数字电路课件第六章
《数字电子技术 》课件第6章
图6.3 SRAM存储元
2. DRAM存储元 静态MOS管组成的存储元中管子数目较多, 不利于提 高集成度。 为了克服这些缺点, 人们利用大规模集成工艺, 研制出了动态DRAM。 DRAM存储信息的原理基于MOS管 栅极电容的电荷存储效应。 由于漏电流的存在, 电容上存储的信息不能长久保持, 因而必须定期给电容补 充电荷, 以免存储的信息丢失, 这种操作称为再生或刷新。
图6.5 随机读/写存储器位扩展方式
2. 字扩展方式 字扩展的方法是将地址线、 输出线对应连接, CS分别与译码器的输出端连接。 图6.6所示为4片256×8 RAM扩展为1024 ×8 RAM, 需要有10根地址输入线。
图6.6 随机读/写存储器字扩展方式
然而每片集成电路上的地址输入端只有8位(A0~A7), 给出的地址范围全部是0~255, 无法区分4片中同样的地址 单元。 因此增加了两位地址代码A8、A9, 使地址代码增加 到10位, 才得到1024地址。 图6.6中通过2线-4线译码器选 择每片RAM的片选端CS, 当CS=0时, 该片被选中工作, 当 CS=1时, 该片RAM不工作, 从而实现了4片RAM轮流选通 工作。
3. 可擦除可编程只读存储器 可擦除可编程只读存储器(EPROM)不仅可以编程, 而且 写入的信息可以擦除, 从而再编入新的信息, 即可多次编 程。 因此熔丝结构、 二极管结构不能作为EPROM的编程单 元, 而应采用浮栅型MOS管。 编程时, 给写入“0”信息的 MOS管的浮栅充电; 若要擦除信息, 则以紫外光照射使浮 栅上所积累的电荷消失。
地址译码电路实现地址的选择。 在大容量的存储器中, 通常采用双译码结构, 即将输入地址分为行地址和列地址 两部分, 分别由行地址译码电路、 列地址译码电路译码。 行地址译码电路、 列地址译码电路的输出作为存储矩阵的 行地址选择线、 列地址选择线, 由它们共同确定欲选择的 地址单元。 地址单元的个数N与二进制地址码的位数 n满足关系式N=2n。 图6.2是一个1024×4位的RAM实例。
《数字电子技术》课件第六章
Q1nQ2n Q3n
C Q3n
根据方程可得出状态迁移表, 如表 6-1 所示, 再由 表得状态迁移图, 如图 6-2 所示。 由此得出该计数器为 五进制递增计数器, 具有自校正能力(又称自启动能力)。
所谓自启动能力, 指当电源合上后, 无论处于何种状 态, 均能自动进入有效计数循环; 否则称其无自启动能力。
J 3 Q1nQ2n
___ ___
次态方程和时钟方程为 Q1n1 Q3n Q1n
___
Q2n1 Q2n
K3 1 CP1 CP CP2 CP1
___
Q3n1 Q1nQ2n Q3n
CP3 CP
由于各触发器仅在其时钟脉冲的下降沿动作,其余 时刻均处于保持状态,故在列电路的状态真值表时必须 注意。
(1) 当现态为000时,代入Q1和Q3的次态方程中,可
知在CP作用下Qn+1=1,
Q n 1 3
0
,
由于此时CP2=Q1,
Q1由
0→1 产生一个上升沿,用符号↑表示,故Q2处于保持状
态, 即 Q2n1 Q2n 0 。 其次态为 001。
(2)
当现态为
001
时,
Q n1 1
0,
Q n1 3
0
,此
z Q1n
(2) 列出状态真值表。 假定一个现态, 代入上述次态方程中得相应的次态, 逐个假定列表表示即得相应的状态真值表, 如表 6-3 所示。
(3) 画出状态迁移图。 由状态真值表可得出相应的状态图, 如图 6-8 所示。
图 6-8 例 3 状态迁移图
(4) 画出给定输入x序列的时序图。 根据给出的x序列, 由状态迁移关系可得出相应的次 态和输出。 如现态为 00, 当x=1 时, 其次态为 01, 输出 为0; 然后将该节拍的次态作为下一节拍的现态, 根据输 入x和状态迁移关系得出相应的次态和输出, 即 01 作为第 二节拍的现态。 当x=0 时, 次态为 11, 输出为 0, 如此 作出给定x序列的全部状态迁移关系, 如下所示, 其箭头 表明将该节拍的次态作为下一节拍的现态。
数字电路讲义-第六章
M= (100000000-10010111)2=(105)10
六、集成同步二进制 可逆 计数器
1、同步单时钟二进制可逆计数器——74LS169
74169
六、集成同步二进制 可逆 计数器
2、同步双时钟二进制可逆计数器——74LS193
双时钟的工作原理
七、集成同步BCD码计数器
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 0000
外部连接电路直接列出状态转换表,从而判断整个电路的 功能
步骤:
1.观察电路,写出电路存储器中各触发器的激励函数、电路 输出函数
步骤:
1.观察电路,写出电路存储器中个触发器的激励函数、电路 输出函数
2.由触发器的特征方程和激励函数求出存储器的输出方程, 即新的状态方程
3.列出状态状态转换表 4.画出相应的状态转换图 5.视需要画出电路的输入输出波形图 6.最后判断电路的逻辑功能,并评述其优缺点 对中规模功能块构成的电路,可根据这类器件的功能表和
数电第六章时序逻辑电路
• 根据简化的状态转换图,对状态进行编码,画出编码形式 的状态图或状态表
• 选择触发器的类型和个数 • 求电路的输出方程及各触发器的驱动方程 • 画逻辑电路图,并检查电路的自启动能力 EWB
典型时序逻辑集成电路
• 寄存器和移位寄存器 – 寄存器 – 移位寄存器 –集成移位寄存器及其应用 • 计数器 – 计数器的定义和分类 – 常用集成计数器 • 74LVC161 • 74HC/HCT390 • 74HC/HCT4017 – 应用 • 计数器的级联 • 组成任意进制计数器 • 组成分频器 • 组成序列信号发生器和脉冲分配器
– 各触发器的特性方程组:Q n1 J Q n KQ n CP
2. 将驱动方程组代入相应触发器的特性方程,求出各触发器 的次态方程,即时序电路的状态方程组
n n FF0:Q0 1 Q 0 CP n n n FF1:Q1 1 A Q0 Q1 CP
同步时序逻辑电路分析举例(例6.2.2C)
分析时序逻辑电路的一般步骤
• 根据给定的时序电路图写方程式 – 各触发器的时钟信号CP的逻辑表达式(同步、异步之分) – 时序电路的输出方程组 – 各触发器的驱动(激励)方程组 • 将驱动方程组代入相应触发器的特性方程,求出各触发器 的次态方程,即时序电路的状态方程组 • 根据状态方程组和输出方程组,列出该时序电路的状态 表,画状态图或时序图 • 判断、总结该时序电路的逻辑功能
• 电路中存在反馈
驱动方程、激励方程: E F2 ( I , Q )
状态方程 : Q n1 F3 ( E , Q n ) • 电路状态由当前输入信号和前一时刻的状态共同决定
• 分为同步时序电路和异步时序电路两大类
什么是组合逻辑电路?
数字电路第6章(1时序逻辑电路分析方法)
数字电路第6章(1时序逻辑电路分析方法)1、第六章时序规律电路本章主要内容6.1概述6.2时序规律电路的分析方法6.3若干常用的时序规律电路6.4时序规律电路的设计方法6.5时序规律电路中的竞争-冒险现象1.时序规律电路的特点2.时序规律电路的分类3.时序规律电路的功能描述方法§6.1概述一、时序规律电路的特点1、功能:任一时刻的输出不仅取决于该时刻的输入;还与电路原来的状态有关。
例:串行加法器:两个多位数从低位到高位逐位相加一、时序规律电路的特点2.电路结构①包含存储电路和组合电路,且存储电路必不行少;②存储电路的输出状态必需反馈到组合电路输入端,与输入变量共同确定组合规律的输出。
yi:输出信号xi:输2、入信号qi:存储电路的状态zi:存储电路的输入可以用三个方程组来描述:Z=G(X,Q)二、时序电路的分类1.依据存储电路中触发器的动作特点不同时序电路存储电路里全部触发器有一个统一的时钟源;触发器状态改变与时钟脉冲同步.同步:异步:没有统一的时钟脉冲,电路中要更新状态的触发器的翻转有先有后,是异步进行的。
二、时序电路的分类2.依据输出信号的特点不同时序电路输出信号不仅取决于存储电路的状态,而且还取决于输入变量。
Y=F(X,Q)米利(Mealy)型:穆尔(Moore)型:输出状态仅取决于存储电路的状态。
犹如步计数器Y=F(Q)三、时序规律电路的功能描述方法描述方法3、规律方程式状态转换表状态转换图时序图三、时序规律电路的功能描述方法(1)规律方程式:写出时序电路的输出方程、驱动方程和状态方程。
输出方程反映电路输出Y与输入X和状态Q之间关系表达式;驱动方程反映存储电路的输入Z与电路输入X和状态Q之间的关系状态方程反映时序电路次态Qn+1与驱动函数Z和现态Qn之间的关系三、时序规律电路的功能描述方法(2)状态〔转换〕表:反映输出Z、次态Qn+1和输入X、现态Qn间对应取值关系的表格。
(3)状态〔转换〕图:(4)时序图:反映时序规律电路状态转换规律及相应输入、输出取值关系的有向图形。
数字电路-第六章 正弦波振荡电路
二、振荡电路的分析
• 首先判断它能否产生正弦波振荡。
• 对能振荡的电路,其振荡频率可根据选频 网络选频条件推算,为了保证振荡电路起 振,必须由起振条件确定电路的某些参数。
1、 判断能否产生正弦波振荡的步骤
(1) 检查电路的基本组成,一般应包含放大电路、 反馈网络、选频网络和稳幅环节等。
(2) LC振荡电路:选频网络由L、C元件组成。可分为变 压器反馈式、电感三点式和电容三点式等3种LC振荡电路。
(3) 石英晶体振荡电路:选频作用主要依靠石英晶体谐振 器来完成。根据石英晶体谐振器的工作状态和联接形式的 不同,可以分为并联式和串联式两种石英晶体振荡电路。
6.3 RC振荡器
一、 电路组成
6.1 正弦波振荡电路的基本原理
一、产生振荡的条件
+
Vd′
Vo
基本放大电路 A
放大电路净输入电压:
Vi=0
Vi+ Vf
+
.
.
.
Vd' = Vi + V f
反馈网络 F Vf
.
.
产生正弦波振荡时,应满足振:荡V条d件' = V f
(电路维持振荡的平衡条件)
A& F&
=1
.
..
••
V f = F VO
1 振荡的基本概念 2 RC振荡器
6.0 振荡的基本概念
振荡器是一种不需外加信号激励就能直接将
直流能源转换成具有一定频率、一定幅度和一 定波形的交流能量输出的电路
– 从能量的观点看,放大器是一种在输入信号控 制下,将直流电源提供的能量转变为按输入信号 规律变化的交变能量的电路 – 而振荡器是不需要输入信号控制,就能自动地 将直流电源的能量转变为特定频率和幅度的交变 能量的电路
数字电子技术基础课件 第6章2(共35张PPT)
作业:第4版 P302 题5.9 题 5.10 第5版 P349 题6.12 题6.14
异步二进制加法计数器 异步二进制减法计数器
(三)、任意进制计数器的构成方法
(一)、同步计数器 1、同步二进制加法计数器
10110 11
+
1
1011100
用T触发器构成的
同步二进制加法计数器
驱动方程
将驱动方程代入如下特性方程得状态方程
状态方程
输出方程
状态转换表
状态转换图
时序图
2、同步二进制减法计数器
第六章 时序逻辑电路
一、概述
二、同步时序逻辑电路的分析方法 三、若干常用时序逻辑电路
1、寄存器和移位寄存器
2、计数器
四、同步时序逻辑电路的设计方法
第一讲
第二讲
第三讲
第六章 时序逻辑电路 (第二讲)
计数器
计数器是典型的时序电路,所谓计数,就是统计时 钟脉冲(CLK)的个数。还可以用于分频、定时、产 生节拍脉冲和脉冲序列以及进行数字运算等。
10110 0 0
-
1
用T触发器构成的
同步二进制减法计数器
3、同步十进制 加法计数器
驱动方程
状态方程
输出方程
CQ0Q3
状态转换表
状态转换图
同步十进制加法计数器74160
同步计数器同样有传输延迟时间,但触发器之间无延迟,而是共同对被计数CLK的延迟。
四、同步时序逻辑电路的设计方法
+
1
关于同步计数器的传输延时时间问题
2、 由下降沿T触发器构成的异步二进制减法计数器
数字电子技术课件第六章 时序逻辑电路(调整序列码)0609
(3)移入数据可控的并行输入移位寄存器
Z
M
Z D3 X Q3MX Q3NX
N 0 1 0 1
Q3n+1 置0 Q3不变 Q3计翻 置1
0 0 1 1
X 0, Z D3 同步(并行)置数 X 1, Z M Q3 NQ3 右移
右移数据由MN组合而定
3、双向移位寄存器 加选通门构成。
t1
t2
t3
存1 个 数 据 占 用1 个 cp
D1 D2 D3、 Q1 Q2 Q3波形略
二、移位寄存器
移位:按指令(cp),触发器状态可 向左右相邻的触发器传递。 功能:寄存,移位。
构成:相同的寄存单元(无空翻触发器)
共用统一的时钟脉冲(同步工作) 分类:单向、双向
1、单向移位寄存器(4位,右移为例,JK触发器构成) (1)电路:4个相同寄存单元(4个JK触发器); 同步cp为移位指令; 移1(即: Qn+1 =1) → J=1,K=0 移0(即: Qn+1 =0) → J=0,K=1
1
4个脉冲以后 可从Q3~Q0并 行输出1101
2、并行输入移位寄存器
可预置数的移 位寄存器
(1)选通门——与或逻辑,2选1数据选择器 A B X X:控制信号 F=AX+BX X=1,F=A X=0,F=B
1
&
≥1
F
(2)电路(4位,右移,JK触发器构成)
X控制信号:X=0,置数; X=1,右移。 Dr右移数据输入端。 D3~D0并行数据输入端。
X控制信号:X=0,左移,DL左移数据输入端。 X=1,右移,Dr右移数据输入端;
双向移位寄存器示例,X控制信号:X=0,左移, X=1,右移,
数电 第6章时序电路
J2
* 1 ' 1 ' 0
K '2
' 1 ' 0
Q Q Q0 Q1Q Q0Q Q Q1
J1
* ' ' ' Q0 Q3' Q0 Q2 Q0 ' 3 ' 2 ' 0 '
' K1
0 0 1 1 0 1 1 0
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 0
1 0 1 0 1 0 1 0
6.4 同步时序逻辑电路的设计方法
逻辑电路设计:给定设计要求(或者是一段文字描叙,或 者是状态图),求满足要求的时序电路. 设计步骤:
1、进行逻辑抽象,建立电路的状态转换图(状态转换表)。 在状态表中未出现的状态将作为约束项 2、选择触发器,求时钟方程、输出方程和状态方程; 时钟:若采用同步方案,则CP1=CP2=CPn; 如果采用异步方案, 则需根据状态图先画出时序图,然后从翻转要求出发,为各个 触发器选择合适的时钟信号; 输出:输出与现态和输入的逻辑关系; 状态:各触发器的次态输出方程。
这三组方程反映的电路中各个变量 之间的逻辑关系。
3、进行计算:从输出方程和状态方程,不能看出电路 状态的变化情况。还需要转换成状态转换表和状态转 换图。
状态转换表:把任一组输入变量的值和电路的初态值代入状态 方程和输出方程,得到电路的次态和输出值;把得到的次态作 为新的初态,和现在的输入变量值再代入状态方程和输出方程, 得到电路新的次态和输出值。如此继续下去,把每次得到的结 果列成真值表的形式,得到状态转换表。
数字电子技术基础第六章触发器PPT课件
出触发器的状态转换过程。
典型应用案例分析
分频器
利用D触发器的存储功能,可以实现分频器电路。通过合理设置反馈网络,可以将输入信 号的频率降低到所需的分频系数。
序列信号发生器
通过级联多个D触发器,并设置不同的反馈网络,可以实现序列信号发生器。该电路可以 产生一系列具有特定时序关系的脉冲信号。
01
02
03
04
基本RS触发器
由两个与非门交叉耦合构成, 具有置0、置1和保持功能。
同步RS触发器
在基本RS触发器的基础上,引 入时钟信号CP,实现触发器的
同步翻转。
触发器的输入端
R(置0端)、S(置1端)和 CP(时钟信号输入端)。
触发器的输出端
Q和Q'(互补输出端)。
工作原理及逻辑功能
工作原理
序列信号发生器设计原理及实现方法
序列信号发生器定义
序列信号发生器是一种能够产生特定序列信号的电子器件, 具有信号发生、信号转换等功能。
序列信号发生器设计原理
利用触发器的状态转换特性和适当的逻辑电路,实现特定 序列信号的生成和输出。
序列信号发生器实现方法
采用移位寄存器或计数器等作为核心器件,通过适当的逻 辑电路实现序列信号的生成、转换和输出等操作。同时, 需要考虑信号的稳定性和可靠性等因素。
的使能状态。
工作原理及逻辑功能
工作原理
在CP上升沿到来时,触发器将输 入端D的电平状态存储到输出端 Q,并保持到下一个CP上升沿到
来之前。
逻辑功能
D触发器的逻辑功能可以用特性 方程来描述,即Q(n+1)=D。其 中,Q(n+1)表示下一个CP上升 沿到来时的输出状态,D表示输
《数字电路与数字逻辑》第六章3-11页PPT精品文档
Q0 nQ1nQ2 nQ3 n
异步清“0” 并行输入 保持
CP CR
74175移位功能: 将Q0接D1、Q1接D2、Q2接 D3 。此时寄存器成串 入/串出的右移移位寄 存器。
6.4.2移位寄存器
1)五种类型(串入—并出单向;串入—串出单向;串并入—串出单向;
串并入—并出单向;串并入—并出双向)
(2)4位右移移存器74195(具有双端串行输入、并行输入和串、并行输出功能)
S/L J K
CR
CP
Q Q Q Q n1 n1 n1 n1
01
23
功能
0
0 0 0 0
异步清除
1
00
51
01
1
10
1
11
1
↑
0 Q0nQ1nQ2n 串入、右移
1
↑
Q0 nQ0 nQ1 nQ2 n
6
1
↑
M0 1
CR 74194(II) >CP
M1
DSR
D0 D1 D2 D3
1
1
0 D’0 D’1 D’2
I
II
启动
Q0 Q 1 Q2 Q3
Q0 Q1 Q2 Q3
CP1↑ CP2↑ CP3↑ CP4↑ CP5↑ CP6↑ CP7↑
0 D’0 D’1 D’2 1 0 D’0 D’1 1 1 0 D’0 11 1 0 11 1 1 11 1 1 11 1 1
M0
M1
D0
D1
D2
D3
DS
L
DS
L
M0
M1
CP
串入 D’6~ D’0
清华数字电路课件第六章-时序逻辑电路
YF(Q)
仅取决于电路
6.2.时序逻辑电路的分析方法
6.2.1 同步时序逻辑电路的分析方法
时序逻辑电路的分析:就是给定时序电路,找出该的 逻辑功能,即找出在输入和CLK作用下,电路的次态和 输出。由于同步时序逻辑电路是在同一时钟作用下, 故分析比较简单些,只要写出电路的驱动方程、输出 方程和状态方程,根据状态方程得到电路的状态表或 状态转换图,就可以得出电路的逻辑功能。
6.2.时序逻辑电路的分析方法
(4)状态转换表:
Q Q12n n 1 1 D D12Q A1Q1Q2
A=0时
Y [ A Q 1 ( Q 2 ) ( A Q 1 Q 2 ) ] A Q 1 Q 2 A Q 1 Q 2 A=1时
Q2 Q1 Q2* Q1* Y
00 0 1 0 01 1 0 0 10 1 1 0 11 0 0 1
J3 Q1Q2,
K3 Q2
6.2.时序逻辑电路的分析方法
(2) 状态方程:
JK触发器的特性方程
Q *JQ KQ
将驱动方程代入JK触发器的特性方程中,得出电 路的状态方程,即
J1 (Q2Q3), K1 1
J2 Q1,
K2 (Q1Q3)
J3 Q1Q2,
K3 Q2
(3)输出方程:
QQ2*1*Q(1QQ22Q3)Q1QQ31Q2 Q3*Q1Q2Q3 Q2Q3
YQ2Q3
6.2.时序逻辑电路的分析方法
6.2.2时序逻辑电路的状态转换表、状态转换图、状态 机流程图和时序图
从例题可以看出,逻辑电路的三个方程应该说已 经清楚描述一个电路的逻辑功能,但却不能确定电路 具体用途,因此需要在时钟信号作用下将电路所有的 的状态转换全部列出来,则电路的功能一目了然
数字电子电路课件第6章6.1
一、时序逻辑电路与组合逻辑电路的区别:
• 组合逻辑电路:任何 一个时刻的输出信号
仅取决于当时的输入 信号。
• 时序逻辑电路:任何 时刻的输出不仅取决 于该时刻的输入,而 且还取决于电路原来 的工作状态。
二、时序电路的组成:
外输入
输入 内输入
组合电路
外输出 输出 内输出
特点:
B、并行转换成串行
并入串出:一起进,一个一个出 例
(2)作为脉冲节拍延迟
n位数码串入串出时,使输出比输入延迟n个CP 脉冲,从而起到节拍延迟作用。
延迟时间 td= n TCP
其中,TCP 为移存脉冲的周期, n 为移存器的位数
(3)构成计数分频电路、序列信号发生器等 GO
并 CP
入 RD 串
1R D
Q1
2R D
Q2
3R D
Q3
4R D
Q4
5R D
串出 Q5
出
1
&
&
&
&
&&源自&&
&
GO
并入: Vi1
Vi2
Vi3
Vi4
1. RD加负脉冲
相应的与非门开放
Q1= Q2 = Q3 = Q4 = 1
2. M = 1 在CP脉冲作用下,各级并入。
串出:
Q1=D=Vi1 Q2=D=Vi2
1. M = 0 D1 = 0 D2 = Q1 D3 = Q2 D4 = Q3
CP
并行
取样 Q1
1
Q2 1
Q3 0 Q4 0
Q5
1 并入
00 1 串出
数字电路课件第6章
1. 逻辑方程组
特性方程:描述触发器逻辑功能的逻辑表达式。 驱动方程:(激励方程)触发器输入信号的逻辑
表达式。 时钟方程:控制时钟CLK的逻辑表达式。 状态方程:(次态方程)次态输出的逻辑表达式。
驱动方程代入特性方程得状态方程。 输出方程:输出变量的逻辑表达式。
第7页/共124页
寄存器和移位寄存器
一、寄存器 在数字电路中,用来存放二进制数据或代码的电路称为寄存器。
寄存器是由具有存储功能的触发器组合起来构成的。一个触发器可以存储1位二 进制代码,存放n位二进制代码的寄存器,需用n个触发器来构成。
第23页/共124页
4位寄存器
(1)清零。RD 0 ,异
步清零。即有:
Q3 Q2Q1 Q0 0000
第41页/共124页
n位二进制同步减法计数器的连接规律:
驱动方程
J0 K0 1
J1
K1
Q0
J
2
K2
Q1
Q0
J n1 Kn1 Qn2Qn3 Q1 Q0
输出方程 B Qn1Qn2 Q1 Q0
284页图6.3.15
第42页/共124页
4位集成二进制同步可逆计数器74LS191
使能端
串行时钟输出
2. 状态表 反映输出Z、次 态Q*与输入X、 现态Q之间关系 的表格。
第8页/共124页
3. 状态图
标注:输入/输出
反映时序电路 箭尾: 状态转换规律,现态
及相应输入、
输出取值关系
的图形。
箭头: 次态
第9页/共124页
4. 时序图
时序图又叫工作波形图,它用波形的形式形象地表达了输入信号、输出 信号、电路的状态等的取值在时间上的对应关系。
数字设计课件 数字电路第六章
Y2 EN Y3
Truth T(ab2l-e4fo二r 进a 2制-to译-4码Bin器ar真y D值ec表ode)r
Inputs
Outputs
EN I1 I2 Y3 Y2 Y1 Y0
0XX 100 101 110 111
0000 0001 0010 0 10 0 1000
(一般来说,输出编码比输入编码位数多)
Encoder(编码器)
Output Code has Fewer bits than its Input Code called an Encoder (输出编码比输入编码位数少,则常称为编码器)
Most Commonly Used Case
Decoder(译码器)
ห้องสมุดไป่ตู้
X
Y
F
Z
6.2 Circuit Timing (电路定时)
Propagation Delay
Timing Analysis: Worst-Case Delay
(定时分析:取最坏情况延迟)
W X
’32
Maximum Delay (最大延迟) Typical Delay (典型延迟) Minimum Delay (最小延迟)
1/2 74x139
G Y0 Y1
A Y2 B Y3
Decoder(译码器)
2. 3-to-8 Decoder
Truth T(ab3l-e8f二or进a 3制-to译- 8码B器ina真ry值De表co)der
Decoder and Encoder
(译码器和编码器)
Multiple-Input, Multiple-Output Logic Circuit
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X=0 0 1/0 1 0/0 1 1/0
X=1 1 1/0 0 0/0 0 1/0
0/1
00
1/0
01
1/0 1/1
11 0/0
1/0
0/0
1 1
0 0/1
1 0/1
10
根据状态转换表,画出波形图。
CP
Q1n Q0n Q1n1Q0n1
X= 0 X= 1 00 01 10 11 01 10 11 00 11 00 01 10
6.2 时序逻辑电路的分析
6.2.1 分析同步时序逻辑电路的一般步骤 6.2.2 同步时序逻辑电路分析举例
6.2 时序逻辑电路的分析
时序逻辑电路分析的任务: 分析时序逻辑电路在输入信号的作用下,其状态和输出 信号变化的规律,进而确定电路的逻辑功能。 分析过程的主要表现形式: 时序电路的逻辑功能是由其状态和输出信号的变化规律 呈现出来的。所以,分析过程主要是列出电路状态表或画出状 态图、工作波形图。
2、熟练掌握时序逻辑电路的分析方法
3、熟练掌握时序逻辑电路的设计方法 4、熟练掌握典型时序逻辑电路计数器、寄存器、移位 寄存器的逻辑功能及其应用。 5、正确理解时序可编程器件的原理及其应用。
6、学会用Virelog HDL设计时序电路及时序可编程逻辑器件的 方法。
6.1 时序逻辑电路的基本概念 6.1.1 时序逻辑电路的模型与分类 6.1.2 时序电路逻辑的表达
n n Q1 1 Q 0 A
Q0n A Q1n 1Q0n 1 Y Q
n 1
0 0 0 0
0 0 1 1
0 1 0 1
0 1 0 0
0 0 0 1
0 0 1 0
1 1
0 0
1 1
0 1
0 1
0 1
0 0
0 1
0 1
1 0
1 0
n Q0 1
n ( Q0
n Q1
)A
1 1
将状态转换真值表转换为状态表
CP
000 001
Q0 Q1 Q2
TCP
011
110
100
010
101
111
Q2 Q 1 Q 0
米利型和穆尔型时序电路 米利型电路 电路的输出是输入变量A及触发器输出Q1、 Q0 的函数, 这类时序电路亦称为米利型电路
I
i
组 合 电 路 CP 或 CP
E k 存储电路
S m
组 合 电 路
j O
穆尔型电路 电路输出仅仅取决于各触发器的状态,而不受电路当时的输入
0/1
1/0 1/1 11 0/0
1/0
0/0
10
例3 分析下图所示的同步时序电路。
&
1D CP >C1 FF0
Q0
1D >C1 FF1 Z0
Q1
1D >C1 FF2 Z1
Q2
Q n 1 D
Q0
Q1
Q2
Z2
1.根据电路列出逻辑方程组: 输出方程组 Z0=Q0 Z1=Q1 n n 激励方程组 D Q Q
6 . 时序逻辑电路的分析与设计
6.1 时序逻辑电路的基本概念 6.2 同步 时序逻辑电路的分析 6.3 同步 时序逻辑电路的设计
6.4 异步 时序逻辑电路的分析
6.5 若干典型的时序逻辑集成电路 *6.6 用Verilog描述时序逻辑电路 6.7 时序逻辑可编程逻辑器件
教学基本要求
1、熟练掌握时序逻辑电路的描述方式及其相互转换。
6.2.2 同步时序逻辑电路分析举例
例1 试分析如图所示时序电路的逻辑功能。
T0 1T C1 FF0 & CP G1 T1 1T C1 FF1 Q1 Q1 Q0 Q0 & G2
A
Y
解: (1)了解电路组成。
电路是由两个T 触发器组成的同步时序电路。
(2) 根据电路列出三个方程组 输出方程组: 激励方程组: T0=A T1=AQ0 Y=AQ1Q0
Q1Q0 A/Y 0/0 00 1/0 01 0/0
CP ① A 1 2 3 4 5 6 7 8 9 1 0
1/1
1/0
Q0
Q1
11 0/0
1/0
10 0/0
Y ②
例2 试分析如图所示时序电路的逻辑功能。 解: 1.了解电路组成。 电路是由两个JK触发器组成的莫尔型同步时序电路。 2.写出下列各逻辑方程式: 激励方程 J1=K1=1 J2=K2=X Q1 输出方程
A=0 00/0 01/0 10/0 11/0
A=1 01/0 10/0 11/0 00/1
Q0
Q1
Y ②
(6) 逻辑功能分析 观察状态图和时序图可知,电路是一个由信号A控制的可控 二进制计数器。当A=0时停止计数,电路状态保持不变;
当A=1时,在CP上升沿到来后电路状态值加1,一旦计数到
11状态,Y 输出1,且电路状态将在下一个CP上升沿回到00。 输出信号Y的下降沿可用于触发进位操作。
j I i 组合 电路 k m E 存储电路 S O
状态方程 :
2、异步时序电路与同步时序电路 同步: 存储电路里所有触发器有一个统一的时钟源, 它们的状态在同一时刻更新。 异步: 没有统一的时钟脉冲或没有时钟脉冲,电路 的状态更新不是同时发生的。
时序电路
X “ 1” CP Q1 1J
=1 1J
Q2
A=0
00 01 10 11 00/0 01/0 10/0 11/0
A=1
01/0 10/0 11/0 00/1
0/0 11 1/0 10 0/0 1/1 1/0
(5) 画出时序图
1 2 3 4 5 6 7 8 9 ① A 1 0
Q1n Q0n
00 01 10 11
Q1n1Q0n1 / Y
CP
& Z CP 1D
>
1D Q0 Q0
>
>C1
1K FF 1 Q1
> C1
1K FF 2 Q2 & Y
FF0
FF1
Q1 Q1
6.1.2 时序电路功能的表达方法
1. 逻辑方程组
A ≥1 & D0 1D C1 FF0 & CP & 1 FF1 Y D1 Q1 Q1 Q0 Q0
输出方程
Y ( Q 0 Q1 ) A
Y 0 0 0 1
X
Q Q10 Q Q21 Y
1 0
0 1
1
0 0
1
0
1
1
1
1
0
4.确定电路的逻辑功能. •X=0时
00 01 10 11
X/Y Q2Q1 00 0/0 1/0 01
电路进行加1计数 •X=1时
00 11 10 01
电路进行减1计数 。 电路功能:可逆计数器 Y可理解为进位或借位端。
6.2.1 分析同步时序逻辑电路的一般步骤:
1.了解电路的组成: 电路的输入、输出信号、触发器的类型等
2. 根据给定的时序电路图,写出下列各逻辑方程组: (1) 输出方程; (2) 各触发器的激励方程; (3)状态方程: 将每个触发器的驱动方程代入其特性 方程得状态方程. 3.列出状态表、画出状态图和时序图; 4.确定电路的逻辑功能.
001 010 100 110 001 010 100 110
011
110
100
010
101
111
Q2 Q 1 Q 0
3. 画出时序图
CP Q0 Q1 Q2
TCP
4、逻辑功能分析 由状态图可见,电路的有效状态是三位循环码。 从时序图可看出,电路正常工作时,各触发器的Q端轮流出现 一个宽度为一个CP周期脉冲信号,循环周期为3TCP。电路的功能 为脉冲分配器或节拍脉冲产生器。
A=0 00/0 0 0/ 1 00/1 0 0/ 1
A=1
10/0 01/0 11/0 01/0
2.根据状态表画出状态图
状态表
0/0 0/1
00
1/0
01
Q Q
00 01 10 11
n 1
n 0
n Q1n1Q0 1 / Y
A=0 00/0
A=1 10/0 01/0 11/0 01/0
0 0/ 1 00/1
Q1n Q 0n
00
01
A=0
n n n Q1 1 ( AQ 0 ) Q1
A=1
00/0
01/0 10/0 11/0
01/0
10/0 11/0 00/1
Y =A Q1Q0
10 11
(4) 画出状态图
n Q1n1Q0 1 / Y
Q1Q0 A/Y 0/0 00 1/0 01 0/0
n n Q1 Q 0
实际逻辑问题的要求,设计出能实现给定逻辑功能的电路。
6.3.1 设计同步时序逻辑电路的一般步骤
同步时序电路的设计过程
由给定的逻 辑功能建立 原始状态图 和原始状态 表
状态 化简
ห้องสมุดไป่ตู้状态 分配
选择 触发器 类型
确定 激励方程组 和 输出方程组
画出 逻辑图 并检查 自启动 能力
(1)根据给定的逻辑功能建立原始状态图和原始状态表
0 1 0 n D1 Q 0 n D 2 Q1
Z2=Q2
将激励方程代入D 触发器的特性方程得状态方程
Q n1 D
得状态方程
n Q 0 1
状态表
n n n Q 2 Q1 1 Q0
n n n Q2 1 Q1 +1 Q0 1
D0
n n Q1 Q0
n n Q 1 1 D1 Q 0 n n Q 2 1 D 2 Q1