音乐信号滤波去噪—用凯塞窗设计的FIR滤波器

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

音乐信号滤波去噪—用凯塞窗设计的FIR

滤波器

学生姓名:指导老师:

摘要本课程设计主要是通过使用凯塞窗设计一个FIR滤波器以对音乐信号进行滤波去噪处理。本设计首先通过麦克风采集一段音乐信号,依据对该信号的频谱分析,给定相关指标。以MATLAB软件为平台,采用凯塞窗设计满足指标的FIR滤波器,以该音乐信号进行滤波去噪处理。通过对比滤波前后的波形图,深入了解滤波器的基本方法。通过程序调试及完善,该设计基本满足设计要求。

关键词滤波去噪;FIR滤波器;凯塞窗函数;MATLAB

1 引言

数字滤波器是一种用来过滤时间离散信号的数字系统,它是通过对抽样数据进行数学处理来达到频域滤波的目的。随着现代通信的数字化,数字滤波器变得更加重要。数字滤波器的种类很多,但总的来说可以分成两大类,一类是经典滤波器,另一类可称为现代滤波器。从滤波特性方面考虑,数字滤波器可分成数字高通、数字低通、数字带通和数字带阻等滤波器。从实现方法上考虑,将滤波器分成两种,一种称为无限脉冲响应滤波器,简称IIR(Infinite Impulse Response)滤波器,另一种称为FIR(Finite Impulse Response)滤波器[1]。设计FIR数字滤波器的方法有窗函数法、频率采样法和等波纹最佳逼近法等。

1.1 课程设计目的

数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。

在本次课程设计中,最主要的设计是设计FIR滤波器,FIR滤波器的设计方法主要分为两类:第一类是基于逼近理想滤波器器特性的方法包括窗函数法、频率采样法、和等波纹最佳逼近法;第二类是最优设计法。

本次的课程设计主要采用的是第一类设计方法,是利用汉宁窗函数法设计FIR滤波器对一段语音进行滤波去噪,通过这一过程,对滤波前后波形进行对比分析得到结论。此课程设计比较简单,主要是将书本中的知识运用到现实中,并且根据自己对设计题目的理解,运用软件编写出程序实现这一设计,也是我们对数字信号处理的原理进行验证的一个过程。对此,也可以加深我们对所学知识的理解,培养我们的动手能力。

1.2课程设计的要求

(1)通过利用各种不同的开发工具实现模拟信号数字化、信道编解码、基带数字信号编解码、数字信号的调制解调和语音信号的滤波去噪等课题,掌握数字信号的分析方法和处理方法。

(2)按要求编写课程设计报告书,能正确阐述设计和实验结果等等。

(3)通过课程设计培养学生严谨的科学态度,认真的工作作风和团队协作精神。

(4)在老师的指导下,要求每个学生独立完成课程设计的全部内容。

1.3设计平台

课程设计的主要设计平台式MATLAB 7.0。如下图1.1所示:MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数

学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语

言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB和

Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计

算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、

创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、

信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

图1.1 MATLAB 7.0的设计平台

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且

MathWork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JA V A的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用[2]。

2 设计原理

2.1 FIR滤波器

FIR(Finite Impulse Response)滤波器:有限长单位冲激响应滤波器,是数字信号处理系统中最基本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。因此,FIR滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。

有限长单位冲激响应(FIR)滤波器有以下特点:

(1) 系统的单位冲激响应h(n)在有限个n值处不为零;

(2) 系统函数H(z)在|z|>0处收敛,极点全部在z=0处(因果系统);

(3) 结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。

FIR滤波器的系统函数用下式表示:。H(n)就是FIR滤波器的单位脉冲响应。FIR滤波器最重要的优点就是由于不存在系统极点,FIR滤波器是绝对稳定的系统。

相较于IIR滤波器,FIR滤波器有以下的优点:

(1)可以很容易地设计线性相位的滤波器。线性相位滤波器延时输入信号,却并不扭曲其相位。

(2)实现简单。在大多数DSP处理器,只需要对一个指令积习循环就可以完成FIR计算。(3)适合于多采样率转换,它包括抽取(降低采样率),插值(增加采样率)操作。无论是抽取或者插值,运用FIR滤波器可以省去一些计算,提高计算效率。相反,如果使用IIR滤波器,每个输出都要逐一计算,不能省略,即使输出要丢弃。

(4)具有理想的数字特性。在实际中,所有的DSP滤波器必须用有限精度(有限bit数目)

相关文档
最新文档