和研究

实验 2-19 温度传感器的温度特性测量和研究温度是一个表征物体冷热程度的基本物理量,自然界中的一切过程都与温度密切相关。

因此,温度的测量和控制在科研及生产实践上具有重要意义。

如果要进行可靠的温度测量,首先就需要选择正确的温度仪表,也就是温度传感器。

温度传感器是最早开发、应用最广的一类传感器。

本实验将通过测量几种常用的温度传感器随温度变化的特征物理量,来了解这些温度传感器的工作原理。

【实验目的】1. 了解四种温度传感器(NTC 热敏电阻、PTC 热敏电阻、PN 结二极管、AD590集成电路温度传感器)的测温原理。

2. 掌握上述几种温度传感器的温度特性并比较它们的性能特点。

3. 学会用最小二乘法对采集的数据进行线性分析。

【实验器材】WT-1A 温度传感器特性和半导体制冷温控实验仪,数字万用表,导线若干。

【实验原理】(一) 热敏电阻NTC 的温度特性NTC 热敏电阻通常由Mg 、Mn 、Ni 、Cr 、Co 、Fe 、Cu 等金属氧化物中的2~3种均匀混合物压制后,在600℃~1500℃温度下烧结而成,由这类金属氧化物半导体制成的热敏电阻,具有很大的负温度系数,在一定的温度的范围内,NTC 热敏电阻的阻值与温度关系满足下列经验公式11( )0B T T R R e-= (2-19-1)式中R 为该热敏电阻在热力学温度T 时的电阻值,R 0为热敏电阻处于热力学温度T 0时的阻值,B 是材料的常数,它不仅与材料性质有关,而且与温度有关,在一个不太大的温度范围内,B 是常数。

由(2-19-1)式可得,NTC 热敏电阻在热力学温度T 0时的电阻温度系数α02001d d T T R BR T T α=⎛⎫==- ⎪⎝⎭ (2-19-2) 由式(2-19-2)可知,NTC 热敏电阻的电阻温度系数与热力学温度的平方有关,在不同的温度下,α值不相同。

对(2-19-1)式两边取对数,得0011l n l n R B R T T ⎛⎫=-+ ⎪⎝⎭(2-19-3)在一定温度范围内,l n R 与011T T -成线性关系,可以用作图法或最小二乘法求得斜率B 的值,并由(2-19-2)式求得某一温度时NTC 热敏电阻的电阻温度系数α。

温度传感器的温度特性测量实验

温度传感器的温度特性测量实验

温度传感器的温度特性测量实验【目的要求】测量PN结温度传感器的温度特性;测试PN结的正向电流与正向电压的关系(指数变化规律)并计算出玻尔兹曼常数。

【实验仪器】FD-ST-TM温度传感器温度特性实验模块(需配合FD-ST系列传感器测试技术实验仪)含加热系统、恒流源、直流电桥、Pt100铂电阻温度传感器、NTC1K热敏电阻温度传感器、PN结温度传感器、电流型集成温度传感器AD590、电压型集成温度传感器LM35、实验插接线等)。

【实验原理】“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。

温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。

常用的温度传感器的类型、测温范围和特点见下表。

PN结温度传感器1.测试PN结的Vbe与温度变化的关系,求出灵敏度、斜率及相关系数PN结温度传感器是利用半导体PN结的结电压对温度依赖性,实现对温度检测的,实验证明在一定的电流通过情况下,PN结的正向电压与温度之间有良好的线性关系。

通常将硅三极管b、c极短路,用b、e极之间的PN 结作为温度传感器测量温度。

硅三极管基极和发射极间正向导通电压Vbe 一般约为600mV (25℃),且与温度成反比。

线性良好,温度系数约为-2.3mV/℃,测温精度较高,测温范围可达-50——150℃。

缺点是一致性差,互换性差。

通常PN 结组成二极管的电流I 和电压U 满足(1)式[]1/-=kT qU S e I I (1)在常温条件下,且1/〉〉KTqU e时,(7)式可近似为kT qU S e I I /= (2)(7)、(8)式中:T 为热力学温度 ; Is 为反向饱和电流;正向电流保持恒定条件下,PN 结的正向电压U 和温度t 近似满足下列线性关系U=Kt+Ugo (3)(3)式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。

(完整word版)温度传感器的温度特性测量9

(完整word版)温度传感器的温度特性测量9

温度传感器的温度特性测量【目的要求】1、学习用恒电流法和直流电桥法测量热电阻;2、测量铂电阻和热敏电阻温度传感器的温度特性;3、测量电压型、电流型和PN结温度传感器的温度特性;【实验原理】“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。

温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。

常用的温度传感器的类型、测温范围和特点见表1。

本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理.表1常用的温度传感器的类型和特点一、直流电桥法测量热电阻直流平衡电桥(惠斯通电桥)的电路如图1所示,图1把四个电阻R 1,R 2,R 3,R t 连成一个四边形回路ABCD,每条边称作电桥的一个“桥臂”在四边形的一组对角接点A 、C 之间连入直流电源E ,在另一组对角接点B 、D 之间连入平衡指示仪表,B 、D 两点的对角线形成一条“桥路”,它的作用是将桥路两个端点电位进行比较,当B 、D 两点电位相等时,桥路中无电流通过,指示器示值为零,电桥达到平衡。

指示器指零,有U AB =U AD ,U BC =U DC ,电桥平衡,电流Ig=0,流过电阻R 1、R 3的电流相等,即I 1=I 3,同理I 2=IR t ,因此311322t t R R R R R R R R =⇒= 若12R R =,则有:3t R R =(1)二、恒电流法测量热电阻恒电流法测量热电阻,电路如图2所示,图2电源采用恒流源,R 1为已知数值的固定电阻,R t 为热电阻.U R1为R1上的电压,U Rt 为R t 上的电压,U R1用于监测电路的电流,当电路电流恒定时则只要测出热电阻两端电压U Rt ,即可知道被测热电阻的阻值。

当电路电流为I o ,温度为t 时,热电阻R t 为11R RtO Rt t U U R I U R ==(2) 三、Pt100铂电阻温度传感器Pt100铂电阻是一种利用铂金属导体电阻随温度变化的特性制成的温度传感器。

实验3 温度传感器特性实验

实验3  温度传感器特性实验

实验3 温度传感器特性实验【实验目的】1、研究Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。

2、研究比较不同温度传感器的温度特性及其测温原理。

3、掌握单臂电桥及非平衡电桥的原理,及其应用。

4.研究热电偶的温差电动势。

5.、学习热电偶测温的原理及其方法。

【实验仪器】九孔板,DH-VC1直流恒压源恒流源,DH-SJ5型温度传感器实验装置,数字万用表,电阻箱。

【实验原理】1、Pt100铂电阻的测温原理金属铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。

铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。

2、Cu50铜电阻温度特性原理铜电阻是利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。

铜电阻的受热部分(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上,当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。

3.热电偶测温原理热电偶亦称温差电偶,是由A、B两种不同材料的金属丝的端点彼此紧密接触而组成的。

当两个接点处于不同温度时,在回路中就有直流电动势产生,该电动势称为温差电动势或热电动势。

当组成热电偶的材料一定时,温差电动势Ex 仅与两接点处的温度有关,并且两接点的温差在一定的温度范围内有如下近似关系式:E X ≈α( t-t 0 ) (1)式中α称为温差电系数,对于不同金属组成的热电偶,α是不同的,其数值上等于两接点温度差为1℃时所产生的电动势。

t 为工作端的温度,t0为冷端的温度。

为了测量温差电动势,就需要在图中的回路中接入电位差计,但测量仪器的引入不能影响热电偶原来的性质,例如不影响它在一定的温差t-t 0下应有的电动势E X 值。

实验十 AD590温度传感器特性实验

实验十 AD590温度传感器特性实验

实验十 AD590温度传感器特性实验
【实验目的】
1、了解AD590温度传感器的基本原理和温度特性的测量方法;
2、 测量AD590温度传感器输出电压与温度的特性曲线;
【实验仪器】
电磁学综合实验平台、 AD590温度传感器、加热井、温度传感器特性实验模板
【实验原理】
1.电流型集成温度传感器
AD590是一种电流型集成电路温度传感器。

其输出电流大小与温度成正比。

它的线性度极好,AD590温度传感器的温度适用范围为-55~150℃,灵敏度为1μA/K 。

它具有高准确
图10-1
度、动态电阻大、响应速度快、线性好、使用方便等特点。

AD590是一个二端器件,电路符号如图10-1所示:
AD590等效于一个高阻抗的恒流源,其输出阻抗>10MΩ,能大大减小因电源电压变动而产生的测温误差。

AD590的工作电压为+4~+30V ,测温范围是-55~150℃。

对应于热力学温度T ,每变化1K ,输出电流变化1μA 。

其输出电流I 0(μA)与热力学温度T (K )严格成正比。

其电流灵敏度表达式为: ln8eR 3k T I (10-1) 式(10-1)中k 、e 分别为波尔兹曼常数和电子电量,R 是内部集成化电阻。

将k/e=0.0862mV/K,R=538Ω代入(10-1)中得到:
I =1.000uA/K T
(10-2) 在T=0(K )时其输出为273.15μA(AD590有几种级别,一般准确度差异在±3~5μA)。

实验九温度传感器的温度特性测量和研究

实验九温度传感器的温度特性测量和研究

实验九温度传感器的温度特性测量和研究一、实验目的:1. 掌握分别使用NTC热敏电阻和热电偶传感器测量温度的方法。

二、实验原理:1. NTC热敏电阻测温原理:NTC热敏电阻是一种非常常见的热敏元件,其具有在不同温度下的不同电阻值,可以通过不同的电阻值来读取温度。

NTC热敏电阻的电阻值随着温度的升高而降低,这与其内部的材料本身的性质有关。

NTC热敏电阻的温度特性可以通过将其电阻值与温度之间的关系绘制成曲线来表示。

热电偶传感器是一种通过测量被测物体与参照物体之间的温差来计算温度的传感器。

热电偶传感器由两个不同材料的金属导线构成,通过将它们连接在一起形成一个“热电偶节”并将其置于被测物体和参照物体之间,当两个材料之间存在温差时,将会产生一个电动势,并通过连接的电路来测量这个电动势来推导出温度。

热电偶传感器的温度特性一般可以通过将其测量值与温度之间的关系绘制成曲线来表示。

三、实验步骤:将NTC热敏电阻安装在一个温度可调的热敏电阻实验装置上。

读取不同温度下的电阻值(在采集设备上读取即可),并将数据记录下来。

然后将读出的电阻-温度数据用Excel 制作成电阻-温度曲线。

2. 使用热电偶传感器测量温度:将实验中得到的电阻-温度数据画出曲线,如图所示:经过求导计算,NTC热敏电阻的B值为3475K。

据此可以得到如下公式:NTC R = R0 * exp(B*(1/T - 1/T0))其中,NTC R是NTC热敏电阻的电阻值,T是温度,T0是参考温度,R0是NTC热敏电阻在T0下的电阻值。

采用最小二乘法,对这个曲线进行拟合,得到拟合函数:T = a*E + b其中,T是热电偶传感器的温度,E是电动势值,a和b是拟合系数。

五、结论通过本次实验,我们学习了如何使用NTC热敏电阻和热电偶传感器测量温度。

我们还研究了它们的温度特性,并绘制了它们的特性曲线。

最后我们得出了使用NTC热敏电阻和热电偶传感器来测量温度的关系式,这将有助于我们在实际应用中使用这些传感器来测量温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度传感器的温度特性测量实验
【目的要求】
测量PN结温度传感器的温度特性;测试PN结的正向电流与正向电压的关系(指数变化规律)并计算出玻尔兹曼常数。

【实验仪器】
FD-ST-TM温度传感器温度特性实验模块(需配合FD-ST系列传感器测试技术实验仪)含加热系统、恒流源、直流电桥、Pt100铂电阻温度传感器、NTC1K热敏电阻温度传感器、PN结温度传感器、电流型集成
温度传感器AD590、电压型集成温度传感器LM35、实验插接线等)。

【实验原理】
“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用广泛。

温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。

常用的温度传感器的类型、测温范围和特点见下表。

PN结温度传感器
1.测试PN结的Vbe与温度变化的关系,求出灵敏度、斜率及相关系数
PN结温度传感器是利用半导体PN结的结电压对温度依赖性,实现对温度检测的,实验证明在一定的电流通过情况下,PN结的正向电压与温度之间有良好的线性关系。

通常将硅三极管b、c极短路,用b、e 极之间的PN结作为温度传感器测量温度。

硅三极管基极和发射极间正向导通电压Vbe一般约为600mV (25℃),且与温度成反比。

线性良好,温度系数约为℃,测温精度较高,测温范围可达-50——150℃。

缺点是一致性差,互换性差。

通常PN结组成二极管的电流I和电压U满足(1)式
[]
1/-=kT qU S e I I (1)
在常温条件下,且1/〉〉KT
qU e
时,(7)式可近似为
kT qU S e I I /= (2)
(7)、(8)式中:
T 为热力学温度 ; Is 为反向饱和电流;
正向电流保持恒定条件下,PN 结的正向电压U 和温度t 近似满足下列线性关系
U=Kt+Ugo (3)
(3)式中Ugo 为半导体材料参数,K 为PN 结的结电压温度系数。

实验测量如下图。

图中用恒压源串接51K 电阻使流过PN 结的电流近似恒流源。

2.玻尔兹曼常数测定
PN 结的物理特性是物理学和电子学的重要基础之一。

模块通过专用电路来测量研究PN 结扩散电流与结电压的关系,证明此关系遵循指数变化规律,并准确的推导出玻尔兹曼常数(物理学的重要常数之一)。

由半导体物理学可知,PN 结的正向电流——电压关系满足式(1),式(1)中,I 是通过PN 结的正向电流,I S 是不随电压变化的常数(漏电流)。

T 是热力学温度。

e 是电子的电荷量,U 为PN 结正向压降。

由于在常温(300K )时KT/e ≈,而PN 结正向压降约为几百毫伏,则exp(eU/KT)>>1,则式(1)中-1项可忽略,于是有:
kT qU S e I I /=
(2)
即:PN 结正向电流随正向电压按指数规律变化。

如测出PN 结I-U 关系值,则利用式(1)可以求出e/KT 。

在测得实际温度T 后就可以得到e/K 常数,把电子电荷量代入即可求得玻尔兹曼常数K 。

在实际测量中,二极管的PN 结I-U 关系虽也满足指数关系,但求得的K 往往偏小,这是因为通过二极管电流一般包括三个成分:[1]扩散电流,它严格遵循式(8);[2]耗尽层复合电流,它正比于exp(eU/2KT);[3]表面电流,它是由Si 和SiO 2界面中杂质引起的。

其值正比于exp(eU/mKT),一般m>2。

因此为了准确的推导出K ,不宜采用二极管,而采用硅三极管,且接成共基极电路。

因为此时三极管C 和B 短接,C 极电流仅仅是扩散电流,复合电流主要在B 极中出现。

这样测量E 极电流就能得到满意的结果。

【实验内容】
为电子电量,
C q ;10602.119-⨯=为玻尔兹曼常数,K J k /10381.123-⨯=
1.玻尔兹曼常数测定
按实验要求接好电路。

为保证改变I-U 值时PN 结温度不变,将PN 结插入干井炉井内并将温度设定控制50℃(±0.1℃),调节电位器改变U 1 (U be )和U 2(U 0)值,每间隔测一点,约测10点左右,至U2值达到饱和时( U2值变化很小或基本不变)结束测量。

数据记录如下: t = 50℃ 曲线拟合:运用最小二乘法将实验数据分别代入线性回归,指数回归,乘幂回归这三种常用的基本函数,然后求出衡量各回归函数的好坏标准差δ。

对已测出的U1和U2,多对数据,以U1为自变量,U2作因变量,分别代入(1)线性函数U2=a U1+b ;(2)乘幂函数U2=a U1b
;(3)指数函数U2= exp(b U1)。

求出各函数的a 和b 的值,得出三种函数式究竟哪一种符合物理规律必须用标准差来检验。

办法为:把实验测
① 得的各个自变量U1分别代入三个基本函数,得到相应因变量的预期值U2*
,并由此
求出各函数拟合的标准差: δ= ]/)([
2
*
1n U U i i n
i -∑= (4) 式中n 为测量数据个数,Ui 为实验测得的因变量,Ui*为将自变量代入基本函数后得到的因变量预期值,最后比较哪一种基本函数的标准差δ最小,说明该函数拟合得最好。

② 计算e/K 常数,将电子电量作为标准代入式(1),即可求出玻尔兹曼常数,并说明玻尔兹曼分布律的
物理含义。

结温度传感器温度特性的测试
将控温传感器Pt100铂电阻(A 级),插入干井炉中心井,PN 结温度传感器插入干井炉一个井内。

按要求插好连线。

从室温开始测量,然后开启加热器,每隔10℃控温系统设置温度并进行PN 结正向导通电压Ube 的测量,得到结果如下表
用最小二乘法直线拟合,求出结果。

A= r=。

相关文档
最新文档