力敏传感器的工作原理与分类

合集下载

第四篇力敏传感器

第四篇力敏传感器

第四章力敏传感器教学目标:1.了解弹性敏感元件的特性和要求。

2.了解几种常用测力称重传感器的特点、3.掌握电阻应变效应及半导体的压阻效应4.了解电桥电路的作用。

5.掌握单臂、双臂和全桥测量电路的异同点。

6.理解压电式传感器的工作原理。

了解它的特点。

7.了解它们的应用。

力敏传感器是使用很广泛的一种传感器。

它是生产过程中自动化检测的重要部件。

它的种类很多,有直接将力变换为电量的如压电式、压阻式等,有经弹性敏感元件转换后再转换成电量的如电阻式、电容式和电感式等。

它主要用于两个方面:测力和称重。

本章介绍电阻应变式传感器、压阻式和压电式传感器。

§4-1(传感器中的)弹性敏感元件一、弹簧管压力表的组成:(如图4-1)图4-1弹簧管压力表的组成框图弹簧管——弹性敏感元件:将输入压力转换成自身的变形量(应变、位移或转角)。

二、弹性元件的基本特性:1.变形:物体在外力作用下改变原来尺寸或形状的现象。

2.弹性:物体因受外力作用而产生变形,外力去掉后又恢复原状的特性。

3.弹性元件:具有弹性变形特性的物体。

4.弹性变形:弹性元件受外力作用而产生的变形。

5.弹性特性:作用在元件上的外力与相应变形(应变、位移或转角)之间的关系。

(1)刚度:弹性元件产生单位变形所需的力。

(2)灵敏度:在单位力作用下弹性元件产生的变形。

刚度和灵敏度表示了弹性元件的软硬程度。

元件越硬,刚度越大,单位力作用下变形越小,灵敏度越小。

6.线性弹性元件:刚度和灵敏度为常数,作用力F与变形X成线性关系。

三、弹性敏感元件的基本要求及类型:弹性元件在传感器技术中占有极其重要的地位。

它首先把力、力矩或压力转换成相应的应变或位移,然后配合各种形式的传感元件,将被测力、力矩或压力变换成电量。

基本要求:(1)具有良好的机械特性(强度高、抗冲击、韧性好、疲劳强度高等)和良好的机械加工及热处理性能。

(2)良好的弹性特性(弹性极限高、弹性滞后和弹性后效小等)。

(3)弹性模量的温度系数小且稳定,材料的线膨胀系数小且稳定。

各类电力传感器的类型与工作原理

各类电力传感器的类型与工作原理

各类电力传感器的类型与工作原理电力传感器是一种用于测量和监测电力系统中各种参数的设备,它们可以测量电流、电压、功率、功率因素等重要参数,为电力系统的运行和维护提供了必要的数据支持。

根据其工作原理和用途,可以将电力传感器分为多种类型,包括电流传感器、电压传感器、功率传感器、功率因素传感器等。

本文将介绍各种电力传感器的类型、工作原理以及应用领域。

一、电流传感器电流传感器是用于测量电路中电流大小的传感器,根据其工作原理和测量方式的不同,可以分为电流变压器、霍尔传感器、电阻式电流传感器等。

1. 电流变压器电流变压器是一种通过电磁感应原理来测量电路中电流大小的传感器。

它是利用电流在导体中产生的磁场来实现测量的,一般由磁芯、一次绕组和二次绕组组成。

当电路中通过电流时,一次绕组产生的磁场会感应在二次绕组上,从而实现对电流大小的测量。

电流变压器具有测量范围广、精度高、响应速度快等优点,广泛应用于电力系统中的电流测量和保护。

2. 霍尔传感器霍尔传感器是一种利用霍尔效应来测量电路中电流大小的传感器。

当电流通过导体时,导体周围会形成磁场,而霍尔传感器可以感应到这种磁场的变化,并将其转换为对电流大小的测量值。

霍尔传感器具有结构简单、使用方便等优点,适用于对电流进行非接触式测量的场合。

3. 电阻式电流传感器电阻式电流传感器是一种利用电路中电流通过电阻产生的电压来实现测量的传感器。

它通常由一根电阻和电流变换电路组成,通过测量电阻两端的电压来计算电路中的电流值。

电阻式电流传感器具有价格低、体积小、可靠性高等优点,适用于对电流进行低成本测量的场合。

二、电压传感器电压传感器是用于测量电路中电压大小的传感器,根据其测量原理和结构不同,可以分为电位器式电压传感器、电容式电压传感器、电压变压器等。

1. 电位器式电压传感器电位器式电压传感器是一种利用电位器原理来测量电路中电压大小的传感器。

它通过调节电位器的位置来改变电路中的输出电压,从而实现对电压大小的测量。

各类传感器的工作原理

各类传感器的工作原理

各类传感器的工作原理传感器是一种能够检测和感知周围环境,并将其转化为可用信号的装置。

传感器在各个领域中起着极为重要的作用,从智能手机中的加速度传感器到汽车中的车速传感器,从医疗设备中的心率传感器到环境监测中的温度传感器,都体现了传感器在现代生活中的广泛应用。

下面将介绍几种常见的传感器及其工作原理。

1.光电传感器:光电传感器是基于光电效应的原理工作的。

光电效应是指当光照射到物体表面时,光中的能量被物体吸收,电子被激发而从原子中跃迁,产生电流。

光电传感器利用光电效应将光信号转化为电信号,可以用于测量光的强度、距离或光的频率等。

2.压力传感器:压力传感器是利用压力作用在压敏电阻或压电材料上变化的阻值或电荷来测量压力的。

当外力施加在压阻上时,导电粒子(电子或离子)运动受到阻碍,阻值发生变化,通过测量电阻的变化来确定压力的大小。

3.温度传感器:温度传感器利用材料在温度变化时导电性或热传导性的变化原理来测量温度。

常用的温度传感器有热敏电阻、热电偶和温度敏感电容等。

热敏电阻是利用材料的电阻随温度的变化而变化;热电偶则是利用两种不同材料的接触产生热电势差,通过测量热电势差来计算温度;温度敏感电容则是通过测量电容的变化来确定温度。

4.加速度传感器:加速度传感器是利用物体在加速或减速时所产生的惯性力来测量加速度的。

常用的加速度传感器有电容式加速度传感器和压电式加速度传感器。

电容式加速度传感器通过测量电容的变化来确定加速度;压电式加速度传感器则是利用压电效应和加速度之间的关系来测量加速度。

5.湿度传感器:湿度传感器是利用材料的吸湿性或湿度对电阻、电容或电抗等性能的影响来测量湿度的。

常用的湿度传感器有湿度敏感电阻、湿度敏感电容和湿度敏感电感等。

湿度敏感电阻通过测量电阻的变化来计算湿度;湿度敏感电容则是通过测量电容的变化来确定湿度。

总之,传感器的工作原理各异,但都是基于其中一种物理效应或电学特性的变化来实现对周围环境的感知和检测。

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。

这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。

这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。

(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。

这种分类法可分出很多种类。

(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。

其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。

传感器数字化是今后的发展趋势。

(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。

若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。

(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。

主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。

微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。

主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。

化学类,基于化学反应的原理。

生物类,基于酶、抗体、和激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。

力敏传感器的原理

力敏传感器的原理

力敏传感器的原理力敏传感器是一种广泛应用于工业自动化、机器人、医疗设备等领域的传感器,用于测量和感知物体施加在其上的力的大小。

它基于材料的力学特性以及与物体接触的感知技术,可以精确地测量静态或动态的力,并将其转化为电信号输出。

力敏传感器的原理主要分为两种类型:压电式和变阻式力敏传感器。

1. 压电式力敏传感器压电式力敏传感器利用压电效应来实现力的测量。

压电效应是指某些晶体材料在受到机械应力时会产生电荷或电位变化的现象。

压电材料通常是由特殊晶体或陶瓷制成,如石英、锆酸钛等。

在压电式力敏传感器中,压电材料被安置在传感器的接触面上。

当外界力作用在传感器上时,力会通过接触面传递给压电材料。

由于压电效应,压电材料内部的电荷或电位会发生变化,这种变化可以通过感应电极捕捉到,并转化为电信号输出。

2. 变阻式力敏传感器变阻式力敏传感器则利用材料的电阻随受力变化的特性来实现力的测量。

在变阻式力敏传感器中,通常采用应变测量电阻(strain gauge)来感知受力。

应变测量电阻是一种以金属导线或薄膜材料制成的电阻,其电阻值会随着受力的变化而发生变化。

通常,应变测量电阻被粘贴或粘合在传感器的应变区域上,当外界力作用于传感器时,应变区域发生形变,从而导致应变测量电阻的电阻值发生变化。

为了测量电阻值的变化,变阻式力敏传感器通常需要一个电桥电路。

电桥电路由多个电阻组成,其中一个电阻为应变测量电阻,其余的为补偿电阻和标定电阻。

当外界力施加在传感器上时,应变测量电阻的电阻值发生变化,这会引起电桥电路不平衡,进而产生微小的电压差。

这个电压差可以通过电桥电路中的放大器放大,并转化为可供读取和处理的模拟电信号或数字信号输出。

总结起来,力敏传感器的原理主要包括压电效应和应变测量电阻。

压电式力敏传感器利用压电效应将受力转化为电荷或电位变化,并输出相应的电信号;而变阻式力敏传感器则利用应变测量电阻的电阻值随受力变化的特性,通过电桥电路将变化转化为电压差输出。

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器得分类_传感器得原理与分类_传感器得定义与分类传感器得分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等.这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。

这种分类有利于研究、设计传感器,有利于对传感器得工作原理进行阐述。

(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。

这种分类法可分出很多种类。

(4)按照传感器输出量得性质分为摸拟传感器、数字传感器.其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等.传感器数字化就是今后得发展趋势。

(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用与家电用传感器等。

若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。

(6)根据使用目得得不同,又可分为计测用、监视用,位查用、诊断用,控制用与分析用传感器等.主要特点传感器得特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业得改造与更新换代,而且还可能建立新型工业,从而成为21世纪新得经济增长点。

微型化就是建立在微电子机械系统(MEMS)技术基础上得,已成功应用在硅器件上做成硅压力传感器。

主要功能常将传感器得功能与人类5大感觉器官相比拟:光敏传感器—-视觉声敏传感器——听觉ﻫ气敏传感器-—嗅觉ﻫ化学传感器——味觉ﻫ压敏、温敏、传感器(图1)流体传感器——触觉ﻫ敏感元件得分类:ﻫ物理类,基于力、热、光、电、磁与声等物理效应。

ﻫ化学类,基于化学反应得原理。

生物类,基于酶、抗体、与激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件与味敏元件等十大类(还有人曾将敏感元件分46类)。

力传感器

力传感器
2020/3/1
2020/3/1
1.应变式称重传感器的工作原理
电阻应变式称重传感器由弹性元件、应 变片和外壳组成。
弹性元件是称重传感器的基础,被测物 的重量作用在弹性元件上,使其在某一部位产 生较大的应变或位移;弹性元件上的应变片作 为传感元件,将弹性元件敏感的应变量或位移 完全地同步地转换为电阻值的变化量,转换成 电信号,完成了重力的测量。
这种测量方法简单、方便,成本低。 但容易损坏,受环境影响大,使用寿命短 。长期使用时,零点漂移大,需要在使用 前调节零点。
2020/3/1
方案二:在本课题中也
可以直接采用电子吊秤的方 法(课题二介绍)。购买电 子吊秤接在起重设备下,可 实现货物在线装卸测量、在 线称重,随时改变称量地点 ,可实现分次分批称重,提 高效率,但成本较高。
2020/3/1
[任务实施]
方案一:测量、控制起重设备吊运货物 的重量,可以采用在吊钩的圆柱壁上粘贴应 变片的方法,检测起吊重量。
测量吊运货物的重量, 量程较大,一般在吊钩的圆 柱壁上横竖各粘贴一片应变
片,组成双臂半桥电路。
2020/3/1
为应变电桥提供±2V稳压电源,电桥 输出信号接入差动直流放大电路,测量输 出电压。根据输出电压值可以推算出应力 的大小,即重力。也可以使用应变片专用 测量仪—电阻应变仪进行检测。
❖ 半导体应变计应用较普遍的有体型、薄膜型、 扩散型、外延型等。体型半导体应变计是将 晶片按一基片 定取向切片、研带磨状引、线 再切割P-Si 成细条, 粘贴于基片上制作而成。几种体型半导体应 变计示意图如图所示。
晶片
N-Si
电阻应变式传感器的测量电路
应变电阻变化是极其微弱的,电阻 相对变化率仅为0.2%左右。例如:应变 电阻为300Ω,电阻变化量为0.6Ω,要 精确地测量这么微小的电阻变化是非常 困难的。通常采用惠斯登电桥电路进行 测量,将电阻相对变化△R/R,转换为 电压的变化,再用测量仪表应变式传感 器测量电路便可以简单方便地进行测量。

电子课件-《传感器技术与应用》-A05-3188 第四章 力敏传感器

电子课件-《传感器技术与应用》-A05-3188 第四章  力敏传感器

第四章 力敏传感器
常见的压电式传感器
第四章 力敏传感器
2.压电材料特点和分类
用于制作压电元件的压电材料一般分为三大类: 一是压电晶体(单晶),它包括石英晶体和其他 压电单晶; 二是压电陶瓷; 三是新型压电材料,其中有压电半导体和有机高 分子压电材料两种。
第四章 力敏传感器
石英晶体薄片
压电陶瓷
第四章 力敏传感器
二、压电材料的主要特性参数
1.压电常数
压电常数是衡量材料压电效应强弱的参数,它直接 关系到压电元件输出的灵敏度。
2.弹性常数
压电材料的弹性常数、刚度决定着压电元件的固有 频率和动态特性。
3.介电常数
对于一定形状、尺寸的压电元件,其固有电容与介 电常数有关;而固有电容又影响着压电传感器的频率 下限。
电阻应变片的工作原理是利用导体或半导体材料 的电阻应变效应,即导体或半导体材料在外力作用下, 会产生机械变形,其电阻值也将随着发生变化的现象。
第四章 力敏传感器
实验表明,在金属丝的弹性变形范围内,当金属 丝受外力作用时,其长度和截面积都会发生变化,当 金属丝受外力作用而伸长时,其长度增加,而截面积 减少,电阻值便会增大。当金属丝受外力作用而压缩 时,长度减小而截面增加,电阻值则会减小。
第四章 力敏传感器
二以使用面积和电阻值表示,如 (3×10)mm2,120Ω。
2.应变片的灵敏系数K 3.应变片允许工作电流 4.应变极限 5.横向效应
第四章 力敏传感器
三、电阻应变片的选用
1.电阻应变片的选择 (1)应变片结构形式的选择
第四章 力敏传感器
名称 丝式 箔式 薄膜式
特点 制造简单、价格便宜、性能稳定、易于粘贴等优点,但蠕 变较大,金属丝易脱胶,逐渐被箔式所取代,多用于大批量、 一次性试验 表面积与截面积之比大,散热条件好,允许通过较大电流, 从而增大输出信号,提高灵敏度;可根据测量需要制成任意 形状,在制造工艺上能保证敏感栅尺寸准确线条均匀;具有 较好的可挠性,有利于粘贴及应变的传递;易加工,适于批 量生产 应变灵敏系数大,允许电流密度大,工作范围广,易实现 工业化生产,但难以控制电阻与温度和时间的变化关系,是 一种很有前途的新型应变片

简述工业机器人内部传感器的分类和原理

简述工业机器人内部传感器的分类和原理

工业机器人内部传感器的分类和原理一、引言工业机器人是一种能够自动执行各种任务的可编程装置,常用于组装、焊接、搬运等工业生产过程中。

为了能够准确、安全地完成任务,工业机器人内部配备了一系列传感器,用于感知周围环境和自身状态。

本文将介绍工业机器人内部传感器的分类和原理。

二、传感器的分类根据传感器的功能和原理,可以将工业机器人内部传感器分为以下几类:1. 位置传感器位置传感器用于测量机器人在三维空间中的位置和姿态。

常见的位置传感器包括激光测距传感器、光电开关和编码器等。

•激光测距传感器:利用激光束发射器和接收器进行测距,通过测量激光束的往返时间来计算距离。

激光测距传感器具有高精度和长测距范围等优点,常用于工业机器人的精确定位。

•光电开关:利用光电效应,测量光线的遮挡情况。

通过光电开关可以检测物体的存在和位置,常用于机器人的末端效应器控制。

•编码器:通过测量电机转子的旋转角度,确定机器人的位置。

编码器可以直接安装在机器人的关节上,或者通过传动装置间接测量,用于机器人的运动控制和位置反馈。

2. 接触传感器接触传感器用于检测机器人与物体之间的接触力和接触位置。

常见的接触传感器包括力敏电阻、压电传感器和光纤传感器等。

•力敏电阻:利用电阻值与受力之间的关系,测量接触力的大小。

力敏电阻可以分布在机器人的末端效应器上,实时监测与工件的接触力,用于力控制任务。

•压电传感器:利用材料的压电效应,将压力转化为电信号。

压电传感器可以测量接触力的大小和变化情况,常用于机器人的触摸感应和力控制。

•光纤传感器:通过光纤的折射和反射,测量机器人与物体之间的距离和接触位置。

光纤传感器具有高精度和快速响应的特点,常用于机器人的微小力控制和物体定位。

3. 视觉传感器视觉传感器用于获取机器人周围环境的图像信息,实现图像识别和目标跟踪等功能。

常见的视觉传感器包括摄像头、3D视觉传感器和红外传感器等。

•摄像头:通过光学镜头和图像传感器,捕捉机器人周围环境的图像。

力敏传感器测量原理

力敏传感器测量原理

力敏传感器测量原理力敏传感器是一种用于测量压力或拉力的设备,其测量原理基于压阻效应。

当外力施加在敏感器上时,敏感元件内部的电阻值会发生变化,这个电阻值的变化可用于计算所施加的压力或拉力的大小。

力敏传感器通常由一个压阻片、一个弹簧、一个机械底座、一个电缆和连接器组成。

压阻片是敏感元件,它是由一个薄层的导电材料制成的,如硅、钨、销锌铝等。

当施加压力或拉力时,压阻片内的导电材料会发生微小的变形,导致阻值发生变化。

弹簧将敏感元件和测试对象联系在一起,它可以根据所施加的压力或拉力的大小而发生压缩或拉伸。

机械底座负责支撑传感器和测试对象,同时保持传感器的稳定性。

电缆和连接器将传感器和信号采集设备连接在一起,将压阻片内的变化转化为电信号输出。

使用力敏传感器进行测量时,需要将传感器放置在所需要测量的物体上。

当外力作用于该物体时,弹簧将传感器压缩或拉伸,此时压阻片的电阻值发生变化,电信号随之发生变化。

这个变化的大小可以通过信号采集设备进行读取和分析,从而计算出外力的大小。

力敏传感器有许多应用领域,例如:在机械制造业中,它们被用于测量机械零件的弹性变形和应力;在医学领域中,它们被用于测量骨骼和肌肉组织的应力和压力;在汽车行业中,它们被用于测量刹车系统的压力和转向系统的力量;在建筑领域中,它们被用于测量桥梁和建筑物的载荷。

力敏传感器是一种精密的测量设备,可以准确地测量所施加的压力或拉力的大小,其测量原理基于压阻效应。

通过使用力敏传感器,我们可以更好地了解物体的应力或压力的性质,有助于提高生产效率和产品质量。

除了测量原理,力敏传感器还有许多其他的重要参数需要考虑。

其中最重要的是灵敏度和线性度。

灵敏度是指传感器输出的电信号与施加在传感器上的外力之间的关系。

换句话说,灵敏度越高,传感器输出的电信号就会更精确地反映所施加的外力的大小。

灵敏度可以通过外力与电信号之间的比值来计算。

一个100牛顿的力敏传感器,当施加10牛顿的力时,其输出电信号为1伏特,则其灵敏度为10伏特/牛顿。

常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍

常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍

常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍传感器由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。

敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为①物理类,基于力、热、光、电、磁和声等物理效应。

②化学类,基于化学反应的原理。

③生物类,基于酶、抗体、和激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将传感器分46类)。

下面对常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍如下。

一、温度传感器及热敏元件温度传感器主要由热敏元件组成。

热敏元件品种教多,市场上销售的有双金属片、铜热电阻、铂热电阻、热电偶及半导体热敏电阻等。

以半导体热敏电阻为探测元件的温度传感器应用广泛,这是因为在元件允许工作条件范围内,半导体热敏电阻器具有体积小、灵敏度高、精度高的特点,而且制造工艺简单、价格低廉。

1、半导体热敏电阻的工作原理按温度特性热敏电阻可分为两类,随温度上升电阻增加的为正温度系数热敏电阻,反之为负温度系数热敏电阻。

⑴正温度系数热敏电阻的工作原理此种热敏电阻以钛酸钡(BaTio3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结尔成。

纯钛酸钡是一种绝缘材料,但掺入适量的稀土元素如镧(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。

它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。

当温度低时,由于半导体化钛酸钡内电场的作用,导电电子可以很容易越过位垒,所以电阻值较小;当温度升高到居里点温度(即临界温度,此元件的‘温度控制点一般钛酸钡的居里点为120℃)时,内电场受到破坏,不能帮助导电电子越过位垒,所以表现为电阻值的急剧增加。

因为这种元件具有未达居里点前电阻随温度变化非常缓慢,具有恒温、调温和自动控温的功能,只发热,不发红,无明火,不易燃烧,电压交、直流3~440V均可,使用寿命长,非常适用于电动机等电器装置的过热探测。

压力传感器的种类及其工作原理

压力传感器的种类及其工作原理

压力传感器的种类及其工作原理
压力传感器是工业实践中最为常用的一种传感器。

一般一般压力传感器的输出为模拟信号,或在一段连续的时间间隔内,输出为数字信号。

压力传感器主要有应变式压力传感器、陶瓷压力传感器、集中硅压力传感器、蓝宝石压力传感器、压电压力传感器等。

1、应变片压力传感器原理
电阻应变片压力传感器的核心部分是电阻应变片,当金属丝受外力作用时,其长度和截面积都会发生变化,其电阻值会发生转变,假如金属丝受外力作用而伸长时,其长度增加,而截面积削减,电阻值便会增大。

2、陶瓷压力传感器原理
抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号。

3、集中硅压力传感器原理
被测介质的压力直接作用于传感器的膜片上,使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。

4、蓝宝石压力传感器原理
利用应变电阻式工作原理,在压力的作用下,钛合金接收膜片产
生形变,该形变被硅-蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。

5、压电压力传感器原理
当薄圆筒内侧受到压力作用时,圆筒的内张力增大,从而使其固有振动频率上升。

只要测出振筒的固有振动频率,就可知道压力大小。

圆筒的固有振动频率的测量精度打算于筒的谐振品质因数Q、信号处理电路和时钟信号精度。

力矩传感器工作原理

力矩传感器工作原理

力矩传感器工作原理力矩传感器是一种常用的传感器,用于测量物体受到的力矩或扭矩。

它广泛应用于机械、航空航天、汽车、机器人等领域。

力矩传感器的工作原理基于材料的应变特性和电阻变化关系。

力矩传感器通常由弹性体和电阻应变计组成。

当物体受到力矩作用时,弹性体会发生形变,从而引起电阻应变计中的电阻值发生变化。

这种电阻变化可以被测量仪器检测到,并转化为力矩的数值。

弹性体是力矩传感器中的关键部件,它通常由金属或聚合物材料制成。

当物体受到力矩作用时,弹性体会发生弯曲或扭曲,产生应变。

这种应变会导致弹性体内部的分子结构发生变化,从而引起电阻应变计中的电阻值发生变化。

电阻应变计是力矩传感器中的另一个重要组成部分。

它是一种应变测量装置,通常由导电材料制成。

当弹性体发生形变时,电阻应变计中的导电材料也会发生应变,导致电阻值发生变化。

这种电阻变化可以通过电路测量仪器检测到,并转化为力矩的数值。

为了保证力矩传感器的精确度和可靠性,通常需要进行校准和温度补偿。

校准是指通过比较传感器输出和已知力矩之间的差异来调整传感器的灵敏度和零点偏移。

温度补偿是指根据传感器在不同温度下的特性变化来修正输出数据,以提高测量的准确性。

除了以上的基本原理,力矩传感器还可以根据不同的工作原理进行分类。

常见的力矩传感器包括应变式力矩传感器、电容式力矩传感器和磁电式力矩传感器等。

这些传感器的工作原理各不相同,但都是基于物体受到力矩作用时产生的形变或电磁变化来进行测量。

总结起来,力矩传感器的工作原理是基于材料的应变特性和电阻变化关系。

通过测量弹性体内部的电阻值变化,可以确定物体受到的力矩大小。

力矩传感器在工程领域中具有广泛的应用,为实时监测和控制提供了重要的数据支持。

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。

这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。

这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。

(3)按敏感材料不同分为半导体传感器、瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。

这种分类法可分出很多种类。

(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。

其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。

传感器数字化是今后的发展趋势。

(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。

若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。

(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。

主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。

微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。

主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。

化学类,基于化学反应的原理。

生物类,基于酶、抗体、和激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。

力敏传感器的工作原理与分类

力敏传感器的工作原理与分类

图2-5 直流电桥的连接方式
半桥双臂 (b)全桥电路
对于半桥双臂 (2-5) 全桥 (2-6) 即半桥双臂可使电压灵敏度比半桥单臂提高一倍,而全桥电路电压灵敏度又比半桥双臂电压灵敏度提高一倍。可见,利用全桥,并提高供电电压E,可提高灵敏度系数。
(2-3)
一般 ,可忽略,由此可得
可见,输出电压与电阻变化率成线性关系,也即和应变成线性关系,由此即可测出力值,由式(2-3)可得半桥单臂工作输出的电压灵敏度
(2-4)
为了提高输出电压灵敏度,可以采用半桥双臂或全桥电路,如图2-5所示。图2-5(a)为半桥双臂,图2-5(b)为全桥电路。
图2-4 直流电桥
(2-2)
若使此电桥平衡,即 ,只要 。一般我们取 即可实现。现将 换成电阻应变片,即组成半桥单臂电桥,随构件产生应变造成传感器电阻变化时,式(2-2)变成
应变片补偿法分自补偿和互补偿两种。自补偿法的原理是合理选择应变片阻温系数及线膨胀系数,使之与被测构件线膨胀系数匹配,使应变片温度变化时,由热造成的输出值为0。应变片互补偿法的原理是检测用的应变片敏感栅由两种材料组成,在温度变化时,它们的阻值变化量 相同,但符号相反,这样就可抵消由于温度变化而造成传感器误输出。使用中要注意选配敏感栅电阻丝材料。
(1) 温度误差
(2) 温度补偿
一般采用桥路补偿法、应变片补偿法或热敏电阻补偿法。
所谓桥路补偿法,如图2-4所示,当ab间接入应变片传感器,bc间也接入同样的应变片,但bc间接入的应变片不受构件应变力的作用,将它用同样的方法粘贴在与ab间应变片所贴构件材料相同的材料上,并与ab间应变片处于同一温度场中,这样ab、bc间应变片的阻温效应相同,电阻的变化量 也相同,由电桥理论可知,它们起了互相抵消作用,对输出电压没有影响。

(完整版)四种压力传感器的基本工作原理及特点

(完整版)四种压力传感器的基本工作原理及特点

四种压力传感器的基本工作原理及特点一:电阻应变式传感器1 1电阻应变式传感器定义被测的动态压力作用在弹性敏感元件上,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称为电阻应变式压力传感器。

1.2 电阻应变式传感器的工作原理电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。

箔式应变片是以厚度为0.002——0.008mm的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm。

丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 ?,通常为120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。

测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,电阻片也跟随变形。

如下图所示。

B为栅宽,L为基长。

材料的电阻变化率由下式决定:R Ad d d(1)R A式中;R—材料电阻由材料力学知识得;[(12)(12)]dRR C K (2)K —金属电阻应变片的敏感度系数式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得RLK K R L (3) 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。

1.3电阻应变式传感器的分类及特点测低压用的膜片式压力传感器常用的电阻应变式压力传感器包括测中压用的膜片——应变筒式压力传感器测高压用的应变筒式压力传感器1.3.1膜片——应变筒式压力传感器的特点该传感器的特点是具有较高的强度和抗冲击稳定性,具有优良的静态特性、动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。

力敏传感器的分类

力敏传感器的分类
2.压阻式传感器
2.压阻式传感器
压阻式传感器
是指利用单晶硅材料的压阻效应和集成电路技术制成的传 感器。单晶硅材料在受到力的作用后,电阻率发生变化,通 过测量电路就可得到正比于力变化的电信号输出。
课程内容 Course Contents
3.电感式传感器
3.电感式传感器
电感式传感器
是利用电磁感应把被测的物理量如位移,压力,流量, 振动等转换成线圈的自感系数和互感系数的变化,再由电路 转换为电压或电流的变化量输出,实现非电量到电量的转换。
课程内容 Course Contents
4.电容式传感器
4.电容式传感器
电容式传感器
是把被测的机械量,如位移、压力等转换 为电容量变化的传感器。它的敏感部分就是 具有可变参数的电容器。
课程内容 Course Contents
5.压电式传感器
5.压电式传感器
压电式传感器
是基于压电效应的传感器。是一种自发电式和机电转换式传感器。 它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此 电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受 外力的电量输出。
力敏传感器的分类
课程内容 Course Contents
1.应变式传感器 2.压阻式传感器 3.电感式传感器
4.电容式传感器
5.压电式传感器 6.谐振式传感器
课程内容 Course Contents
1.应变式传感器
1.应变式传感器
应变式传感器
利用电阻应变片将应变转换为电阻变化的传感器。
课程内容 Course Contents
课程内容 Course Contents
6.谐振式传感器
6.谐振式传感器
谐振式传感器

力敏电阻器工作原理

力敏电阻器工作原理

力敏电阻器工作原理力敏电阻器是一种能够根据外部施加的力大小而变化电阻值的装置。

它主要由弯曲杆、碳阻片和导电端子组成。

当施加力量使弯曲杆变形时,弯曲杆上的碳阻片也会发生变形,导致电阻值的改变,因此力敏电阻器可以输出与施加的力大小成正比的电阻值。

1.施加力:当外力作用于力敏电阻器的弯曲杆上时,弯曲杆会发生一定程度的变形,产生机械应变。

2.弯曲杆变形:弯曲杆的变形会使碳阻片发生变化。

弯曲杆上的碳阻片被压缩或拉伸,导致碳阻片的长度和横截面积发生改变。

3.电阻值变化:碳阻片的长度和横截面积的改变会直接影响碳阻片的电阻值。

当碳阻片被压缩时,碳颗粒会更紧密地排列,电阻值减小;而碳阻片被拉伸时,碳颗粒之间的间隔增大,电阻值增大。

4.输出电阻信号:根据力施加在力敏电阻器上相应的电阻值变化,可以从导电端子读取到与施加的力大小成正比的电阻值。

由于力敏电阻器的工作原理是基于弯曲杆的机械变形及碳阻片的电阻变化,因此力敏电阻器具有以下几个特点:1.灵敏度高:力敏电阻器能够对微小的外力变化做出相应的电阻值变化,因此具有较高的灵敏度。

2.响应快:力敏电阻器的机械变形和电阻变化几乎是实时的,可以快速地反应施加力的变化。

3.稳定性好:碳阻片具有良好的恢复性,能够保持较长时间的稳定电阻值。

相比其他类型的传感器,力敏电阻器具有结构简单、成本低廉、响应速度快等优点。

它可以被广泛应用于测力、压力、位置控制等领域中。

例如,在机械手臂中,力敏电阻器可以被用来检测机械手臂与物体接触时施加的力大小,以实现对物体的精确抓取和操作。

此外,力敏电阻器还可以应用于医疗设备中,如床垫传感器、假肢传感器等,以监测体压分布和运动状态。

总之,力敏电阻器的工作原理是通过外力作用下弯曲杆的变形,引起碳阻片的电阻变化,从而达到感知施加力大小的目的。

它具有灵敏度高、响应快、稳定性好等特点,适用于多种应用场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U R E 4R 2R
,可忽略,由此可
•(2-3)
长江工程职业技术学院自动化教研 室
•可见,输出电压与电阻变化率成线性关系,也即和应 变成线性关系,由此即可测出力值,由式(2-3)可得 半桥单臂工作输出的电压灵敏度
•(2-4)
•为了提高输出电压灵敏度,可以采用半桥双臂或全桥 电路,如图2-5所示。图2-5(a)为半桥双臂,图2-5 (b)为全桥电路。
长江工程职业技术学院自动化教研 室
•B
•O •S
长江工程职业技术学院自动化教研 室
•阶段小结
• 力敏传感器是将动态或静态力的大小转换成便于 测量的电量的装置。本模块介绍了电阻应变式传感器, 其将外力转化成电阻值的变化,再利用电桥电路检测 出电阻值的变化值,从而得出对应的力变化量。还讲 述了电感式传感器,其将外力引起的微小位移量转化 成电感参数的变化,从而得出相应力的变化量。如位 移量很小,可采用差动变压器来放大信号的方式,以 提高传感器的灵敏度。
图2-10
截面积型差动变压器
也随之改变。
•将绕组w2a和w2b反相串联并测量合成电动势e2,就可
以判断出非电量的大小及方向。
长江工程职业技术学院自动化教研

•一般来说,较小位移量的测量采用差动变压器,图211列出其应用实例。图2-11(a)为测物体重量的电子 秤,用差动变压器把弹簧的位移变为电信号,换算为重 量即可;图2-11(b)为偏心测量仪,以起始点作为基 准,用正负量来显示转体的偏心程度。
•(a)电子秤
(b)偏心测量仪
•图2-11 差动变压器应用实例
长江工程职业技术学院自动化教研 室
•为了测量列车运行的速度和加速度的大小,可采用如 图所示的装置,它是由一块安装在列车头底部的强磁 体和埋设在轨道地面的一组线圈及电流测量仪组成的 (测量仪未画出)。当列车经过线圈上方时,线圈中 产生的电流被记录下来,就能求出列车在各位置的速 度和加速度。
同,则绕组W1a和W2a间的 互感ma与绕组W1b和W2b 间的互感mb相等。
•当衔铁的位置改变时,
则ma不等于mb,ma和 mb的差值即可反映被测量
值的大小。
•图2-9 气隙型差动变压器式传
•为反映差值互感,将两个一次绕组的同名端顺向串联,并施加交
流电压u,二次绕组的同名端反向串联,同时测量串联后的合成 电动势e2为:e2=e2a-e2b (e2值的大小取决于被测位移的大小, e2的方向取决于位移的长方江工向程职。业)技术学院自动化教研
•(2)缺点
•频率响应低,不宜用于快速动态测量。一般来说,电感 式传感器的分辨力和示值误差与示值范围有关。示值范 围大时,分辨力和示值精度将相应降低。
长江工程职业技术学院自动化教研 室
•3.种类
•电感式传感器种类很多,有利用自感原理的自感式 传感器(通常称电感式传感器),有利用互感原理 的差动变压器式传感器。此外,还有利用涡流原理 的涡流式传感器,利用压磁原理的压磁式传感器和 利用互感原理的感应同步器等。
•但是,制造箔式应变片的电阻值的分散性要比丝式 应变片的大,有的能相差几十欧姆,需要调整阻值。 金属箔式应变片因其一系列优点而将逐渐取代丝式 应变片,并占主要地位。
长江工程职业技术学院自动化教研 室
•(a)箔式单向应变片
(b)箔式转矩应变片 (c)箔式压力应变片 (d)箔式花状应变片
•图2-3 各种箔式应变片
应变片的电阻丝(敏感栅)具有一定温度系数;
电阻丝材料与测长江试工程材职业料技术的学院线自动膨化教胀研 系数不同。 室
•(2) 温度补偿
•一般采用桥路补偿法、应变片补偿法或热敏电 阻补偿法。
•所谓桥路补偿法,如图2-4所示,当ab间接入 应变片传感器,bc间也接入同样的应变片,但 bc间接入的应变片不受构件应变力的作用,将 它用同样的方法粘贴在与ab间应变片所贴构件 材料相同的材料上,并与ab间应变片处于同一 温度场中,这样ab、bc间应变片的阻温效应相
长江工程职业技术学院自动化教研 室
• (a)半桥双臂
(b)全桥电路

图2-5 直流电桥的连接
方式
长江工程职业技术学院自动化教研 室
•对于半桥双臂Leabharlann •(2-5)•全桥
•(2-6)
•即半桥双臂可使电压灵敏度比半桥单臂提高一倍, 而全桥电路电压灵敏度又比半桥双臂电压灵敏度
提高一倍。可见,利用全桥,并提高供电电压E,
长江工程职业技术学院自动化教研 室
•2.电阻应变片传感器基本应用电路
•将电阻应变片粘贴于待测 构件上,应变片电阻将随构 件应变而改变,将应变片电 阻接入相应的电路中,使其 转化为电流或电压输出,即 可测出力值。通常将应变片 接入电桥来实现电阻至电压 或电流的转换。根据电桥电 源不同,又分直流电桥和交 流电桥。这里主要介绍直流 电桥。图2-4所示为一直流 电桥,计算可知
图2-4 直流电桥
•(2-2)
长江工程职业技术学院自动化教研 室
•若使此电桥平衡,即U 0 ,只要R1R3 R2R4 0 。 一般我们取 R1 R2 R3 R4 R 即可实现。现将R1 换成电阻应变片,即组成半桥单臂电桥,随构件产 生应变造成传感器电阻变化时,式(2-2)变成
•一般R = R
长江工程职业技术学院自动化教研 室
1.电阻应变式传感器工作原理 •(1)应变效应 •由物理学可知,电阻丝的电阻R与电阻丝的电阻 率、导体长度及截面积存在如下关系
•(2-1)
•图2-1 电阻丝应变效应
长江工程职业技术学院自动化教研 室
•(2)电阻应变式传感器的结构及特性 •金属电阻应变片分为金属丝式和金属箔式两种。 •① 金属丝式电阻应变片。金属丝式电阻应变片 的基本结构图如图2-2所示。由敏感栅1、基底2 和盖层3、引线4和黏结剂几个基本部分组成。
器处在同一温度场中,适当调
整R5值,可使 R与/URab的
乘积不变,热输出为零。
•图2-6 热敏电阻补偿法
•电阻应变式传感器广泛应用在测力及可以转化为力值 的量(如加速度等)。
长江工程职业技术学院自动化教研 室
•图2-8 应变式加速度传感器原理图
•加速度传感器就是将被测加速度a 通过一个悬臂
梁将F力 ma 转化成应变片的应力,从而达到测量
加速度a 的目的。
长江工程职业技术学院自动化教研 室
三、电感式传感器
•1.工作原理 •电感式传感器是利用线圈自感或互感的变化来实现 测量的一种装置,可以用来测量位移、振动、压力、 流量、重量、力矩和应变等多种物理量。电感式传 感器的核心部分是可变自感或可变互感,在被测量 转换成线圈自感或互感的变化时,一般要利用磁场 作为媒介或利用铁磁体的某些现象。这类传感器的 主要特征是具有绕组。
同,电阻的变化量R 也相同,由电桥理论可知, 它们起了互相抵消作用,对输出电压没有影响。
长江工程职业技术学院自动化教研 室
•应变片补偿法分自补偿和互补偿两种。自补偿法的 原理是合理选择应变片阻温系数及线膨胀系数,使之 与被测构件线膨胀系数匹配,使应变片温度变化时,
由热造成的输出值为0。应变片互补偿法的原理是检
长江工程职业技术学院自动化教研 室
二、电阻应变式传感器
•电阻应变式传感器是目前工程测力传感器中应 用最普遍的一种传感器,它测量精度高,范围 广,频率响应特性较好,结构简单,尺寸小, 易实现小型化,并能在高温、强磁场等恶劣环 境下使用,并且工艺性好,价格低廉。它主要 应用在力作用下,将材料应变转变为电阻值的 变化,从而实现力值的测量。组成电阻应变片 的材料一般为金属或半导体材料。
•课题一 力敏传感器的工作原理与分类
•任务目标 •★ 掌握电阻应变式力敏传感器的工作原理; •★ 掌握电感应变式力敏传感器的工作原理; •★ 了解电阻应变式和电感应变式力敏传感器之间 的区别。
长江工程职业技术学院自动化教研 室
一、力敏传感器概述
•力敏传感器,顾名思义就是能对各种力或能 转化为力的物理量产生反应,并能将其转变为 电参数的装置或元件。很显然,要成为真正实 用意义上的力敏传感器,这个由力转化为电参 数的过程最好能成线性关系。根据由力至电参 数转变的方式不同,力敏传感器一般有电阻应 变式传感器、电位计式传感器、电感式传感器、 压电式传感器、电容式传感器等,它们也可用 来测量力值。
长江工程职业技术学院自动化教研 室
长江工程职业技术学院自动化教研 室
长江工程职业技术学院自动化教研 室
•2.优点和缺点
•(1)优点
•结构简单可靠,输出功率大,抗干扰能力强,对工作环 境要求不高,分辨力较高(如在测量长度时一般可达 0.1mm),示值误差一般为示值范围的0.1%~0.5%, 稳定性好。
•图2-2 金属丝式电阻应变片的基本结构图
长江工程职业技术学院自动化教研 室
•② 金属箔式应变片。如图2-3所示,它与金属丝式 电阻应变片相比,有如下优点:用光刻技术能制成 各种复杂形状的敏感栅;横向效应小;散热性好, 允许通过较大电流,可提高相匹配的电桥电压,从 而提高输出灵敏度;疲劳寿命长,蠕变小;生产效 率高。
•下面简单介绍其中一种较为常见的传感器:变压 器式传感器。
•变压器式传感器工作原理:变压器式传感器是将 非电量转换为线圈间互感的一种磁电动机构,很像 变压器的工作原理,因此常称其为变压器式传感器。 这种传感器多采用差动形式。
长江工程职业技术学院自动化教研 室
•当没有非电量输入时,衔 铁C与铁心A、B的间隔相
可提高灵敏度系数。
长江工程职业技术学院自动化教研 室
•3.温度误差及其补偿
•(1) 温度误差
•用作测量应变的金属应变片,希望其阻值仅随应 变变化,而不受其它因素的影响。实际上应变片 的阻值受环境温度(包括被测试件的温度)影响很大。 由于环境温度变化引起的电阻变化与试件应变所 造成的电阻变化几乎有相同的数量级,从而产生 很大的测量误差,称为应变片的温度误差,又称 热输出。因环境温度改变而引起电阻变化的两个 主要因素:
相关文档
最新文档