《分数与除法(例3)》教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《分数与除法(例3)》名师教案

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)五年级下册第50页的例3。例3解决“求一个数是另一个数的几分之几”的实际问题。一是让学生经历解决问题的过程;二是利用分数的意义以及分数与除法关系,来解决实际问题,加深对分数意义的理解。

(二)核心能力

能借助几何直观,探究“求一个数是另一个数的几分之几”的方法,提高分析问题和解决问题的能力。

(三)学习目标

1.能借助几何直观,探究“求一个数是另一个数的几分之几”的方法,并能正确解决实际问题。

2.运用迁移类推的方法,沟通新旧知识的联系,提高分析问题和解决问题的能力。

(四)学习重点

理解“求一个数是另一个数的几分之几”的方法。

(五)学习难点

确定单位“1”的量。

(六)配套资源

实施资源:《分数与除法》名师教学课件

二、教学设计

(一)课前设计

1.练习回顾。

(1)单位换算。

30厘米=()分米120分=()小时 2000千克=()吨

(2)回忆分数与除法的关系是什么?举例说明。

【设计意图:复习题让学生感觉今天所学的知识是与学过的知识有关系的,从而增强学生学习新知识的信心。既是对分数的意义、分数与除法知识的一个回

顾,也为本节课理解“求一个数是另一个数的几分之几”提供了形的依托。】(二)课堂设计

1.谈话导入

师:上节我们学习了分数与除法的关系,谁来说一说,我们怎样研究的?

师:这节我们利用它们的关系来解决一些实际问题。

2.问题探究

出示:小新家养鹅7只,养鸭10只,养鸡20只。鹅的只数是鸭的几分之几?

(1)阅读与理解。

师:题中告诉了我们什么信息?

师:“鹅的只数是鸭的几分之几”是什么意思?

(学生自主交流讨论)

交流后得出:就是求7只是10只的几分之几。

(2)分析与解答。

师:怎样求“7只是10只的几分之几?”请你们试着解决,并用画图的方法解释你的结论。

学生独立解决。

预设1:根据分数的意义,可以得出7只是10只的

7 10

师:谁来说说结果是多少?并结合所画的图给大家解释得到结果的过程。2—3个同学结合直观图,解释结果的合理性。

引导小结:把10只看作一个整体,也就是单位“1”,平均分成10份,每份

1只,7只就是这个整体的

7

10

师:那算式该怎么列?

引导学生得出:根据分数与除法的关系,求7只是10只的几分之几,可以用7÷10。

得到算式:7÷10=

7 10

师:“鸡的只数是鸭的多少倍?”又该如何解答呢?

引导学生回忆数量之间的倍数关系,用除法解决。将问题转换成20只是10只的几倍,得出算式:20÷10=2。

(3)回顾与反思。

师:上面两个问题有什么关系?比较这两个问题有哪些异同点。

(学生进行交流讨论后反馈)

相同点:都是用除法计算的。

不同点:前一题的商是一个分数,后一题的商是一个整数。

小结:求一个数是另一个数的几分之几和求一个数是另一个数的几倍,都用除法计算。通常两个数相除,如果商是整数,则两个数的关系就用几倍表示;如果商是小数,则两个数的关系就用几分之几表示。

师:你还能提出其他数学问题并解答吗?

预设:鹅的只数是鸡的几分之几?鸡的只数是鹅的多少倍?鸭的只数是鸡的几分之几?

小结解题方法:先找出单位“1”,然后以单位“1”作除数,进行除法计算。

7÷20=7

20

20÷7=

20

7

10÷20=

10

20

【设计意图:呈现生活情境,引导学生观察思考“鹅的只数是鸭的几分之几?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、小组交流等环节,鼓励学生大胆地呈现个性化的理解。通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对“求一个数是另一个数的几分之几”的理解。】

3.巩固练习

(1)教材第50页“做一做”第2题。

动物园里有大象9头,金丝猴4只。金丝猴的数量是大象的几分之几?

(2)一个5平方米的花坛,种7种花朵,每种花平均占地多少平方米?如果种9种花呢?(用分数表示)

4.课堂总结

师:求一个数是另一个数的几分之几的问题的解答方法是什么?

(先找题中的单位“1”,然后以单位“1”作除数进行除法计算。)

(三)课时作业

(1)一班有学生28人,二班有学生23人,二班人数是一班的几分之几?一班的人数占两班总人数的几分之几?

答案: 23÷28=2328 23+28=51(人) 28÷51=2851

解析:先找题中的单位“1”,然后以单位“1”作除数进行除法计算。第一问的单位“1”是一班的人数23÷28=

2328,第二问的单位“1”两个班的人数23+28=51(人) 28÷51=2851

【考查目标1、2】 (2)学校买来15米彩带,平均分给18个班,每个班可以分得多少米?每个班可以分得这些彩带的几分之几?

答案:15÷18=1518(米) 1÷18=118

解析:15米平均分给18个班,根据除法的意义列算式15÷18=

1518(米),第二问是将15米的彩带看作单位“1”,平均分给18个班,根据分数的意义 1÷18=1

18

【考查目标2、3】

2.理解把低级单位的名数改写成用分数表示的高级单位名数。

(1)出示题目: 9 cm =( )( )

dm 。 教师:根据以往的方法,这道题该如何解决?当两数相除得不到整数商时,商应该如何表示?

学生尝试自主练习。

练习完成后师生交流讨论。

(2)比较这道题与本节课开始时的第1题有什么不同的地方,有什么相同的地方?

相同点:都是低级单位换算成高级单位,都是用进率去除得到结果。

不同点:第1题当中的数值都可以除尽,商是整数。这道题中的数值不能除尽,商用分数表示。

得到答案:可以用9÷10=9

10得到9 cm =9

10dm 。

(3)教师:想想这个例题能用今天所学的知识来解决吗?

(回顾今天所学的课题,学生交流讨论。)

引导学生说出9 cm =( )( )

dm 就是求9 cm 是10 cm (10是进率)的几分

相关文档
最新文档