高一上学期数学月考试卷及答案
河南省名校联考2024-2025学年高一上学期第一次月考数学试卷(含答案)
河南省名校联考2024-2025学年高一上学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列关系式正确的是( )B. C. D.2.关于命题A.q 是存在量词命题,是真命题B.q 是存在量词命题,是假命题C.q 是全称量词命题,是真命题D.q 是全称量词命题,是假命题3.已知集合,则用列举法表示( )A. B. C. D.4.已知,,,则“”是“a ,b ,c 可以构成三角形的三条边”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件,则的最小值为( )A.9B.6C.4D.36.已知集合,,,若C 恰有1个真子集,则实数( )A.2 B.6 C.-2或6 D.2或67.某花卉店售卖一种多肉植物,若每株多肉植物的售价为30元,则每天可卖出25株;若每株多肉植物的售价每降低1元,则日销售量增加5株.为了使这种多肉植物每天的总销售额不低于1250元,则每株这种多肉植物的最低售价为( )A.25元B.20元C.15元D.10元8.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有( )A .5名B .4名C .3名D .2名Q 1-∈N ⊆Z N ⊆Q R:q a ∀<31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z A ={}2,0,1,2,4-{}2,0,2,4-{}0,2,4{}2,40a >0b >0c >a b c +>21b+=2a b +(){}2,1A x y y xax ==++(){},23B x y y x ==-C A B = a =二、多项选择题9.下列各组对象能构成集合的有( )A.南昌大学2024级大一新生B.我国第一位获得奥运会金牌的运动员C.体型庞大的海洋生物D.唐宋八大家10.已知A. B. C. D.11.已知二次函数(a ,b ,c 为常数,且)的部分图象如图所示,则( )A.B.C.D.不等式的解集为三、填空题12.已知13.已知,,集合,则________.14.已知四、解答题15.已知全集,集合,.(1)若,求,;(2)若,求a 的取值范围.16.给出下列两个结论:①关于x 的方程无实数根;②存在,使.a b >>>2c =-1c =-1c =2c =2y ax bx c =++0a ≠0a b +>0abc >1320a b c ++>20bx ax c -->{}21x x -<<a ==a ∈R b ∈R {}{}2,,2,2,0a b a a +=()3a b -=m n <<U =R {}23A x x =-<<{}12B x a x a =-<<2a =A B U BðB A ⊆230x mx m +-+=02x ≤≤()130m x +-=(1)若结论①正确,求m 的取值范围;(2)若结论①,②中恰有一个正确,求m 的取值范围.17.已知正数a ,b ,c 满足.(1)若(2)求18.已知,函数.(1)当时,函数的图象与x 轴交于,两点,求;(2)求关于x 的不等式的解集.19.设A 是由若干个正整数组成的集合,且存在3个不同的元素a ,b ,,使得,则称A 为“等差集”.(1)若集合,,且B 是“等差集”,用列举法表示所有满足条件的B ;(2)若集合是“等差集”,求m 的值;(3)已知正整数,证明:不是“等差集”.1abc =c =+2222a b c ++a ∈R ()23223y ax a x a =++++1a =()23223y ax a x a =++++()1,0A x ()2,0B x 3312x x +1y ≥c A ∈a b b c -=-{}1,3,5,9A =B A ⊆{}21,,1A m m =-3n ≥{}23,,,,n x x x x ⋅⋅⋅参考答案1.答案:D对B :不是自然数,故B 错误;对C :整数不都是自然数,如是整数但不是自然数,故C 错误;对D :有理数都是实数,故D 正确.故选:D.2.答案:D解析:对于命题q ,是全称量词命题,当,,所以q 为全称量词命题且为假命题.故选:D.3.答案:B解析:由题意可得可为、,即x 可为0,2,-2,4,即.故选:B.4.答案:B解析:当,,,得,a ,b ,c 不能构成三角形的三边长,若a ,b ,c 是某三角形的三边长,则有,所以“”是“a ,b ,c 可以构成三角形的三条边”的必要不充分条件.故选:B.5.答案:A,则,,,所以当时,取得最小值9.故选:A1-1-3a =-2b =a <1x -1±3±{}2,0,2,4A =-5a =1b =2c =a b c +>a b c +>a b c +>21b+=12(2)1452922a b a b a b b b a a ⎛⎫+=++=+++≥+= ⎪⎝⎭=3=3b =3,3a b ==2a b +6.答案:C解析:由C 恰有1个真子集,故C 中只有一个元素,即与有且只有一个交点,将代入,有,即,解得或.故选:C.7.答案:D解析:设售价为x 元,则销售量为,销售额,整理可得,解得,所以最低售价为10元,故选:D.8.答案:B解析:设三个小组都参加的人数为x ,只参加音乐科学的人数为,只参加音乐体育的人数为,只参加体育科学的人数为,作出韦恩图,如图,由题意,,即,因为有12名学生只参加了2个兴趣小组,所以,代入解得,即三个兴趣小组都参加的有5人,所以参加兴趣小组的一共有人,21y x ax =++23y x =-23y x =-21y x ax =++()2240x a x +-+=()22160a ∆=--=6a =2a =-()255301755x x +-=-()17551250x x -≥2352500x x -+≤1025x ≤≤1y 2y 3y 12132324202122y x y y x y y x y +++++++++=++()12323632439y y y x +++=-=12312y y y ++=5x =2412541++=所以不参加所有兴趣小组的有人.故选:B9.答案:ABD解析:对于A ,因为南昌大学2024级大一新生是确定的,所以能构成集合,所以A 正确,对于B ,因为我国第一位获得奥运会金牌的运动员是确定的,所以能构成集合,所以B 正确,对于C ,因为体型庞大的海洋生物没有明确的标准,没有确定性,所以不能构成集合,所以C 错误,对于D ,因为唐宋八大家是确定的,所以能构成集合,所以D 正确.故选:ABD10.答案:AB由,故,即,即,故A 、B 正确;C 、D 错误.故选:AB.11.答案:BCD解析:由图象可知,该二次函数开口向上,故,与轴的交点为、,故,即、,对A :,故A 错误;对B :,故B 正确;对C :,故C 正确;对D :可化为,即,即,其解集为,故D 正确.故选:BCD.12.答案:解析:45414-=>1c a +>>0a b >>bc ac >()0a b c -<0c <0a >x ()1,0-()2,0()()22122y ax bx c a x x ax ax a =++=+-=--b a =-2c a =-()0a b a a +=+-=()()3220abc a a a a =⋅-⋅-=>13213480a b c a a a a ++=--=>20bx ax c -->220ax ax a --+>220x x +-<()()120x x -+<{}21x x -<<<a ===,所以.故答案为:.13.答案:8解析:由题设,若,则不满足元素的互异性,所以,显然满足题设,所以.故答案为:814.答案:解析:令,,则,.故答案为:.15.答案:(1),b===>0>+><<a b<<a={}2,2,0a211a baa aba+=⎧=⎧⎪=⇒⎨⎨=-⎩⎪≠⎩()3328a b-==1-m n x+=<0m n y-=<m==8242242x ym x y x ym n x xxyyy⋅⋅-+=-=--+-4441331y x y xx y x y⎛⎫=---=-+≤-=-⎪⎝⎭=11-{}24A B x x=-<<{}14UB x x x=≤≥或ð(2)解析:(1)当时,,则,因为,所以;(2)当时,成立,此时,解得,当时,由,得,解得综上,16.答案:(1)(2).解析:(1)若关于x 的方程无实数根,则有,即,解得;(2)若存在,使,由时,,故时有解,即有由(1)知,若结论①正确,则,故结论①,②中恰有一个正确时,.17.答案:(1)(2)8解析:(1)若,则,(2)32a ≤2a ={}14B x x =<<{}14U B x x x =≤≥或ð{}23A x x =-<<{}24A B x x =-<< B =∅B A ⊆12a a -≥1a ≤-B ≠∅B A ⊆121223a a a a -<⎧⎪-≥-⎨⎪≤⎩1a -<≤a ≤62m -<<6m -<<2≥230x mx m +-+=()2430m m ∆=--+<()()2412260m m m m +-=-+<62m -<<02x ≤≤()130m x +-=0x =()1330m x +-=-≠1m +=2x <≤1m +≥≥62m -<<6m -<<2≥1c =ab =3b +≥=====2222222882a b c a c b c ac bc ac bc +++=++++++,当且仅当、、时,即时,等号成立,故18.答案:(1)(2)见解析解析:(1)当时,.由题可知,是方程的两个实数根,则,.由,得,则.(2)由,得.当时,不等式整理为,解得,即原不等式的解集为.当时,令,得或当时,;当时,,则原不等式的解集为;当时,;当时,.19.答案:(1)答案见解析(2)(3)证明见解析8822ab bc ac bc ac bc≥=++++()828ab bc ac bc =++≥=+a c =b c =()2ab bc +=1=1a b c ===2222a b c ++50-1a =255y x x =++1x 2x 2550x x ++=125x x +=-125x x =211222550550x x x x ⎧++=⎨++=⎩32111322225555x x x x x x ⎧=--⎨=--⎩()()()233221212121212555225752550x x x x x x x x x x ⎡⎤+=-+-+=-+-+=-+=-⎣⎦1y ≥()232220ax a x a ++++≥0a =220x +≥1x ≥-{}1x x ≥-0a ≠()()()232221220ax a x a x ax a ++++=+++=1x =-x =0a >1->221a x x x a ⎧+⎫≤-≥-⎨⎬⎩⎭或20a -<<221a a +-<-221a x x a ⎧+⎫-≤≤-⎨⎬⎩⎭2a =-1-=}1-2a <-1->221a x x a ⎧+⎫-≤≤-⎨⎬⎩⎭2m =解析:(1)因为集合,,存在3个不同的元素a ,b ,,使得,则或或.(2)因为集合是“等差集”,所以或或,计算可得或或又因为m 正整数,所以.(3)假设是“等差集”,则存在m ,n ,,,成立,化简可得,因为,,所以,所以与集合的互异性矛盾,所以不是“等差集”.{}1,3,5,9A =B A ⊆c B ∈a b b c -=-{}1,3,5,9B ={}1,3,5B ={}1,5,9B ={}21,,1A m m =-221m m =+-2211m m =+-()2221m m +=-m =0=2m =m =2m ={}22,,,,n x x x x ⋅⋅⋅{}1,2,3,,q n ∈ m n q <<2n m q x x x =+2m n q n x x --=+0m n x ->*x ∈N 1q n -≥21q n x x ->≥≥1x ={}22,,,,n x x x x ⋅⋅⋅{}22,,,,n x x x x ⋅⋅⋅。
重庆市2024-2025学年高一上学期10月月考试题 数学含答案
重庆高2027届高一上期月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤ B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥ B.2a > C.6a > D.6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}m m -<<∣B.{3m m <-∣或1}m >C.{13}m m -<<∣D.{1mm <-∣或3}m >6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.的B.34aa b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为168.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >,则有*12,2n a a a n n n+++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z xx y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫-⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.重庆高2027届高一上期月考数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤【答案】A 【解析】【分析】根据集合的交集运算法则运算即可.【详解】因为{}{}4016A x x =≤=≤≤,{}2323B x x x x ⎧⎫==>⎨⎩⎭,所以A B = 2163x x ⎧⎫<≤⎨⎬⎩⎭.故选:A .2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤【答案】B 【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫ ⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】根据抽象函数及具体函数的定义域求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以函数()f x 的定义域为()1,6-,则对于函数()1g x +=,需满足116310x x -<+<⎧⎨->⎩,解得153x <<,即函数()1g x +=的定义域为1,53⎛⎫⎪⎝⎭.故选:D.4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥B.2a >C.6a > D.6a ≥【答案】C 【解析】【分析】对于全称量词命题2[1,2],0x x x a ∀∈+-≤,我们需要先求出使得该命题为真时a 的取值范围,然后再根据充分不必要条件的定义来判断选项.【详解】令2()f x x x =+,[1,2]x ∈.对于二次函数2y ax bx c =++,其对称轴为122b x a =-=-.因为10a =>,所以函数()f x 在[1,2]上单调递增.那么()f x 在[1,2]上的最大值为2max ()(2)226f x f ==+=.因为2[1,2],0x x x a ∀∈+-≤为真命题,即2a x x ≥+在[1,2]上恒成立,所以max ()6a f x ≥=.A 是B 的充分而不必要条件,即值A B ⇒,B A ¿.当6a >时,一定满足6a ≥,所以6a >是6a ≥的充分不必要条件.而2a >时,不能保证一定满足6a ≥,2a ≥时,也不能保证一定满足6a ≥.故选:C.5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}mm -<<∣ B.{3m m <-∣或1}m > C.{13}m m -<<∣ D.{1mm <-∣或3}m >【答案】C 【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫ ⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,1【答案】D 【解析】【分析】根据题意,得到()f x 在定义域R 上为单调递减函数,结合分段函数的单调性的判定方法,列出不等式组,即可求解.【详解】由函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩因为函数()y f x =任意12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,所以函数()f x 在定义域R 上为单调递减函数,则满足()()242223024252321a a a a +⎧≥⎪⎪-<⎨⎪-+⨯+≥-⨯+⎪⎩,即0321a a a ≥⎧⎪⎪<⎨⎪≤⎪⎩,解得01a ≤≤,所以实数a 的取值范围是[]0,1.故选:D.7.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.B.34a a b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为16【答案】B 【解析】【分析】利用基本不等式可判断AC 的正误,利用“1”的代换可判断B 的正误,利用换元法结合常数代换可判断D 的正误.【详解】选项A:2112,1a b a b +=+≤++===时取等,+A 对;选项B:3433443577a a b a b a b aa b a b a b+++++=+=++≥+,当且仅当35,22a b -==时取等,故34a a b ++的最小值为7+,故B 错选项C :()()2119111,242a b a b a b +++⎛⎫++≤=== ⎪⎝⎭时取等,故()()11a b ++的最大值为94,故C 对;选项D :换元,令3,2x a y b =+=+,则6x y +=,故()()222232941032x y a b x y a b x y x y--+=+=+-++++94194251413446666x y y x x y x y ⎛⎫⎛⎫+=+⋅-=++-≥-= ⎪ ⎪⎝⎭⎝⎭,当且仅当1812,55x y ==取等号,故2232a b a b +++的最小值为16,故D 正确;故选:B.8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512【答案】A 【解析】【分析】将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,从而有集合A 与集合B 的交替和之和为4,再利用符合条件的集合对有92个,即可求解.【详解】由题知{}5,4,3,2,1,0,1,2,3,4M =-----,将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,则符合条件的集合对有92个,又由题设定义有集合A 与集合B 的交替和之和为4,所以交替和的总和为9114222048⨯==.故选:A.二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--【答案】BD 【解析】【分析】利用特殊值验证AC 是错误的,利用作差法判断B 的真假,利用配方法证明D 是正确的.【详解】对A :令1a =-,1b =,则0ab ≠且a b <,但11a b>不成立,故A 错误;对B :当0a b >>时,()()()20242024202420242024b a a b b b a a a a +-++-=++()()202402024b a a a -=<+,所以20242024b b a a +<+成立,故B 正确;对C :令3a =-,4b =-,0c =,1d =-,则,a b c d >>,但ac bd >不成立,故C 错误;对D :因为()()()222212222144a b a b a b a b ++----++++=()()22120a b =-++≥,所以()221222a b a b ++≥--成立,故D 正确.故选:BD10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦【答案】ACD 【解析】【分析】根据充分条件、必要条件的概念判断A ,分类讨论求出k 的范围判断B ,根据数轴穿根法及不等式的解集求出ba及0a <解不等式判断C ,由命题的否定转化为不等式恒成立,看作关于a 的不等式恒成立即可判断D.【详解】对A ,若p 是q 的必要不充分条件,p 是r 的充要条件,则q p r ⇒⇔,但是p 不能推出q ,所以q r ⇒,但是r 不能推出q ,所以q 是r 的充分不必要条件,故A 正确;对B ,当0k =时,原不等式为03≥,恒成立满足题意,当0k ≠时,由题意需满足()2Δ16430k k k k >⎧⎨=-⋅+≤⎩,解得01k <≤,综上,实数k 的取值范围是01k ≤≤,故B 错误;对C ,由不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,结合数轴穿根法知,1,2bc a==,且0a <,所以不等式2320ax ax b --≥可化为2340x x --≤,解得14x -≤≤,故C 正确;对D ,由题意知[]()21,3,2130a ax a x a ∀∈---+-≥为真命题,则()22130a x x x --++≥在[]1,3a ∈-时恒成立,令()2()213g a a x x x =--++,只需()()2213403350g x x g x x ⎧-=-++≥⎪⎨=-≥⎪⎩,则14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,解得[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦,故D 正确.故选:ACD11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦【答案】ABD 【解析】【分析】根据所给函数解析式直接求解判断A ,根据()f x 的性质及(),()g x f x 图象判断B ,归纳出()f x 在[]2024,2025上的解析式判断C ,根据规律,归纳值域特点判断D.【详解】选项A :()()()()()210121013101320272025202331f f f f f λλλλλ====== ,()()()()()210111012202420222020200f f f f f λλλλ====== ,则()()101320272024f f λ+=,所以选项A 正确;选项B :由()()122f x f x =-知,()0,2024x ∈时,()()()()()[)()()[)()()[)210112,0,2124,2,42146,4,62120222024,2022,20242x x x x x x f x x x x x x x ⎧-∈⎪⎪--∈⎪⎪⎪=--∈⎨⎪⎪⎪⎪--∈⎪⎩ ,由于()()()()()()1111111,33,553254g f g f g f ===<==<=,但()()()()31011111177,202320237220232g f g f =>==>= ,作,的图象,如图,结合图象可知()0,6x ∈上有2226++=个交点,在[)6,2024x ∈上无交点,故选项B 正确;选项C :[]2024,2025x ∈时,()()()1012120242026f x x x λ=--,故()f x 在[]2024,2025上单增,故C 错误;选项D :因为1λ<-,所以当[]0,4x ∈时,值域为[],1λ;当[]0,8x ∈时,值域为32,λλ⎡⎤⎣⎦;当[]0,12x ∈时,值域为54,λλ⎡⎤⎣⎦;当[]0,16x ∈时,值域为76,λλ⎡⎤⎣⎦;L 当[]0,4x n ∈时,值域为2122,n n λλ--⎡⎤⎣⎦,故D 正确.故选:ABD.【点睛】关键点点睛:根据所给函数解析式,可知函数类似周期特点,图象形状类似,振幅有规律变化,据此可归纳函数的性质是解题的关键所在.三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.【答案】4【解析】【分析】求出集合A ,列举出集合A 的子集即可.【详解】因2{10}{1,1}A x x =-==-∣,故集合A 的子集有,{1},{1},{1,1}∅--共4个.故答案为:4.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】根据集合的包含关系,讨论0a =和0a >两种情况,求集合B ,再比较端点值,即可求解.【详解】因为A B B = ,所以A B ⊆,因为()(){}10B x x a ax =+-≤∣,且0a ≥:1 当0a =时,[)0,B ∞=+,符合题意;2当0a >时,1,B a a ⎡⎤=-⎢⎥⎣⎦,则11404a a ≥⇒<≤,综上,10,4a ⎡⎤∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎣⎦14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.【答案】【解析】【分析】根据函数的单调性可知243x y =-,代入可得234386y x y xx x y x y++=+,根据基本不等式可得最值.【详解】由题可知()()()()3323231313x x y y -+-=-+-,因为3,y t y t ==在R 上单调递增,所以()3g t t t =+在R 上单增,所以上式可表示为()()2313g x g y -=-,则2313x y -=-,即243x y =-,因此()22433433866x y y x y y x x x x y x y x y -++=++=+≥=当且仅当38243y x x y x y⎧=⎪⎨⎪=-⎩即25x -=,2415y -=时等号成立,故答案为:.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.【答案】(1)02x =或3-(2)5,42⎛⎫-⎪⎝⎭【解析】【分析】(1)根据分段函数定义分类列方程求解;(2)根据分段函数定义分类列不等式求解.【小问1详解】由()01f x =可得:1∘>−1−1=1⇒0=20=−2舍去)0000123,,23;21x x x x ≤-⎧⇒=-=-⎨--=⎩ 综上或【小问2详解】由()3f a a <+可得:1∘>−11<+3⇒>−12−2−8<0⇒>−1−2<<4⇒∈−1,4;2∘≤−1−−2<+3⇒≤−1>−52⇒∈−52,−1综上可得5,42a ⎛⎫∈-⎪⎝⎭.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.【答案】(1)3{|4A B x x =≤ 或1}x >(2)3,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)根据条件,先求出集合,A B ,再利用集合的运算,即可求解;(2)由(1)可得R 3,24A ⎛⎤= ⎥⎝⎦ð,再根据条件,分M =∅和M 蛊两种情况讨论,即可求解.【小问1详解】由5402x +≥-,即4302x x -≥-,得到2x >或34x ≤,所以3{|4A x x =≤或2}x >,又由321x ->,得到321x -<-或321x ->,即13x <或1x >,所以1{3B x =<或1}x >,所以3{|4A B x x =≤ 或1}x >.【小问2详解】因为3{|4A x x =≤或2}x >,所以R 3,24A ⎛⎤= ⎥⎝⎦ð,①当321a a ->-,即43a <时,此时M =∅()RA ð,所以43a <满足题意,②当43a ≥,即M 蛊时,由题有212334a a -≤⎧⎪⎨->⎪⎩,解得4332a ≤≤,综上,实数a 的取值范围是3,2a ⎛⎤∈-∞ ⎥⎝⎦.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.【答案】(1)4(2)()222f x x x=-(3)(],10-∞【解析】【分析】(1)令1x =-即可求出()1f -.(2)根据条件,先设出二次函数的解析式,再根据()26231x f x x --≤≤+恒成立,可求待定系数.(3)问题转化成()f x 在区间(]1,6的最小值不小于()g x 在[]6,10上的最小值求参数的取值范围.【小问1详解】在不等式()26231x f x x --≤≤+,令()()141414x f f =-⇒≤-≤⇒-=.【小问2详解】因为()f x 为二次函数且图象过原点()0,0,所以可设()()2,0f x ax bx a =+≠,由()1444f a b b a -=⇒-=⇒=-,于是()()24f x ax a x =+-,由题:()()262220,f x x ax a x x ≥--⇔+++≥∈R 恒成立⇔>0Δ≤0⇔>0+22−8=−22≤0⇒=2,=−2⇒=22−2,检验知此时满足()()223110,f x x x x ≤+⇔+≥∈R ,故()222f x x x =-.【小问3详解】函数()222f x x x =-,开口向上,对称轴12x =,所以()222f x x x =-在区间(]1,6上单调递增,因此,(]11,6x ∈时,()()()(11,6f x f f ⎤∈⎦,即()(]10,60f x ∈,而()g x m x =-在[]6,10上单调递减,所以[]26,10x ∈时,()[]210,6g x m m ∈--因为对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,等价于()()(]110010,10f g m m ∞≥⇒≥-⇒∈-18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a > ,则有*12,2n a a a n n n +++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.【答案】(1)6(2)最大值为272048,38x =(3)1*1111,1kk k k k +⎛⎫⎛⎫+<+∈ ⎪ ⎪+⎝⎭⎝⎭N ,证明见解析【解析】【分析】(1)根据三阶基本不等式的内容直接可得解;(2)由()()32722212128333x x xx x x -=⋅⋅⋅⋅-,结合四阶基本不等式可得最值;(3)猜测111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N 成立,验证1k =不等式成立;结合推广公式证明2k ≥结论成立.【小问1详解】因为,,0x y z >,所以由三阶基本不等式可得:246y z x x y z ++≥,当且仅当24y z xx y z==即2y z x ==时取等号,因此24y z x x y z++的最小值为6;【小问2详解】当10,2x ⎛⎫∈ ⎪⎝⎭时,由四阶基本不等式可得:()()()432221227222272733312128333842048x x x x x x x x x x ⎛⎫+++- ⎪-=⋅⋅⋅⋅-≤= ⎪⎝⎭,当且仅当2123xx =-即310,82x ⎛⎫=∈ ⎪⎝⎭时取等号,因此()312x x -的最大值为272048;【小问3详解】大小关系为111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N ,证明如下:由条件可知:12,,,0n a a a > 时,*1212,,2nn n a a a a a a n n n +++⎛⎫⋅≤∈≥ ⎪⎝⎭N ,当1k =时,左边11121⎛⎫=+= ⎪⎝⎭,右边219124⎛⎫=+= ⎪⎝⎭,左边<右边,不等式成立;当2k ≥,*k ∈N 时,由1k +阶基本不等式,可知:不等式左边111111111kk k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+=+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()(1)1111111111(11)11()111k k k k k k k k k k k k k ++++⎛⎫⎛⎫⎛⎫⎛⎫++++++++++ ⎪⎪ ⎪⎪⎛⎫++⎝⎭⎝⎭⎝⎭ ⎪≤== ⎪+++ ⎪⎝⎭⎪⎝⎭个个1111k k +⎛⎫=+ ⎪+⎝⎭而111k ⎛⎫+≠ ⎪⎝⎭,因此上式的不等号取不到等号,于是1111111111kk k k k k k ++++⎛⎫⎛⎫⎛⎫+<=+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,综上,原不等式得证.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.【答案】(1)0(2)()f x 在1,2⎛⎫+∞⎪⎝⎭上单调递减,证明见解析(3)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)令1a b ==可得302f ⎛⎫= ⎪⎝⎭,再由()()0f x f x -+=,即可得出答案;(2)由单调性的定义证明即可;(3)由单调性和奇偶性列出不等式,再结合二次函数的性质求解即可.【小问1详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中令333120222a b ff f ⎛⎫⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(或令53532,102222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭).而()()333000222f x f x f f f ⎛⎫⎛⎫⎛⎫-+=⇒-+=⇒-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减.下证明:由④知:对任意,0a b >,恒有111222f ab f b f a ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证一:任取2112x x >>,于是()()22211111111111122112222222x x f x f x f x f x f x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫-=⋅-+--+=+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪--⎝⎭⎝⎭因为2112x x >>,所以2111022x x ->->221111132********x x x x --⇒>⇒+>--,而对任意32x >时恒有()0f x <,故211120122x f x ⎛⎫- ⎪+<⎪ ⎪-⎝⎭,即()()210f x f x -<,所以()f x 在1,2∞⎛⎫+⎪⎝⎭上单调递减,证毕;证二:任取2112x x >>,设2111,,1,022x mn x n m n =+=+>>()()21111222f x f x f mn f n f m ⎛⎫⎛⎫⎛⎫-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为131.22m m >+>,所以102f m ⎛⎫+< ⎪⎝⎭,即()()21f x f x <,也即()f x 在1,2∞⎛⎫+⎪⎝⎭单调递减,证毕;【小问3详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中:令5599222222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而()()0f x f x -+=,于是922f ⎛⎫-= ⎪⎝⎭令139339,402442242a b f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⇒+==⇒=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由(2)知()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减,又()()0f x f x -+=,可得()f x 在1,2∞⎛⎫-- ⎪⎝⎭上也单调递减,如图,可知不等式()()21232f t k t k -+-+≤等价于:对任意[]11t ,∈-,不等式()231234t k t k -+-+≥……①或者()29112322t k t k -≤-+-+<-恒成立,……②法一:令()()[]2123,1,1g t t k t k t =-+-+∈-立,因为()g t 开口向下,由()g t 图像可知:不等式①()()11313204;334144k g k g k ⎧⎧≥-≥⎪⎪⎪⎪⇔⇒⇒≥⎨⎨⎪⎪≥≥⎪⎪⎩⎩对于②,当1t =±时,由()()1391121022919112222k g k g k ∅⎧⎧-≤<-≤-<-⎪⎪⎪⎪⇒⇒∈⎨⎨⎪⎪-≤<--≤<-⎪⎪⎩⎩,即一定不存在k 满足②.综上取并,得3,4k ∞⎡⎫∈+⎪⎢⎣⎭法二:令()()[]()2123,1,1,g t t k t k t g t =-+-+∈-开口向下,对称轴为12t k =-,且()()211152,1,224g k g k g k k k ⎛⎫-=-=-=++ ⎪⎝⎭,1 当112k -<-即32k >时,问题等价于>321≥34或>32−1<−121≥−92,解得32k >;2 当1102k -≤-≤即1322k ≤≤时,等价于()1322314k g ⎧≤≤⎪⎪⎨⎪≥⎪⎩或()13221133,;2242912k g k k g ⎧≤≤⎪⎪⎪⎛⎫⎡⎤-<-⇒∈⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎪≥-⎪⎩3 当1012k <-≤即1122k -≤<时,问题等价于()1122314k g ⎧-≤<⎪⎪⎨⎪-≥⎪⎩或()11221122912k g k g ⎧-≤<⎪⎪⎪⎛⎫-<-⎨ ⎪⎝⎭⎪⎪-≥-⎪⎩,解得k ∈∅;4 当112k ->即12k <-时,问题等价于()12314k g ⎧<-⎪⎪⎨⎪-≥⎪⎩或()()12112912k g g ⎧<-⎪⎪⎪<-⎨⎪⎪-≥-⎪⎩,解得k ∈∅;综上,3,4k ∞⎡⎫∈+⎪⎢⎣⎭.。
2024-2025学年上海市西中学高一上学期数学月考试卷及答案(2024.09)
1市西中学2024学年第一学期高一年级数学月考2024.09一、填空题(本大题满分36分)只要求直接填写结果,每题填对得3分,否则一律得零分. 1.已知集合{}1,a 与{}2,b 相等,则a b += .2.设全集U R =,集合{}|02A x x x ≤>或,则用区间表示A ,结果是 . 3.设x ,y R ∈,用列举法表示x y xy+所有可能取值组成的集合,结果是 .4.已知集合{}(,)|210A x y x y =+=,{}(,)|35B x y x y =−=,则A B = .5.已知α:素数都是奇数,则α的否定形式是 .6.设x ,y R ∈,已知33:x y β<,则β的一个充分必要条件是 . 7.设U 为全集,A ,B ,C U ⊆,用含有A 、B 、C 的运算式子表示如图的阴影部分,结果是 . 8.已知集合{}|A x y x Z ==∈,{}2|1,B y y x x A ==+∈,则AB = .9.设集合{},,,,,,A a b c d e f g =,{},B a c =,集合M 满足AM B M =,则这样的集合M 共有 个. 10.设集合(,0)(1,)A =−∞+∞,{}|(25)()0B x x x a =+−<,若{}2,1ABZ =−−,则实数a 的取值范围是 .11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________.12.若两个正整数的正公因数只有1,则称这两个正整数互素.将与105互素的所有正整数组成集合{}123,,,,,n a a a a ,且123n a a a a <<<<,则100a = .2二、选择题(本大题满分12分)本大题共4题,每题3分. 13.设x R ∈,则“1x ≠”是“2320x x −+≠”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件14.已知抛物线2y ax =与直线1x =、2x =、1y =、2y =围成的正方形有公共点,那么实数a 的取值范围是( ) A .1,14⎡⎤⎢⎥⎣⎦B .1,24⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,22⎡⎤⎢⎥⎣⎦15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤C .{}|7a a ≤D .∅16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题三、解答题(本大题满分52分).17.(本题满分8分)已知集合{}2|8160,,A x kx x k R x R =−+=∈∈只有一个元素,求k 的值并用列举法表示集合A .318.(本题满分10分,第1小题满分5分,第2小题满分5分) 设a R ∈,已知集合{}|12A x x =−<<,{}22|20B x x ax a =−−=. (1)若{}1A B =,求a 的值;(2)若A B A =,求a 的取值范围.19.(本题满分10分,第1小题满分5分,第2小题满分5分)如图,在直角坐标系xOy 中,过点(0,1)F 的直线与抛物线24x y =相交于点11(,)M x y 、22(,)N x y 自M 、N 引直线l :1y =−的垂线,垂足分别为1M 、1N .(1)用1y 分别表示线段1MM 、MF 的长; (2)证明:11M F N F ⊥.420.(本题满分12分,第1小题满分6分,第2小题满分6分)设a R ∈,已知α:关于x 的一元二次方程220ax x a ++=有两个相异正根;β:对任意实数x ,不等式2(1)(1)10a x a x −−−−<恒成立. (1)若α为真命题,求实数a 的取值范围;(2)判断α⇒β、β⇒α是否成立?给出你的结论,并说明理由.21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=. (1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值.5参考答案一、填空题1.3;2.(](),02,−∞⋃+∞;3.{}2,0,2−;4.(){}3,4;5.存在一个素数不是奇数;6.x y <;7.A C B ⋂⋂;8.{}1,0,1,2−;9.32; 10.(]1,2−; 11.7412.202 11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________. 【答案】74【解析】设2x y =,原方程变为()2540y y k −+−=,设此方程有实根,(0)αβ<α<β,则原方程的四个实根为,(=即9β=α,又5,4k α+β=αβ=−, 由此求得74k =且满足254160Δk =+−>,7.4k ∴=故答案为:74.二、选择题13.B 14.B 15.C 16.B15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤ C .{}|7a a ≤ D .∅【答案】C【解析】由集合{}|135A x a x a =+≤≤−,{}116B x =≤≤当A =∅时,A B ⋂=∅,满足条件A A B ⊆⋂,此时135a a +>−,即26a <,解得3a <; 当A ≠∅时,若A A B ⊆⋂,则135113516a a a a +≤−⎧⎪+≥⎨⎪−≤⎩,等价于260321a a a ≥⎧⎪≥⎨⎪≤⎩,即30,7a a a ≥⎧⎪≥⎨⎪≤⎩解得37a ≤≤;6故a 的取值范围是{}|7a a ≤,综上所述,答案选择:C16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题【答案】B【解析】对于甲:()()A B C A B C B C A ⋂∆=⋂⋃−⋂=⋂()()B C A B C ⋃−⋂⋂()()A B A C =⋂⋃⋂()()()()A B A C A B A C −⋂⋂⋂=⋂∆⋂,故甲是真命题;对于乙,如下图所示:所以,()()()A B C A B A C ⋃∆≠⋃∆⋃,故乙是假命题;.故选:B. 三.解答题17.当0k =时,{}2A =; 当1k =时,{}4A =; 18.(1)1a =−(2)1,12⎛⎫− ⎪⎝⎭19.(1)1MM =11MF y =+ (2)略 20.(1)()1,0− (2)α⇒β21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=.7(1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值. 【答案】(1)见解析 (2)8031【解析】(1)证明:12245,,,,x x x x x 中的每一个数都小于1, 可得122455x x x x x ++++<,这与123455x x x x x ++++=矛盾, 故12245,,,,x x x x x 中至少有一个实数不小于1;(2)集合{}12345A x ,x ,x ,x ,x =的非空子集个数为32131−=,由于()M B 是B 中所有元素之和,可得()()1234516165M B x x x x x =++++=⨯80= 则()M B 的平均值为8031.。
北京市中学2024-2025学年高一上学期9月月考数学试卷含答案
北京市2024-2025学年高一上学期9月月考数学试卷班级______姓名______学号______2024.09.30(答案在最后)一、选择题(共8个小题,每题5分,共40分.每小题只有一个正确选项,请选择正确答案.......填在答题纸相应的题号处...........)1.已知集合{10}A xx =-≤≤∣,集合{1,0,1,2}B =-,则A B = ()A.RB.{10}x x -≤≤∣C.{1,0}- D.{1,0,1}-【答案】C【解析】【分析】根据交集运算求解即可.【详解】因为集合{10}A xx =-≤≤∣,集合{1,0,1,2}B =-,所以{}1,0A B ⋂=-.故选:C2.下列命题中,正确的是()A.若a b >,则22ac bc > B.若,a b c d >>,则a c b d +>+C.若,a b c d >>,则ac bd> D.若a b >,则11a b >【答案】B【解析】【分析】利用不等式的性质及举反例即可判断.【详解】对A 选项,当0c =时不等式不成立,故A 选项错误;B 选项,满足不等式的同向可加性,故B 选项正确;C 选项,当2,1,1,2a b c d ===-=-,则ac bd =,故C 选项错误;D 选项,当1,2a b =-=-时,11a b<,故D 选项错误.故选:B 3.方程组2202x y x y +=⎧⎨+=⎩的解集是()A.{(1,1),(1,1)}-- B.{(1,1),(1,1)}--C.{(2,2),(2,2)}-- D.{(2,2),(2,2)}--【答案】B【解析】【分析】根据消元法求得不等式组的解,结合集合的表示方法,即可求解.【详解】由题意,将y x =-代入222x y +=,可得21x =,即1x =±,当1x =时,1y =-;当1x =-时,1y =,所以方程组的解集为{(1,1),(1,1)}--.故选:B.4.下列不等式中,解集为{1xx <∣或3}x >的不等式是()A .2430x x -+≥ B.2430x x -+< C.103x x -≥- D.|2|1x ->【答案】D【解析】【分析】根据一元二次不等式的解法、分式不等式的解法和绝对值不等式的解法分别解各选项不等式即可求解.【详解】由2430x x -+≥可得()()130x x --≥,解得1x ≤或3x ≥,故A 错误;由2430x x -+<可得13x <<,故B 错误;由103x x -≥-可得()()()13030x x x --≥-≠,解得1x ≤或3x >,故C 错误;由|2|1x ->可得21x ->或21x -<-,即1x <或3x >,故D 正确.故选:D5.“0a b >>”是“22a b >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分不必要条件的概念判断即可.【详解】当0a b >>时,22a b >;当22a b >时,a b >,不一定0a b >>,所以“0a b >>”是“22a b >”的充分不必要条件.故选:A.6.平流层是指地球表面以上10km (不含)到50km (不含)的区域,下述不等式中,x 能表示平流层高度的是A.|10|50x +< B.|10|50x -< C.|30|20x +< D.|30|20x -<【答案】D【解析】【分析】根据绝对值的几何意义即可得解|30|20x -<.【详解】解析:如图:设(10),(50)A B ,则AB 的中点为(30)M ,由距离公式可得|30|20x -<.答案:D【点睛】此题考查根据绝对值的几何意义解决实际问题,关键在于正确理解绝对值的几何意义.7.若不等式04x <<是||x a <成立的充分条件,则a 的取值范围是()A.1a ≥ B.4a ≥ C.1a ≤ D.4a ≤【答案】B【解析】【分析】由题意知()()0,41,1a a ⊆-+可得1014a a -≤⎧⎨+≥⎩,解不等式即可得出答案.【详解】由题设,不等式a x a -<<且>0成立的充分条件是04x <<,则()()0,4,a a ⊆-,所以4a ≥,所以实数a 的取值范围是4a ≥.故选:B.8.已知集合{}{}2221,N ,21,N P yy x x x Q y y x x x ==+-∈==-+-∈∣∣,则P Q = ()A.{}1- B.{0} C.∅ D.N 【答案】A【解析】【分析】由两个方程相等可求得两曲线交点的横坐标,根据集合的几何意义求出纵坐标的值即为交集的结果.【详解】由222121x x x x +-=-+-,解得0x =,当0x =时,2221211x x x x +-=-+-=-,所以1{}P Q ⋂=-.故选:A二、填空题(共6个小题,每题5分,共30分.请将正确答案填在答题卡相应的题号处.................).9.命题2R,230x x x ∀∈-+>的否定是______.【答案】R x ∃∈,2230x x -+≤【解析】【分析】根据全称量词命题的否定求解.【详解】命题2R,230x x x ∀∈-+>的否定是R x ∃∈,2230x x -+≤.故答案为:R x ∃∈,2230x x -+≤10.已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(U P ð)∪Q =____.【答案】{1,2,4,6},【解析】【分析】由已知,先求出U P ð,再求(U P ð)∪Q .【详解】∵U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},∴U P ð={2,4,6},∴(U P ð)∪Q ={1,2,4,6},故答案为:{1,2,4,6},11.已知集合{1,2,3}A ⊆,集合A 可以为______(写出符合要求的所有A )【答案】{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅【解析】【分析】写出集合的子集即可得解.【详解】因为集合{1,2,3}A ⊆,所以集合A 可以为{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅.故答案为:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅12.已知12,x x 是关于x的一元二次方程210x -+=的两根,则12x x +=______;1211x x +=______.【答案】①.②.【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】由一元二次方程根与系数的关系可知,12x x +=,121x x ⋅=,所以12121211x x x x x x ++==⋅.故答案为:;13.若2{{1,2,4,}a ⊆,则a =________________________【答案】4,16,0【解析】【分析】依题意有{}21,2,4,a,逐个列方程求解,并检验元素的互异性.【详解】依题意有{}21,2,4,a1≠,2=时,216a =,满足题意,则4a =;4=时,2256a =,满足题意,则16a =;2a =时,0a =或1a =,0a =时满足题意,1a =时与元素的互异性矛盾.综上,4a =或16a =或0a =时满足题意,故答案为:4,16,014.若对2R,230x ax ax ∀∈-+>恒成立是真命题,则实数a 的取值范围是______【答案】[)0,3【解析】【分析】分0,0a a =≠讨论,根据一元二次不等式恒成立求解.【详解】当0a =时,原不等式为30>,对任意实数都成立,满足题意;当0a ≠时,2R,230x ax ax ∀∈-+>恒成立,需满足()202120a a a >⎧⎪⎨--<⎪⎩,即003a a >⎧⎨<<⎩,解得0<<3a .综上,实数a 的取值范围是[)0,3.故答案为:[)0,3三、解答题(共3个小题,每题10分,其30分,请将解题过程和答案写在规定的区域内...................)15.已知a ,b 为正数,且a b ≠,比较33+a b 与22a b ab +的大小.【答案】3322a b a b ab +>+【解析】【分析】通过作差,提取公因式便可得出33222()()()a b a b ab a b a b +-+=-+,并根据条件可以判断2()()0a b a b -+>,这样即可得出所比较两个式子的大小关系【详解】33223322()()a b a b ab a b a b ab +-+=+-- 22()()a ab b a b =---22()()a b a b =--2()()a b a b =-+;0a > ,0b >且a b ≠;2()0a b ∴->,0a b +>;2()()0a b a b ∴-+>;即3322()()0a b a b ab +-+>;3322a b a b ab ∴+>+.【点睛】本题主要考查作差法比较两个代数式的大小关系,分解因式法的运用,以及平方差公式,属于基础题.16.一元二次方程210ax bx ++=的解集是12,23⎧⎫-⎨⎬⎩⎭,求实数a ,b 的值,并求方程230bx ax b +--=的解集.【答案】13,2a b =-=,{}1,7-【解析】【分析】根据一元二次方程根与系数的关系求,a b ,再解一元二次方程得解.【详解】因为一元二次方程210ax bx ++=的解集是12,23⎧⎫-⎨⎬⎩⎭,所以122312123b a a⎧-+=-⎪⎪⎨⎪-⋅=⎪⎩,解得13,2a b =-=,所以方程230bx ax b +--=为2670x x --=,解得7x =或1x =-,所以方程的解集为{}1,7-.17.已知集合{}22,(,1)A x a x a B ∞=<<-=-∣.(1)若A B ⊆,求实数a 的取值范围;(2)若U B A ⊆ð,求实数a 的取值范围.【答案】(1)2⎡⎤⎣⎦(2)[)1,-+∞【解析】【分析】(1)分类讨论,根据子集列出不等式求解;(2)分集合是否为空集讨论,根据子集关系列不等式得解.【小问1详解】当22a a -≤时,即12a -≤≤时,A =∅,满足A B ⊆;当A ≠∅时,若A B ⊆,则需22221a a a ⎧<-⎨-≤⎩,解得1a ≤<-,综上,实数a的取值范围2⎡⎤⎣⎦.【小问2详解】由(1)知,当12a -≤≤时,A =∅,所以R U A =ð,满足U B A ⊆ð;当1a <-或2a >时,(])2,2,U A a a ⎡=-∞-+∞⎣ ð,由U B A ⊆ð可得1a ≤,又2a >,所以2a >.综上,实数a 的取值范围[)1,-+∞.。
2024-2025学年遵义市高一数学上学期10月考试卷附答案解析
2024-2025学年遵义市高一数学上学期10月考试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教B 版必修第一册第一章,第二章第1节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组对象能构成集合的是()A.中国著名的数学家B.高一(2)班个子比较高的学生C.不大于5的自然数D.约等于3的实数2.命题“所有平行四边形的对角线互相平分”的否定是()A.所有的平行四边形的对角线不互相平分B.对角线不互相平分的四边形不是平行四边形C.存在一个平行四边形的对角线互相平分D.存在一个平行四边形的对角线不互相平分3.已知集合{}1,2,3,5A =,{}2,3,4,6B =,则A B = ()A.{}1,2,3,4,5,6 B.{}1,5 C.{}2,3 D.{}4,64.金钱豹是猫科豹属中的一种猫科动物.根据以上信息,可知“甲是猫科动物”是“甲是金钱豹”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.如图,书架宽84cm ,在该书架上按图示方式摆放语文书和英语书,已知每本英语书厚0.9cm ,每本语文书厚1.1cm ,语文书和英语书共84本恰好摆满该书架,则书架上英语书的本数为()A.38B.39C.41D.426.已知集合(){}22,4,,A x y xy x y =+=∈∈Z Z ,则集合A 的真子集的个数是()A.7B.8C.15D.167.已知p 是q 的充分不必要条件,q 是s 的充要条件,s 是r 的充分不必要条件,r 是q 的必要不充分条件,则p 是s 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有()A .5名B.4名C.3名D.2名二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知命题p :有些三角形是轴对称图形,命题q :梯形的对角线相等,则()A.p 是存在量词命题B.q 是全称量词命题C.p 是假命题D.q ⌝是真命题10.已知函数2y ax bx c =++的部分图象如图所示,则()A.0abc <B.0b c +>C.20a b c ++>D.关于x 的方程20cx bx a ++=的解集为1,13⎧⎫-⎨⎬⎩⎭11.若S 是含有n 个元素的数集,则称S 为n 数集S.n 数集S 中含有m (m n ≤)个元素的子集,称为S 的m 子集.若在n 数集S 的任何一个t (4t n ≤≤)子集中,存在4个不同的数a ,b ,c ,d ,使得a b c d +=+,则称该S 的t 子集为S 的等和子集.下列结论正确的是()A.3数集A 有6个非空真子集B.4数集B 有6个2子集C.若集合{}1,2,3,4,6C =,则C 的等和子集有2个D.若集合{}1,2,3,4,6,13,20,40D =,则D 的等和子集有24个三、填空题:本题共3小题,每小题5分,共15分.12.若“[]2,1,20x x a ∀∈-+≥”是真命题,则a 的最小值是______.13.已知,a b 挝R R ,集合{}{}2,,2,2,0a b a a +=,则()3a b -=______.14.已知21x y =⎧⎨=⎩是方程组11122220,20a b y c a b c ++=⎧⎨++=⎩的解,则方程组111222130,21302a xb yc a x b y c ⎧-+=⎪⎪⎨⎪-+=⎪⎩的解是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知22:21,:5p x a a q x a <--<+.(1)若p 是q 的充要条件,求a 的值;(2)若p 是q 的充分不必要条件,求a 的取值范围.16.已知集合{}21A x x =->,{}135B x a x a =+<<+.(1)当1a =时,求()A B ⋂R ð;(2)若A B B = ,求a 的取值范围.17.已知p :关于x 的方程22220x ax a a -++-=有实根,q :关于x 的方程250x a -+=的解在[]3,9-内.(1)若q ⌝是真命题,求a 的取值范围;(2)若p 和q 中恰有一个是真命题,求a 的取值范围.18.已知二次函数24y x x m =++的图象与x 轴交于()()12,0,,0A x B x 两点.(1)当5m =-时,求关于x 的方程240x x m ++=的解;(2)若221212x x +=,求m 的值;(3)若0m >,求222112x x x x +的取值范围.19.已知集合{}()123123,,,,0,2n n A a a a a a a a a n =≤<<<<≥ ,若对任意的整数(),1,s t s t t s n a a ≤≤≤+和s t a a -中至少有一个是集合A 的元素,则称集合A 具有性质M .(1)判断集合{}0,1,7,8A =是否具有性质M ,并说明理由.(2)若集合{}12312,,,,B a a a a = 具有性质M ,证明:10a =,且12112a a a =+.(3)当7n =时,若集合A 具有性质M ,且231,2a a ==,求集合A.2024-2025学年遵义市高一数学上学期10月考试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教B 版必修第一册第一章,第二章第1节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组对象能构成集合的是()A.中国著名的数学家B.高一(2)班个子比较高的学生C.不大于5的自然数D.约等于3的实数【答案】C【分析】根据构成集合中元素的确定性判断各项即可.【详解】A :著名数学家的标准不明确,不能构成集合;B :个子比较高的标准不明确,不能构成集合;C :不大于5的自然数有0,1,2,3,4,5,能构成集合;D :约等于3的实数的精度不明确,不能构成集合.故选:C2.命题“所有平行四边形的对角线互相平分”的否定是()A.所有的平行四边形的对角线不互相平分B.对角线不互相平分的四边形不是平行四边形C.存在一个平行四边形的对角线互相平分D.存在一个平行四边形的对角线不互相平分【答案】D 【解析】【分析】根据全称命题的否定形式写法,即可确定答案.【详解】根据全称命题的否定为特称命题,即将全称量词改为存在量词,并否定原结论,所以,原命题的否定为“存在一个平行四边形的对角线不互相平分”.故选:D3.已知集合{}1,2,3,5A =,{}2,3,4,6B =,则A B = ()A.{}1,2,3,4,5,6 B.{}1,5 C.{}2,3 D.{}4,6【答案】A 【解析】【分析】应用集合的并运算求结果.【详解】由题设{1,2,3,5}{2,3,4,6}{1,2,3,4,5,6}A B == .故选:A4.金钱豹是猫科豹属中的一种猫科动物.根据以上信息,可知“甲是猫科动物”是“甲是金钱豹”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据必要不充分条件的判定方法进行判断.【详解】由“甲是金钱豹”可推出“甲是猫科动物”,由“甲是猫科动物”不能推出“甲是金钱豹”,所以“甲是猫科动物”是“甲是金钱豹”的必要不充分条件.故选:B5.如图,书架宽84cm ,在该书架上按图示方式摆放语文书和英语书,已知每本英语书厚0.9cm ,每本语文书厚1.1cm ,语文书和英语书共84本恰好摆满该书架,则书架上英语书的本数为()A.38B.39C.41D.42【答案】D 【解析】【分析】由题意列出一元一次方程求解即可.【详解】设书架上有x 本英语书,则语文书有84x -本,由题意,()0.984 1.184x x +-⨯=,解得42x =,故选:D 6.已知集合(){}22,4,,A x y xy x y =+=∈∈Z Z ,则集合A 的真子集的个数是()A.7B.8C.15D.16【答案】C 【解析】【分析】化简集合A ,根据集合A 中元素个数得解.【详解】因为(){}()()()(){}22,4,,0,2,0,2,2,0,20A x y xy x y =+=∈∈=--Z Z ,,所以集合A 的真子集的个数是42115-=个.故选:C7.已知p 是q 的充分不必要条件,q 是s 的充要条件,s 是r 的充分不必要条件,r 是q 的必要不充分条件,则p 是s 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的概念求解即可.【详解】由题意知,p q s r q ⇒⇔⇒⇐,q ⇒p ,所以可得p s ⇒,而s 推不出p ,则p 是s 的充分不必要条件,故选:A8.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有()A.5名 B.4名C.3名D.2名【答案】B 【解析】【分析】画出韦恩图,根据题意列出方程,求出三个小组都参加的人数,即可得解.【详解】设三个小组都参加的人数为x ,只参加音乐科学的人数为1y ,只参加音乐体育的人数为2y ,只参加体育科学的人数为3y ,作出韦恩图,如图,由题意,12132324202122y x y y x y y x y +++++++++=++,即()12323632439y y y x +++=-=,因为有12名学生只参加了2个兴趣小组,所以12312y y y ++=,代入解得5x =,即三个兴趣小组都参加的有5人,所以参加兴趣小组的一共有2412541++=人,所以不参加所有兴趣小组的有45414-=人.故选:B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知命题p :有些三角形是轴对称图形,命题q :梯形的对角线相等,则()A.p 是存在量词命题B.q 是全称量词命题C.p 是假命题D.q ⌝是真命题【答案】ABD 【解析】【分析】根据存在量词、全称量词命题的定义、及相关概念判定真假即可.【详解】由题意得:p 是存在量词命题,q 是全称量词命题,A ,B 正确.因为等腰三角形是轴对称图形,所以p 是真命题,C 错误.因为有些梯形(例如直角梯形)的对角线不相等,所以q 是假命题,q ⌝是真命题,D 正确.故选:ABD10.已知函数2y ax bx c =++的部分图象如图所示,则()A.0abc <B.0b c +>C.20a b c ++>D.关于x 的方程20cx bx a ++=的解集为1,13⎧⎫-⎨⎬⎩⎭【答案】BD 【解析】【分析】由函数图象可分析出,,a b c 符号判断A ,根据1为对应二次方程的根可判断BC ,再由3,1-为二次函数对应方程的两个根判断D.【详解】由图象知,0x =时,0y c =>,开口向下,0a <,310b a -+=-<,即0ba>,则0ab >,则0b <,所以0abc >,故A 错误;由1x =时,0a b c ++=且0a <,所以0b c +>,故B 正确;因为20a b c a a b c a ++=+++=<,故C 错误;由20cx bx a ++=可得2110a b c x x ⎛⎫+⋅+= ⎪⎝⎭,因为3,1-是方程20ax bx c ++=的两根,所以1,13-是方程2110a b c x x ⎛⎫+⋅+= ⎪⎝⎭的根,所以关于x 的方程20cx bx a ++=的解集为1,13⎧⎫-⎨⎬⎩⎭,故D 正确.故选:BD11.若S 是含有n 个元素的数集,则称S 为n 数集S.n 数集S 中含有m (m n ≤)个元素的子集,称为S 的m 子集.若在n 数集S 的任何一个t (4t n ≤≤)子集中,存在4个不同的数a ,b ,c ,d ,使得a b c d +=+,则称该S 的t 子集为S 的等和子集.下列结论正确的是()A.3数集A 有6个非空真子集B.4数集B 有6个2子集C.若集合{}1,2,3,4,6C =,则C 的等和子集有2个D.若集合{}1,2,3,4,6,13,20,40D =,则D 的等和子集有24个【答案】ABD 【解析】【分析】根据集合的新定义结合子集及真子集的性质分别判断各个选项即可.【详解】3数集A 有3226-=个非空真子集,A 正确.假设{},,,B x y z p =,则B 的2子集有{},x y ,{},x z ,{},x p ,{},y z ,{},y p ,{},z p ,共6个,B 正确.C 的等和子集有{}1,2,3,4,{}1,3,4,6,{}1,2,3,4,6,共3个,C 错误.因为4613+<,61320+<,132040+<,所以在D 中,只有1423+=+,1634+=+两组符合条件的等式.在D 的4子集中,D 的等和子集有{}1,2,3,4,{}1,3,4,6,共2个;在D 的5子集中,D 的等和子集有{}1,2,3,4,6,{}1,2,3,4,13,{}1,2,3,4,20,{}1,2,3,4,40,{}1,3,4,6,13,{}1,3,4,6,20,{}1,3,4,6,40,共7个;在D 的6子集中,D 的等和子集有{}1,2,3,4,6,13,{}1,2,3,4,6,20,{}1,2,3,4,6,40,{}1,2,3,4,13,20,{}1,2,3,4,13,40,{}1,2,3,4,20,40,{}1,3,4,6,13,20,{}1,3,4,6,13,40,{}1,3,4,6,20,40,共9个;在D 的7子集中,D 的等和子集有{}1,2,3,4,6,13,20,{}1,2,3,4,6,13,40,{}1,2,3,4,6,20,40,{}1,2,3,4,13,20,40,{}1,3,4,6,13,20,40,共5个;在D 的8子集中,D 的等和子集有{}1,2,3,4,6,13,20,40,共1个.综上,D 的等和子集有2795124++++=个,D 正确.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.若“[]2,1,20x x a ∀∈-+≥”是真命题,则a 的最小值是______.【答案】4【解析】【分析】由命题为真有2a x ≥-在[2,1]x ∈-上恒成立,求参数范围,进而确定最小值.【详解】由题设2a x ≥-在[2,1]x ∈-上恒成立,而max (2)4x -=,所以4a ≥,故其最小值为4.故答案为:413.已知,a b 挝R R ,集合{}{}2,,2,2,0a b a a +=,则()3a b -=______.【答案】8【解析】【分析】根据集合相等,结合元素的互异性求参数,进而确定目标式的值.【详解】由题设,若0a =,则{}2,2,0a 不满足元素的互异性,所以2110a b a a a b a +=⎧=⎧⎪=⇒⎨⎨=-⎩⎪≠⎩,显然满足题设,所以()3328a b -==.故答案为:814.已知21x y =⎧⎨=⎩是方程组11122220,20a b y c a b c ++=⎧⎨++=⎩的解,则方程组111222130,21302a x b y c a x b y c ⎧-+=⎪⎪⎨⎪-+=⎪⎩的解是______.【答案】413x y =⎧⎪⎨=-⎪⎩【解析】【分析】根据两个方程组之间的关系,观察可得出方程组的解.【详解】由题意,21x y =⎧⎨=⎩代入方程组可得1112222020a b c a b c ++=⎧⎨++=⎩,所以当14,3x y ==-时,代入方程组111222130,21302a x b y c a x b y c ⎧-+=⎪⎪⎨⎪-+=⎪⎩,可得1112222020a b c a b c ++=⎧⎨++=⎩,成立,所以方程组111222130,21302a x b y c a x b y c ⎧-+=⎪⎪⎨⎪-+=⎪⎩的解是413x y =⎧⎪⎨=-⎪⎩,故答案为:413x y =⎧⎪⎨=-⎪⎩四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知22:21,:5p x a a q x a <--<+.(1)若p 是q 的充要条件,求a 的值;(2)若p 是q 的充分不必要条件,求a 的取值范围.【答案】(1)3-(2)()3,-+∞【解析】【分析】(1)根据充要条件知,不等式的解集相同,建立方程得解;(2)由充分不必要条件可化为22215a a a --<+,解不等式得解.【小问1详解】因为p 是q 的充要条件,所以22215a a a --=+,解得3a =-.【小问2详解】因为p 是q 的充分不必要条件,所以()221,a a -∞--()25,a -∞+,即22215a a a --<+,解得3a >-,所以a 的取值范围()3,-+∞.16.已知集合{}21A x x =->,{}135B x a x a =+<<+.(1)当1a =时,求()A B ⋂R ð;(2)若A B B = ,求a 的取值范围.【答案】(1)(]2,3(2)(][),22,-∞-+∞U 【解析】【分析】(1)根据集合的补集、交集运算求解;(2)转化为B A ⊆,分类讨论求解即可.【小问1详解】因为{}()213,A x x ∞=->=+,所以(],3A =-∞R ð,又1a =,故{}()1352,8B x a x a =+<<+=,所以()(]2,3A B =R ð.【小问2详解】因为A B B = ,所以B A ⊆,当B =∅时,可得135a a +≥+,即2a ≤-,当B ≠∅时,由B A ⊆可得213a a >-⎧⎨+≥⎩,解得2a ≥.综上,a 的取值范围为(][),22,-∞-+∞U .17.已知p :关于x 的方程22220x ax a a -++-=有实根,q :关于x 的方程250x a -+=的解在[]3,9-内.(1)若q ⌝是真命题,求a 的取值范围;(2)若p 和q 中恰有一个是真命题,求a 的取值范围.【答案】(1)(,1)(7,)-∞+∞ ;(2)(,1)(2,7]-∞ .【解析】【分析】(1)由命题q 是真命题求出a 的取值范围,根据其补集即可得出q ⌝是真命题时a 的取值范围;(2)利用判别式求出p 为真时a 的范围,分p 真q 假,p 假q 真两种情况求解即可.【小问1详解】由250x a -+=解得52x a =-+,当3529a -≤-+≤,解得17a ≤≤,因为命题q ⌝是真命题,则命题q 是假命题,所以1a <或7a <.所以实数a 的取值范围是(,1)(7,)-∞+∞ .【小问2详解】由(1)知,命题q 是真命题,即7:1q a ≤≤,若p 为真命题,即关于x 的方程22220x ax a a -++-=有实数根,因此2244(2)0a a a ∆=-+-≥,解得2a ≤,则p 为假命题时,2a >.当p 真q 假时,则217a a a ≤⎧⎨⎩或,解得1a <;当p 假q 真时,则217a a >⎧⎨≤≤⎩,解得27a <≤.综上,p 和q 中恰有一个是真命题时,a 的取值范围为(,1)(2,7]-∞ .18.已知二次函数24y x x m =++的图象与x 轴交于()()12,0,,0A x B x 两点.(1)当5m =-时,求关于x 的方程240x x m ++=的解;(2)若221212x x +=,求m 的值;(3)若0m >,求222112x x x x +的取值范围.【答案】(1)1,5-(2)2(3)2221124x xx x +<-【解析】【分析】(1)解一元二次方程得解;(2)由一元二次方程根与系数的关系化简求值即可;(3)根据根与系数的关系化简及不等式的性质求解.【小问1详解】当5m =-时,方程2450x x +-=,即()()510x x +-=,解得5x =-或=1.即方程的解为1,5-.【小问2详解】由题意,240x x m ++=有两个不等根12,x x ,所以12124,x x x x m +=-⋅=,由()222121212216212x x x x x x m +=+-⋅=-=,解得2m =.此时,2m =满足1640m ∆=->,故所求m 的值为2.【小问3详解】由方程有不相等实根可得2440m ∆=->,解得4m <,又0m <,所以04m <<,且12124,x x x x m +=-⋅=,所以()()()()22222331212121211222121121212123x x x x x x x x x x x x x x x x x x x x x x x x ⎡⎤++-+-++⎣⎦+===⋅⋅⋅()41636412m m m--==-,由04m <<,则114m <,所以6416m ->-,故64124m-<-,即222112x x x x +的取值范围2221124x x x x +<-.19.已知集合{}()123123,,,,0,2n n A a a a a a a a a n =≤<<<<≥ ,若对任意的整数(),1,s t s t t s n a a ≤≤≤+和s t a a -中至少有一个是集合A 的元素,则称集合A 具有性质M .(1)判断集合{}0,1,7,8A =是否具有性质M ,并说明理由.(2)若集合{}12312,,,,B a a a a = 具有性质M ,证明:10a =,且12112a a a =+.(3)当7n =时,若集合A 具有性质M ,且231,2a a ==,求集合A .【答案】(1)集合{}0,1,7,8A =具有性质M ,理由见解析(2)证明见解析(3){}0,1,2,3,4,5,6A =.【解析】【分析】(1)集合A 具有性质M 的定义判断即可.(2)令12s t ==,利用集合B 具有性质M ,进而可得1212a a -是集合B 的元素,进而可得结论.(3)由(2)可得10a =,进而可得717726735744,,,a a a a a a a a a a a a -=-=-=-=,利用定义计算可求得集合A .【小问1详解】因为01,07,08,17,81,87++++--都是集合A 的元素,且t s =时,0s t a a -=也是集合A 的元素,所以集合{}0,1,7,8A =具有性质M .【小问2详解】令12s t ==因为集合B 具有性质M ,所以1212a a +和1212a a -中至少有一个是集合B 的元素.因为120a >,所以121212a a a +>,所以1212a a +不是集合B 的元素,所以1212a a -是集合B 的元素,即0是集合B 的元素.因为12312100a a a a a ≤<<<<⇒= .因为23120a a a <<<< ,所以1211212212110a a a a a a a -=>->>-> ,所以1221112112,,a a a a a a -=-= ,显然有12112a a a =+,得证.【小问3详解】由(2)可知10a =,则717276,,,a a a a a a --- ,即717726735744,,,a a a a a a a a a a a a -=-=-=-=,所以3542a a a +=,所以544340a a a a a <-=-<.因为54537a a a a a +>+=,所以54a a A +∉,且54a a A -∈,则544321a a a a a -=-==或544332a a a a a -=-==.当544321a a a a a -=-==时,423542746723,4,26,5a a a a a a a a a a a =+==+====-=,故集合{}0,1,2,3,4,5,6A =;当544332a a a a a -=-==时,435437467224,6,28,7a a a a a a a a a a ===+====-=,故集合{}0,1,2,4,6,7,8A =,此时145,413A A +=∉-=∉,不符合题意.综上,集合{}0,1,2,3,4,5,6A =.。
重庆市中学2024~2025学年高一上学期第一次月考数学试题含答案
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
辽宁省沈阳市东北育才中学2024-2025学年高一上学期第一次月考(10月)数学试题(含解析)
东北育才高中2024-2025学年度上学期高一年级数学科第一次月考试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知集合,则中元素个数为( )A.2B.3C.4D.62.设集合,则集合的真子集的个数为( )A.3B.4C.15D.163.命题“,不等式”为假命题的一个必要不充分条件是( )A.B.C. D.4.设,则下列命题正确的是( )A.若,则B.若,则C.若则D.若,则5.若集合,若,则实数的取值范围是( )A.B.C.D.6.对于实数,当且仅当时,规定,则不等式的解集是()A. B.C. D.7.已知,则的最小值为( )(){}(){}*,,,,,8A x y x y y x B x y x y =∈≥=+=N ∣∣A B ⋂{}{}{}1,2,3,4,5,,,A B M xx a b a A b B ====+∈∈∣M x ∃∈R 2210ax x -+≤0a >1a >102a <<2a >,a b ∈R ,x y a b >>a x b y ->-a b >11a b<,x y a b >>ax by >a b >22a b >{}30,101x A xB x ax x ⎧⎫-===+=⎨⎬+⎩⎭∣B A ⊆a 13⎧⎫-⎨⎬⎩⎭1,13⎧⎫-⎨⎬⎩⎭10,3⎧⎫-⎨⎬⎩⎭10,,13⎧⎫-⎨⎬⎩⎭x ()1n x n n ≤<+∈N []x n =[]24[]36450x x -+<{28}xx ≤<∣31522xx ⎧⎫<<⎨⎬⎩⎭{}27xx ≤≤∣{27}x x <≤∣0,0,23x y x y >>+=23x yxy+A. B.8.方程至少有一个负实根的充要条件是( )A. B.C.D.或二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分,9.设均为非空集合,且满足,则下列各式中正确的是( )A. B.C.D.10.下列四个命题中正确的是( )A.由所确定的实数集合为B.同时满足的整数解的集合为C.集合可以化简为D.中含有三个元素11.已知关于的不等式的解集为,则下列结论正确的是()A. B.的最大值为C.的最小值为8 D.的最小值为三、填空题:本大题共3小题,每小题5分,共15分.12.的解集是__________.13.某班举行数学、物理、化学三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中同时只参加数学、物理两科的有10人,同时只参加物理、化学两科的有7人,同时只参加数学、化学两科的有11人,而参加数学、物理、化学三科的有4人,则全班共有__________人.3-11-1+2210ax x ++=01a <≤1a <1a ≤01a <≤0a <A B U 、、A B U ⊆⊆()U A B U ⋃=ð()()U U U A B B ⋂=ððð()U A B ⋂=∅ð()()U U A B U⋃=ðð(),a b a b ab+∈R {}2,0,2-240,121x x x +>⎧⎨+≥-⎩{}1,0,1,2-(){},3216,,x y x y x y +=∈∈N N ∣()()(){}0,8,2,5,4,26,3A aa a ⎧⎫=∈∈⎨⎬-⎩⎭N Z x ()()()2323100,0a m x b m x a b +---<>>11,2⎛⎫- ⎪⎝⎭21a b +=ab 1812a b +224a b +1222150x x -->14.已知关于的不等式(其中)的解集为,若满足(其中为整数集),则使得集合中元素个数最少时的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)已知集合为全体实数集,或.(1)若,求;(2)若,求实数的取值范围.16.(本小题15分)已知全集,集合,集合.(1)若,求实数的取值集合;(2)若集合,且集合满足条件__________(从下列三个条件中任选一个作答),求实数的取值集合.条件①是的充分不必要条件:②是的必要不充分条件:③,使得.17.(本小题15分)设,且.(1介于之间;(2)求;(3)你能设计一个比的吗?并说明理由.18.(本小题17分)对于二次函数,若,使得成立,则称为二次函数的不动点.(1)求二次函数的不动点:(2)若二次函数有两个不相等的不动点,且,求的最小值.x ()()2640mx m x --+<m ∈R A A B ⋂=Z Z B m U {2M xx =<-∣{}5},121x N x a x a >=+≤≤-∣3a =()U M N ⋃ðU N M ⊆ða U =R A x y ⎧⎪==⎨⎪⎩()(){}2440B x x m x m =---<∣B =∅m B ≠∅,A B m x A ∈x B ∈x A ∈x B ∈12,x A x B ∀∈∃∈12x x =10a >1a ≈21111a a =++12,a a 12,a a 2a 3a ()20y ax bx c a =++≠0x ∃∈R 2000ax bx c x ++=0x ()20y ax bx c a =++≠222y x x =+-()2221y x a x a =-++-12,x x 12,0x x >2112x x x x +19.(本小题17分)已知是非空数集,如果对任意,都有,则称是封闭集.(1)判断集合是否为封闭集,并说明理由:(2)判断以下两个命题的真假,并说明理由:命题:若非空集合是封闭集,则也是封闭集;命题:若非空集合是封闭集,且,则也是封闭集:(3)若非空集合是封闭集合,且为实数集,求证:不是封闭集.A ,x y A ∈,x y A xy A +∈∈A {}{}0,1,0,1BC ==-p 12,A A 12A A ⋃q 12,A A 12A A ⋂≠∅12A A ⋂A ,A ≠R R A R ð东北育才高中2024-2025学年度上学期高一年级数学科第一次月考答案【解析】1.解:在集合中,观察集合的条件,当是正整数且时,有等4个元素,则中元素个数为4个.故选C.2.解:由题意可知,集合,集合中有4个元素,则集合的真子集有个,故选C.3.解:命题“,不等式”为假命题,则命题“,不等式”为真命题,所以,解得,所以使得命题“,不等式”为假命题,则实数的取值范围为1,则命题“,不等式”为假命题的一个必要不充分条件是,故选:A.4.解:A :令,则,故错误;B :令,则,故错误;C :令,则,故错误;D :因为,所以即,故正确;故选D.5.解:由题可知:.当时,显然不成立即,则满足;B 8x y +=A ,x y y x ≥()()()()1,7,2,6,3,5,4,4A B ⋂{}5,6,7,8M =M 42115-=x ∃∈R 2210ax x -+≤x ∀∈R 2210ax x -+>0Δ440a a >⎧⎨=-<⎩1a >x ∃∈R 2210ax x -+≤a a >x ∃∈R 2210ax x -+≤0a >1,3,2,0x y a b ==-==13a x b y -=<-=0,0a b ><11a b>0,1,1,0x y a b ==-==0ax by ==a a b >…22||a b >22a b >{}3031x A xx ⎧⎫-===⎨⎬+⎩⎭0a =10…B =∅B A ⊆当时,,由可得:;综上所述实数的取值范围为.故选C.6.解:由,根据的定义可知:不等式的解集是.故选A.7.解:因为,则,当且仅当时,即当,且,等号成立,故的最小值为故选B.8.当时,方程为有一个负实根,反之,时,则于是得;当时,,若,则,方程有两个不等实根,,即与一正一负,反之,方程有一正一负的两根时,则这两根之积小于,于是得,若,由,即知,方程有两个实根,0a ≠1B x x a ⎧⎫==-⎨⎬⎩⎭B A ⊆1133a a -=⇒=-a 10,3⎧⎫-⎨⎬⎩⎭[]24[]36450x x -+<[]()[]()232150x x ⇒--<[]31522x ⇒<<[]x []24[]36450x x -+<{28}xx <∣…0,0,23x y x y >>+=()22222322111x x y y x y x xy y x y xy xy xy y x +++++===+++=+…222x y =3x =-y =23x y xy+1+0a =210x +=12x =-12x =-0,a =0a =0a ≠Δ44a =-0a <Δ0>12,x x 1210x x a=<1x 2x 1a0,0a <0a <0a >Δ0≥01a <≤12,x x必有,此时与都是负数,反之,方程两根都为负,则,解得,于是得,综上,当时,方程至少有一个负实根,反之,方程至少有一个负实根,必有.所以方程至少有一个负实根的充要条件是.故选:9.解:因为,如下图所示,则,选项A 正确:,选项B 正确:,选项正确:,选项D 错误.故选ABC.10.解:分别取同正、同负和一正一负时,可以得到的值分别为,故A 正确;由得,12122010x x a x x a ⎧+=-<⎪⎪⎨⎪=>⎪⎩1x 2x 2210ax x ++=12,x x 1212Δ4402010a x x a x x a ⎧⎪=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩01a <≤01a <≤1a ≤2210ax x ++=2210ax x ++=1a ≤2210ax x ++=1a ≤CA B U ⊆⊆()U U U ,B A A B U ⊆⋃=ððð()()UUUA B B ⋂=ððð()U A B ⋂=∅ðð()()UUUA B A U ⋃=≠ððð,a b (),a b a b ab+∈R 2,2,0-240,121,x x x +>⎧⎨+≥-⎩22x -<≤所以符合条件的整数解的集合为,故B 正确;由,可以得到符合条件的数对有,故C 正确;当时,;当时,,当时,;当时,;当时,;当时,,所以集合含有四个元素,故D 错误,故选ABC.11.解:由题意,,且方程的两根为和,所以,所以,所以A 正确;因为,所以,可得,当且仅当时取等号,所以的最大值为B 正确;,当且仅当,即时取等号,所以的最小值为C 错误;,当且仅当时取等号,所以的最小值为,所以D 正确.故选ABD.12.解:由,,{}1,0,1,2-3216,,x y x y +=∈∈N N ()()()0,8,2,5,4,22a =666332a ==∈--N 1a =663331a ==∈--N 0a =662330a ==∈--N 1a =-66331a =∉-+N 2a =-6635a =∉-N 3a =-66136a ==∈-N A 2,1,0,3-30a m +>()()232310a m x b m x +---=1-12123111,12323b m a m a m--+=-⨯=-++32,231a m b m +=-=-21,a b +=0,0a b >>21a b +=≥18ab ≤122a b ==ab 1,8()121222255549b a a b a b a b a b ⎛⎫+=++=++≥+=+= ⎪⎝⎭22b a a b =13a b ==12a b+9,22222114(2)(2)22a b a b a b +=+≥+=122a b ==224a b +1222150x x -->2||2150x x ∴-->()()530x x ∴-+>解得:或(舍去),或,即所求的解集为,故答案为.13.解:设参加数学、物理、化学三科竞赛的人分别组成集合,各集合中元素的个数如图所示,则全班人数为.故答案为43.14.解:分情况讨论:当时,,解得;当时,,当且仅当解得或;当时,,当且仅当由,解得.因为,集合中元素个数最少,所以不符合题意;所以要使集合中元素个数最少,需要,解得.故答案为:.15.(本小题13分)5x >3x <-5x ∴<-5x >()(),55,∞∞--⋃+()(),55,∞∞--⋃+,,A B C 24510711443++++++=0m =()640x -+<{}4A xx =>-∣0m <()2266640,4m m x x m m m m ⎛⎫++-+>=+-<- ⎪⎝⎭…m =26{|m A x x m +=<4}x >-0m >2664m m m m+=+≥>m =()2640m x x m ⎛⎫+-+< ⎪⎝⎭264m A x x m ⎧⎫+⎪⎪=-<<⎨⎬⎪⎪⎩⎭A B ⋂=Z B 0m ≤B 265m m +≤23m ≤≤{}23mm ∣……【答案】解:(1)当时,,所以或,又或,所以或;(2)由题可得,①当时,则,即时,此时满足;②当时,则,所以,综上,实数的取值范围为.16.(本小题15分)【答案】解:(1)若,则,解得,所以实数的取值集合为(2)集合,集合,则此时,则集合,当选择条件①时,是的充分不必要条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件②时,是的必要不充分条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件③时,,使得,有,则,解得,所以实数的取值集合为3a ={}45N xx =≤≤∣U {4N x x =<∣ð5}x >{2M xx =<-∣5}x >()U {4M N x x ⋃=<∣ð5}x >{}U 25M xx =-≤≤∣ðN =∅121a a +>-2a <U N C M ⊆N ≠∅12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩23a ≤≤a {}3aa ∣…B =∅244m m =+2m =m {}2{}2200{45}A xx x x x =-++>=-<<∣∣B ≠∅2,m ≠2244(2)0m m m +-=->{}244B xm x m =<<+∣x A ∈x B ∈A B 24445m m ≤-⎧⎨+≥⎩1m <-m (),1∞--x A ∈x B ∈B A 24445m m ≥-⎧⎨+≤⎩11m -<≤m (]1,1-12,x A x B ∀∈∃∈12x x =A B ⊆24445m m ≤-⎧⎨+≥⎩1m ≤-m (],1∞--17.(本小题15分)【答案】解:(1)证明:.之间.(2比.(3)令,则比.证明如下:由(2.故比18.(本小题17分)【答案】解:(1)由题意知:,,解得,所以,二次函数的不动点为和1.(2)依题意,有两个不相等的正实数根,即方程有两个不相等的正实数根,所以,解得,所以,所以))12111101a a a a ⎫=-⋅--=<⎪+⎭12a a 、11a --1a -2a ∴1a 32111a a =++3a 2a 32a a -=--3a 2a 222x x x +-=()()120x x ∴-+=122,1x x =-=222y x x =+-2-()2221x a x a x -++-=()22310x a x a -++-=()2Δ(3)810a a =+-->12302a x x ++=>1a >12102a x x -⎛⎫=> ⎪⎝⎭121231,22a a x x x x +-+==()222121221121212122x x x x x x x x x x x x x x +-++==,当且仅当,即时等号成立,所以的最小值为6.19.(本小题17分)【答案】(1)解:对于集合,因为,所以是封闭集;对于集合,因为,所以集合不是封闭集;(2)解:对命题:令,则集合是封闭集,但不是封闭集,故错误;对于命题:设,则有,又因为集合是封闭集,所以,同理可得,所以,所以是封闭集,故正确;(3)证明:假设结论成立,设,若,矛盾,所以,所以有,设且,否则,所以有,矛盾,故假设不成立,原结论成立,证毕.()()()22231(1)41162132121212a a a a a a a a a +⎛⎫-+ ⎪-+-+++⎝⎭===---1822621a a -=++≥=-1821a a -=-5a =1221x x x x +{}0B =000,000B B +=∈⨯=∈{}0B ={}1,0,1C =-()112,112,C C -+-=-∉+=∉{}1,0,1C =-p {}{}122,,3,A xx k k A x x k k ==∈==∈Z Z ∣∣12,A A 12A A ⋃q ()12,a b A A ∈⋂1,a b A ∈1A 11,a b A ab A +∈∈22,a b A ab A +∈∈()()1212,a b A A ab A A +∈⋂∈⋂12A A ⋂2a A a A ∈⇒∈2R ()a A a A -∈⇒-∈R ðða A -∈0a a A -+=∈2R R b A b A ∈⇒∈ððR b A -∈ð2()b A b A -∈⇒-∈R 0b b A -+=∈ð。
上海市闵行中学2024-2025学年高一上学期10月月考数学卷(含答案)
高一数学试卷时间:120分钟 满分150分一.填空题(本大题共有12题,满分54分)考生必须在答题纸的相应编号的空格内直接填写结果,1-6填对每题得4分,7-12填对每题得5分.1.已知集合,,则______.2.不等式的解集是______.3.集合可以用列举法表示为______.4.设方程的两根为、,则______.5.已知不等式的解集为,则______.6.若要用反证法证明“对于三个实数a 、b 、c ,若,则或”,第一步应假设______.7.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为______.8.已知集合是单元素集,则实数的取值集合为______.9.已知集合,,若,则实数的取值范围是______.10.不等式的解集是______.11.已知、,关于的不等式组解集为,则的值为______.12.已知集合,集合,且,则实数的取值范围是______.二.选择题(本大题满分18分)本大题共有4小题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,13-14选对每题得4分,15-16选对每题得5分,否则一律得零分.13.给出下列关系式,错误的是( )A. B. C. D.14.“”是“或”的( ){}1,2,3,4A ={}πB x x =>A B = 101x x -<+()10,30x y P x y x y ⎧⎫+-=⎧⎪⎪=⎨⎨⎬--=⎩⎪⎪⎩⎭21830x x -+=1x 2x 1211x x +=210ax bx ++>{}12x x -<<a b +=a c ≠a b ≠b c ≠(){}21320A x a x x =-+-=a {}29180A x xx =-+<{}22560B x x ax a =-+=A B ≠∅ a ()2210x x x ++-≠m n R ∈x 23140x x m nx n⎧-+<⎪⎨<⎪⎩()9,13mn ()()(){}22,220,,A x y ax x a ay y a x R y R =++++>∈∈()()(){}22,1220,,B x y x x y y x R y R =++++>∈∈A B A B = a {}10,1,2∈{}1,2,3∅⊆{}{}11,2,3∈{}{}0,1,21,2,0=2024x y +<2012x <2012y <A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15.已知关于x 的不等式,下列结论正确的是( )A.不等式的解集不可以是;B.不等式的解集可以是;C.不等式的解集可以是;D.不等式的解集可以是.16.已知a 、b 都是正数,集合,,若任意的,都有或.则下列结论中正确的是( )A. B. C. D.三.解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.已知集合,集合.(1)求集合;(2)若全集,求.18.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.已知命题:实数满足,命题:实数满足(其中).(1)若,且命题和中至少有一个为真命题,求实数的取值范围;(2)若是的充分条件,求实数的取值范围.19.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.如图所示,有一块矩形空地,要在这块空地上开辟一个内接四边形绿地(图中四边形).使其四个顶点分别落在矩形的四条边上,已知米,米,且.(1)设米(),求出四边形的面积关于的表达式;(2)为使绿地面积不小于空地面积的一半,求长的最大值.220240mx nx ++>220240mx nx ++>R 220240mx nx ++>∅220240mx nx ++>{}2024x x <220240mx nx ++>()1,20240x a A x x a ⎧-⎫=≥⎨⎬+⎩⎭()(){}0B x b x b x =+-≥m R ∈m A ∈m B ∈a b <a b ≤a b >a b≥{}2280A x x x =+-≤2716x B xx ⎧-⎫=≤⎨⎬-⎩⎭B U R =B A p x 210160x x -+≤q x 22430x mx m -+≤0m >1m =p q x q p m ABCD EFGH 200AB =100BC =AE AH CF CG ===AE x =0100x <≤EFGH S x AE20.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.解决下列问题:(1)已知、,设,.比较与的大小;(2)已知命题P :如果实数a 、b 为正数,且满足,则和中至少有一个成立.判断命题P 是否正确,并说明理由;(3______.(其中a ,b ,c ,d 都为正数)并给出它的代数证明.21.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数和,定义集合.(1)设,,求;(2)设,,,若任意,都有,求实数的取值范围;(3)设,,,若存在,使得且,求实数的取值范围.m n R ∈()()2214a m n =++()22b mn =+a b 2a b +=123b a +≥123a b+≥+≥()m x ()n x ()()()()(){},T m x n x x m x n x =<()3p x x =-()45q x x =--()()(),T p x q x ()1u x x =-()()22v x x a a =-+()()216w x a x =-+0x R ∈()()()][()()()0,,x T u x v x T v x w x ⎡⎤∈⎣⎦ a ()2f x x b =-()41x b g x x +=-()2h x =0x R ∈()()()0,x T f x h x ∈()()()0,x T g x h x ∈b2024学年第一学期单元考试高一数学试卷答案一.填空题(本大题共有12题,满分54分)考生必须在答题纸的相应编号的空格内直接填写结果,1-6填对每题得4分,7-12填对每题得5分.12345660且78910111212二.选择题(本大题满分18分)本大题共有4小题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,13-14选对每题得4分,15-16选对每题得5分,否则一律得零分.CACB三.解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.【解】(1)由得:,即,解得:,∴.(2)由(1)知:;由得:,解得:,即,∴.18.(本题满分14分)本题共2个小题,第1小题满分7分,第2小题满分7分.【解】(1):实数满足,解得,当时,:,解得,∵和至少有一个为真,∴或,∴,{}4()1,1-(){}2,1-a b =b c =1,18⎧⎫-⎨⎬⎩⎭()1,3()(),11,-∞--+∞ 39-()(),11,-∞-+∞ 2716x x -≤-106x x -≤-()()16060x x x ⎧--≤⎨-≠⎩16x ≤<[)1,6B =()[),16,B =-∞+∞ 2280x x +-≤()()420x x +-≤42x -≤≤[]4,2A =-(][),26,B A =-∞+∞ p x 210160x x -+≤28x ≤≤1m =q 2430x x -+≤13x ≤≤p q 28x ≤≤13x ≤≤18x ≤≤∴实数的取值范围为;(2)∵,由,解得,即:,∵是的充分条件,∴∴,实数的取值范围是19.略20.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.【解】(1)解:∵,∴,即;(2)命题正确用反证法证明如下:假设和都不成立,则且,由已知,实数、为正数实数,∴且,故,可得,与已知矛盾,故假设不成立,∴和中至少有一个成立. (3证明:x []1,80m >22430x mx m -+≤3m x m ≤≤q 3m x m ≤≤q p 238mm ≥⎧⎨≤⎩823m ≤≤m82,3⎡⎤⎢⎥⎣⎦()()()222142a b m n mn -=++-+()22222222244444420m n m n m n mn m n mn m n =+++---=+-=-≥0a b -…a b …P 123b a +≥123a b+≥123b a +<123a b+<a b 123b a +<123a b +<22233a b a b ++<+2a b +>2a b +=123b a +≥123a b+≥≥22-()2222222222a c b d a c b d ab cd =++++-+++++又因为所以因为a ,b ,c ,d所以21.(本题满分18分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.【解】(1)已知,由,即当时,不等式化为,得,此时,不等式的解为.当时,不等式化为,即,恒成立,此时,不等式的解为.当时,不等式化为,得.此时,不等式的解为.综上所述,的解集为,即.(2)由题意知,不等式①恒成立,且不等式②恒成立;由(1)得,,,解得;由②得,,时,不等式化为恒成立,时,应满足,解得;综上知,的取值范围是.()()22ab cd ab cd ⎤=-+=-+⎥⎦()()()()222222222220a c b d ab cd a d b c abcd ad bc ++-+=+-=-≥()()()22222a c b d ab cd ++≥+()ab cd ≥+22+≥≥()3p x x =-()45q x x =--()()p x q x <354x x -+-<5x ≥354x x -+-<6x <56x ≤<35x ≤<354x x -+-<24<35x ≤<3x <354x x -+-<2x >23x <<()()p x q x <()2,6()()()(),2,6T p x q x =()212x x a a -<-+()()22216x a a a x -+<-+()()2221210x a x a a -++++>()()22214210a a a ∆=+-++<34a >-()22160a x a a ---+>1a =1160--+>1a ≠21060a a a ->⎧⎨--+>⎩12a <<a [)1,2(3)已知,,,由题意得,不等式组有解, 由,又, (1)当,即时,上式为,对任意桓成立.此时不等式组有解,满足题意; ②当,即时,,或,要使不等式组有解,则,或,解得,则有;③当,即时,,或.要使不等式组有解,则,或,解得,则有;综上所述,的取值范围是()2f x x b =-()41x b g x x +=-()2h x =()()22f x g x <⎧⎪⎨<⎪⎩()22221122b b f x x b x <⇔-<-<⇔-<<+()()()4214242200111x b x x b x b g x x x x +---++<⇔<⇔<⇔>---421b +=14b =-10>()(),11,x ∈-∞+∞ ()()22f xg x <⎧⎪⎨<⎪⎩421b +<14b <-()242g x x b <⇔<+1x >()()22f xg x <⎧⎪⎨<⎪⎩1422b b -<+112b +>67b >-6174b -<<-421b +>14b >-()21g x x <⇔<42x b >+()()22f x g x <⎧⎪⎨<⎪⎩112b -<1422b b +>+4b <144b -<<b 6,47⎛⎫- ⎪⎝⎭。
广西柳州高级高中2024-2025学年高一上学期10月月考试题 数学含答案
柳州高中2024级高一10月月考数学试卷(答案在最后)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共58分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各式中,正确的个数是()①{}{}00,1,2∈;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}(){}0,10,1=.A.1B.2C.3D.42.已知命题1:0,2p x x x∀>+>,则p ⌝为()A.0x ∀>,12x x +≤ B.0x ∀≤,12x x +≤C.0x ∃≤,12x x+≤ D.0x ∃>,12x x+≤3.下列各组函数是同一个函数的是()A.321x x y x +=+与y x= B.y =1y x =-C.2x y x=与y x= D.0y x =与1y =4.定义集合运算:*{}A B xx A x B =∈∉∣且,若集合{}1,3,4,6,7A =,{}2,4,5,8B =,则集合*A B 的真子集个数为()A.13个B.14个C.15个D.16个5.下列命题为真命题的是()A .若0a b >>,则22ac bc > B.若,a b c d >>,则a d b c ->-;C.若0a b <<,则22a ab b << D.若a b >,则11a b a>-;6.若“260x x --<”的一个必要不充分条件是“2x m -<<”,则实数m 的范围是()A.23m -<≤ B.23m -<< C.3m ≥ D.3m >7.某学校为创建高品质特色高中,准备对校园内现有一处墙角进行规划.如图,墙角线OA 和OB 互相垂直,学校欲建一条直线型走廊AB ,其中AB 的两个端点分别在这两墙角线上.若欲建一条长为10米的走廊AB ,当OAB △的面积最大时,OB 长度为()米.A. B. C. D.8.已知x ,y 为正实数,若212+=x y,且223x y m m +>+恒成立,则m 的取值范围是()A.4m <-或1m > B.1m <-或4m > C.41m -<< D.14-<<m 二、多项选择题(本大题共3小题,每小题6分,共18分.在每个小题给出的选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知集合{},,0A a a =-,{},,1B b a b =+,若A B =,则ab 的取值为()A.2- B.1- C.0D.110.下列说法正确的是()A.224(2)a b a b +≥--B.函数2=23y x x --的零点为(),(3,0)1,0-C.“110a b>>”是“a b <”的充分不必要条件D.由||||||(0,,,R)a b c abc a b c a b c++≠∈所确定的实数集合为{3,1,1,3}--11.设正实数,a b 满足1a b +=,则()A.11a b+有最小值4 B.ab 有最大值14C.+ D.1439ab b +≤第二部分(非选择题共92分)三、填空题(本大题共3小题,每小题5分,共15分.请把正确选项填在题中横线上.)12.函数1()5f x x =-的定义域为_____________.13.设a ∈R ,若关于x 的一元二次方程230x ax a -++=的两个实根为1x ,2x ,且12114x x +=-,则a 的值为_____________.14.已知命题“()3,x ∞∃∈-+,23160x ax a --+<”是真命题,则实数a 的取值范围是______.四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步棸.)15.已知不等式2(21)(1)0x a x a a -+++≤的解集为集合A ,集合202x B xx ⎧⎫-=<⎨⎬+⎩⎭.(1)若2a =,求A B ,()A B R ð;(2)若A B =∅ ,求实数a 的取值范围.16.(1)已知函数()()20f x ax bx c a =++≠.若不等式()0f x >的解集为{03}xx <<∣,求关于x 的不等式()2320bx ax c b +-+<的解集.(2)已知23x <,求函数()93132f x x x =++-的最大值.17.已知命题:R p x ∃∈,2210ax x +-=为假命题.(1)求实数a 的取值集合A ;(2)设集合{32}B xm x m =<<+∣,若A B A = ,求实数m 的取值集合.18.国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为214032002y x x =++,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(1)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(2)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种.①每日进行定额财政补贴,金额为2400元;②根据日加工处理量进行财政补贴,金额为30x .请分别计算两种补贴方式下的最大利润,如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么?19.已知函数()222y ax a x =-++,R a ∈,(1)若不等式32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若关于x 的方程2(2)||21ax a x -++=-有四个不同的实根,求实数a 的取值范围.柳州高中2024级高一10月月考数学试卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共58分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】C二、多项选择题(本大题共3小题,每小题6分,共18分.在每个小题给出的选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】BC 【10题答案】【答案】ACD 【11题答案】【答案】ABD第二部分(非选择题共92分)三、填空题(本大题共3小题,每小题5分,共15分.请把正确选项填在题中横线上.)【12题答案】【答案】[3,5)(5,)-+∞ 【13题答案】【答案】125-【14题答案】【答案】4a >四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步棸.)【15题答案】【答案】(1){|23}A B x x =-<≤ ,R {|23}()A B x x =≤≤ ð;(2)3a ≤-或2a ≥.【16题答案】【答案】(1){}|12x x -<<;(2)3-【17题答案】【答案】(1){|1}A a a =<-;(2){|3m m ≤-或1}m ≥.【18题答案】【答案】(1)加工处理量为80吨时,每吨厨余垃圾的平均加工成本最低,此时该企业处理1吨厨余垃圾处于亏损状态;(2)选择第一种补贴方式进行补贴,理由见解析.【19题答案】【答案】(1)40a -<£;(2)答案见解析;(3)04a <<-或4a >+.。
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题(含解析)
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C.D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 3. 使 “”成立的必要不充分条件是()2101x x +≥-A .B. 112x -≤≤112x -≤<C.或 D.或12x ≤-1x ≥12x ≤-1x >4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a 最小值85. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B. ac bc>c c a b <C.D. a c ab c b +>+a b b c a c<--6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612xx a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC .D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A. B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.14.对于任意正实数x 、y成立,则k 的范围为______.≤四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 16. 已知正数满足.,a b 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}【正确答案】A【分析】根据集合的含义以及交集的概念即可得到答案.B 【详解】集合,其表示所有的奇数,{21,Z}B xx n n ==+∈∣则.{1,5}A B = 故选:A.2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C. D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【正确答案】A【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.本小题主要考查全称命题与特称命题的否定,属于基础题.3. 使 “”成立的必要不充分条件是()2101x x +≥-A. B. 112x -≤≤112x -≤<C. 或 D.或12x ≤-1x ≥12x ≤-1x >【正确答案】A【分析】解不等式,求得,根据必要不充分条件的定义即可得出结果.2101x x +≥-112x -≤<【详解】不等式可化为解得2101x x +≥-(1)(21)0,10,x x x -+≤⎧⎨-≠⎩11.2x -≤<则成立,反之不可以.112x -≤<⇒112x -≤≤所以是成立的必要不充分条件.112x -≤≤2101x x +≥-故选:A4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a最小值8【正确答案】C【分析】利用基本不等式及其对勾函数的性质分别判断即可.【详解】对于选项,只有当时,才满足基本不等式的使用条件,则不正确;A 0x >A 对于选项,,By ===+(t t =≥即在上单调递增,则最小值为,(22y t t t =+≥)+∞min y ==则不正确;B 对于选项,,则正确;C ()()22(2)211111x x x x x -=--++=--+≤C 对于选项,当时,,当且仅当D 3a >44333733a a a a +=-++≥=--时,即,等号成立,则不正确.433a a -=-5a =D 故选.C 5. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B.ac bc>c c a b <C.D. a c ab c b +>+a bb c a c<--【正确答案】C【分析】对于AB :根据不等式性质分析判断;对于CD :利用作差法分析判断.【详解】对于选项A :因为,则,所以,故A 错()0,,a b c a b c >>->∈R 0c <ac bc <误;对于选项B :因为,且,()0,,a b c a b c >>->∈R 0c <可得,所以,故B 错误;11a b <c c a b >对于选项C :因为,()()()b a ca c a ab bc ab ac b c b b c b b c b-++---==+++且,,则,()0,,a b c a b c >>->∈R 0c <0,0b a b c -<+>可得,所以,故C 正确;()()0b a ca c abc b b c b-+-=>++a c ab c b +>+对于选项D :因为,()()()()()()22a b a b c a b a ac b bc b c a c b c a c b c a c -+---+-==------且,,则,()0,,a b c a b c >>->∈R 0c <0,0,0,0a b a b c b c a c ->+->->->可得,即,故D 错误;()()()()0a b a b c a bb c a c b c a c -+--=>----a bb c a c >--故选:C.6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>【正确答案】D【分析】根据题意,将所给等式变形,得到,推导出,然后利用作差法2(2)0p n m -=->p n >比较大小,结合二次函数的性质证出,从而得出正确结论.n m >【详解】由,得,210m n ++=211m n =--≤-因为,244m n m p ++=+移项得,244m m p n -+=-所以,2(2)0p n m -=->可得,p n >由,得,210m n ++=21m n =--可得,()2221311024n m n n n n n ⎛⎫-=---=++=++> ⎪⎝⎭可得.n m >综上所述,不等式成立,p n m >>故选:D.7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【正确答案】C【分析】利用集合相等的定义得到关于的方程组,推得充分性成立;再简单证得必要性,a b 也成立即可得解.【详解】因为,{}{}22,1,,1A a a B b b =+=+当时,则有,或,A B =2211a ba b =⎧⎨+=+⎩2211a b a b ⎧=+⎨+=⎩若,显然解得;2211a ba b =⎧⎨+=+⎩a b =若,则,整理得,2211a b a b⎧=+⎨+=⎩()2211b b ++=()()22012b b b b -+++=因为,,22131024b b b ⎛⎫+=-+ ⎝⎭->⎪22172024b b b ⎛⎫+=++ ⎝⎭+>⎪所以无解;()()22012bb b b -+++=综上,,即充分性成立;a b =当时,显然,即必要性成立;a b =A B =所以“”是“”的充分必要条件.A B =a b =故选:C.8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612x x a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232【正确答案】B【分析】先利用基本不等式证得(此公式也可背诵下来),从而由题()()2222m n m n +≥+设条件证得,结合题意得到,利用二次不等式的解法解之即可得2211612a b +≥21212xx ≥+-到正数的最小值.x 【详解】因为()()()22222222222m n m n m n m n mn +-+=+-++,当且仅当时,等号成立,()22220m n mn m n =+-=-≥m n =所以,()()2222m n m n +≥+因为为正实数,所以由得,即,,a b ()410a b a +-=4a b ab +=411b a +=所以,222221161441221a b a b b a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+≥+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦当且仅当,且,即时,等号成立,41b a =4a b ab +=2,8a b ==所以,即,2211621a b ⎛⎫+≥ ⎪⎝⎭2211612a b +≥因为对满足的所有正实数a ,b 都成立,22211612x x a b +≥+-()410a b a +-=所以,即,整理得,2n 2mi 211612x x a b ⎛⎫ ⎪⎝⎭+≥+-21212x x ≥+-2021x x --≥解得或,由为正数得,1x ≥12x ≤-x 1x ≥所以正数的最小值为.x 1故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U ,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC.D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð【正确答案】AC【分析】由已知韦恩图分析出了阴影部分所表示的集合的元素满足的条件,进而根据集合运算的定义可得答案.【详解】根据图中阴影可知,符合题意,()()U A B A B ð又,∴也符合题意.()()()U U U A B A B ⋃=⋂ððð()A B ()()U U A B ⎡⎤⎣⎦ ðð故选:AC10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A .B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >【正确答案】ACD【分析】根据二次方程根的大小分类讨论,即可求解二次不等式的解集.【详解】对于一元二次不等式,则;()()10a x a x -+>0a ≠当时,函数开口向上,与轴的交点为,0a >()()1y a x a x =-+x ,1a -故不等式的解集为,故D 正确;()(),1,x a ∈-∞-+∞ 当时,函数开口向下,若,不等式解集为,故A 正确;0a <()()1y a x a x =-+1a =-∅若,不等式的解集为,10a -<<()1,a -若,不等式的解集为,故C 正确.1a <-(),1a -故选:ACD11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232【正确答案】BC【分析】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出的取值范围,最后都表示成的形式即可.a 32a b c ++a 【详解】因为不等式的解集为,()2020ax bx c a ≤++≤>{x |−1≤x ≤3}所以二次函数的对称轴为直线,()2f x ax bx c=++1x =且需满足,即,解得,()()()123210f f f ⎧-=⎪=⎨⎪≥⎩29320a b c a b c a b c -+=⎧⎪++=⎨⎪++≥⎩232b ac a =-⎧⎨=-+⎩所以,所以,123202a b c a a a a ++=--+≥⇒≤10,2a ⎛⎤∈ ⎥⎝⎦所以,故的值可以是和,332326445,42a b c a a a a ⎡⎫++=--+=-∈⎪⎢⎣⎭32a b c ++322故选:BC关键点睛:一元二次不等式的解决关键是转化为二次函数问题,求出对称轴和端点的值,继而用同一个变量来表示求解.第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.【正确答案】[)1,+∞【分析】由为的真子集,列出关于的不等式,求出不等式的解集即可.B A a 【详解】因为B A ,所以.1a ≥故[)1,+∞13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.【正确答案】1,2⎛⎤-∞⎥⎝⎦【分析】对和分类讨论求解,结合一元二次方程的根与系数的关系即可求解.0m =0m ≠【详解】当时,方程为,有一个负根,0m =220x +=当时,为一元二次方程,0m ≠2220mx x ++=关于的方程至少有一个负根,设根为,,x 2220mx x ++=1x 2x 当时,即时,方程为,解得,满足题意,480m ∆=-=12m =212202x x ++=2x =-当,即时,且时,480m ∆=->12m <0m ≠若有一个负根,则,解得,1220=<x x m 0m <若有两个负根,则,解得,12122020x x m x x m ⎧+=-<⎪⎪⎨⎪=>⎪⎩102m <<综上所述,则实数的取值范围是,,m (-∞1]2故,.(-∞1214.对于任意正实数x 、y 成立,则k 的范围为______.≤【正确答案】⎫+∞⎪⎪⎭≤2k ≥最大值即可.【详解】易知,,k>k≤.2k ∴≥令,分式上下同除y ,0t =>则,则即可,222221141121221t t t k t t +++⎛⎫≥=+ ⎪++⎝⎭22max 1411221t k t +⎛⎫≥+ ⎪+⎝⎭令,则.411u t =+>14u t -=可转化为:,24121t t ++()28829292u s u u u u u ==≤-++-于是,.()21411311222122t t +⎛⎫+≤+= ⎪+⎝⎭∴,即时,不等式恒成立(当时等号成立).232k ≥k ≥40x y =>故⎫+∞⎪⎪⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 【正确答案】(1)[)1,-+∞(2)(],2-∞-【分析】(1)分和两种情况讨论求解即可;A =∅A ≠∅(2)由题意得,从而可求出的取值范围.351a a -+≥⎧⎨≤-⎩a 【小问1详解】①当时,,∴,∴.A =∅AB =∅ 3a a >-+32a >②当时,要使,必须满足,解得.A ≠∅A B =∅ 32351a a a ⎧≤⎪⎪-+≤⎨⎪≥-⎪⎩312a -≤≤综上所述,的取值范围是.a [)1,-+∞【小问2详解】∵,,或,A B =R {}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >∴,解得,351a a -+≥⎧⎨≤-⎩2a ≤-故所求的取值范围为.a (],2-∞-16. 已知正数满足.,ab 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--【正确答案】(1)8 (2)3+(3)18【分析】(1)根据题意直接利用基本不等式即可得最值;(2)由题意可得,利用乘“1”法结合基本不等式运算求解;211a b +=(3)由题意可得,化简整理结合基本不等式运算求解.()()212a b --=【小问1详解】因为,且,0,0a b >>2a b ab +=则.2ab a b =+≥8ab ≥≥当且仅当,即时等号成立,24a b ==4,2a b ==所以的最小值为8.ab 【小问2详解】因为,且,则,0,0a b >>2a bab +=211a b +=可得,()2122133b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当,即,即时等号成立,2b aa b =a=21a b =+=+所以的最小值为.a b +3+【小问3详解】因为,且,所以,0,0a b >>2a b ab +=()()212a b --=可得,()()2248182848101018212121a b a b a b a b a b -+-++=+=++≥+=------当且仅当,即时等号成立,4821a b =--3a b ==所以的最小值为18.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m 【正确答案】(1)[]4,0-(2)4≥m 【分析】(1)依题意可得是真命题,分和两种情况讨论;()R,0x f x ∀∈≤0m =0m ≠(2)依题意参变分离可得存在使得成立,则只需,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭,利用基本不等式求出即可得解.()4,0x ∈-min 4x x ⎛⎫-- ⎪⎝⎭【小问1详解】若命题:是假命题,则是真命题,()R,0x f x ∃∈>()R,0x f x ∀∈≤即在上恒成立,210mxmx -≤-R 当时,,符合题意;0m =10-<当时,需满足,解得;0m ≠20Δ40m m m <⎧⎨=+≤⎩40m -≤<综上所述,的取值范围为.m []4,0-【小问2详解】若存在成立,()()()24,0,13x f x m x ∈-≥++即存在使得成立,故只需,,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭()4,0x ∈-因为,所以,则,()4,0x ∈-()0,4x -∈()444x x x x--=-+≥=-当且仅当,即时取等号,4x x -=-2x =-所以,所以.min44x x ⎛⎫- ⎪⎝⎭=-4≥m 18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =【正确答案】(1)采用方案二;理由见解析 (2)24【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到,利用换元法和基本不等式,即可214((4S S x a a -=-⋅+-求解.【小问1详解】解:方案一的总费用为(元);1S ax by =+方案二的总费用为(元),2S bx ay =+由,21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--因为,可得,所以,4,4y x b a >>>>0,0y x a b ->-<()()0y x a b --<即,所以,所以采用方案二,花费更少.210S S -<21S S <【小问2详解】解:由(1)可知,()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+ ⎪-⎝⎭令,t =24x t =+所以,当时,即时,等号成立,2224(1)33x t t t -=-+=-+≥1t =5x =又因为,可得,4a >40a ->所以,44(4)44844a a a a +=-++≥=--当且仅当时,即时,等号成立,444a a -=-6,14a b ==所以差的最小值为,当且仅当时,等号成立,S 2483=⨯5,8,6,14x y a b ====所以两种方案花费的差值最小为24元.S 19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈【正确答案】(1)集合不具有“包容”性,集合具有“包容”性{}1,1,2,3-{}1,0,1,2-(2)1(3),,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭【分析】(1)根据“包容”性的定义,逐一判断即可;(2)根据“包容”性的定义,能得到,分类讨论,得出a 和b 的值,即可得出结{}01,,a b ∈果;(3)由集合C 的子集有64个,推出集合C 中共有6个元素,且,再由条件,推0C ∈1C ∈出集合中有正数也有负数,将这几个元素设出来,再通过对正数负数个数的讨论,即可求出结果.【小问1详解】(Ⅰ)集合中的,,{}1,1,2,3-{}3361,1,2,3+=∉-{}3301,1,2,3-=∉-所以集合不具有“包容”性.{}1,1,2,3-集合中的任何两个相同或不同的元素,相加或相减,得到的两数中至少有一个属{}1,0,1,2-于集合,所以集合具有“包容”性.{}1,0,1,2-{}1,0,1,2-【小问2详解】(Ⅱ)已知集合具有“包容”性,记,则,{}1,,B a b ={}max 1,,m a b =1m ≥易得,从而必有,{}21,,m a b ∉{}01,,a b ∈不妨令,则,且,0a ={}1,0,B b =0b ≠1b ≠则,{}{}1,11,0,b b b +-⋂≠∅且,{}{}1,11,0,b b b +-⋂≠∅①当时,若,得,此时具有包容性;{}11,0,b b +∈10b +=1b =-{}1,0,1B =-若,得,舍去;若,无解;11b +=0b =1b b +=②当时,则,由且,可知b 无解,{}11,0,b b +∉{}{}1,11,0,b b b --⊆0b ≠1b ≠故.{}1,0,1B =-综上,.221a b +=【小问3详解】(Ⅲ)因为集合C 的子集有64个,所以集合C 中共有6个元素,且,又,且C 0C ∈1C ∈中既有正数也有负数,不妨设,{}1112,,,,0,,,,k k l C b b b a a a ---- 其中,,,5k l +=10l a a <<< 10k b b <<<L 根据题意,1111{,,}{,,,}l l l k k a a a a b b b ----⊆---L L且,1112112{,,,}{,,,}k k l b b b b b b a a a ----⊆L L 从而或.()(),2,3k l =()3,2①当时,,()(),3,2k l ={}{}313212,,b b b b a a --=并且由,得,由,得,313212{,}{,}b b b b b b -+-+=--312b b b =+2112{,}a a a a -∈212a a =由上可得,并且,2131322111(,)(,)(,)(2,)b b b b b b a a a a =--==31213b b b a =+=综上可知;{}111113,2,,0,,2C a a a a a =---②当时,同理可得.()(),2,3k l =11111{2,,0,,2,3}C a a a a a =--综上,C 中有6个元素,且时,符合条件的集合C 有5个,1C ∈分别是,,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭关键点点睛:本题是新定义题型,对于此类问题,要先弄清楚新定义的性质,按照其要求,严格“照章办事”,逐条分析验证。
2024-2025学年高一上第一次月考数学试卷附答案解析(9月份)
2024-2025学年高一上第一次月考数学试卷(9月份)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x∈N|1<x<6},B={x|4﹣x>0},则A∩B=()A.{2,3,4}B.{2,3}C.{2}D.{3}2.(5分)下列说法正确的是()A.∅∈{0}B.0⊆N C.D.{﹣1}⊆Z3.(5分)命题“∀x∈(0,1),x3<x2”的否定是()A.∀x∈(0,1),x3>x2B.∀x∉(0,1),x3≥x2C.∃x0∈(0,1),D.∃x0∉(0,1),4.(5分)“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若集合A={x|2mx﹣3>0,m∈R},其中2∈A且1∉A,则实数m的取值范围是()A.B.C.D.6.(5分)满足集合{1,2}⫋M⊆{1,2,3,4,5}的集合M的个数是()A.6B.7C.8D.157.(5分)设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a<1}B.{a|a≤1}C.{a|a>2}D.{a|a≥2}8.(5分)已知集合A={1,2},B={0,2},若定义集合运算:A*B={z|z=xy,x∈A,y∈B},则集合A*B 的所有元素之和为()A.6B.3C.2D.0二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,有选错的得0分,部分选对的得部分分。
(多选)9.(6分)已知命题p:x2﹣4x+3<0,那么命题p成立的一个充分不必要条件是()A.x≤1B.1<x<2C.x≥3D.2<x<3(多选)10.(6分)集合A={x|ax2﹣x+a=0}只有一个元素,则实数a的取值可以是()A.0B.C.1D.(多选)11.(6分)设S是实数集R的一个非空子集,如果对于任意的a,b∈S(a与b可以相等,也可以不相等),都有a+b∈S且a﹣b∈S,则称S是“和谐集”,则下列命题中为真命题的是()A.存在一个集合S,它既是“和谐集”,又是有限集B.集合{x|x=3k,k∈Z}是“和谐集”C.若S1,S2都是“和谐集”,则S1∩S2≠∅D.对任意两个不同的“和谐集”S1,S2,总有S1∪S2=R三、填空题:本题共3小题,每小题5分,共15分。
2024-2025学年福州市一中高一数学上学期10月考试卷及答案解析
2024-2025学年第一学期福州第一中学第一次月考高一数学(完卷时间:120分钟;满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.1. 已知全集(](]0,4,2,4U U A B A C B =⋃=⋂=,则集合B =( )A. (],2∞- B. (),2∞- C. (]0,2 D. ()0,2【答案】C【解析】【分析】集合运算可得()=I U U B C A C B ,即可求出结果【详解】(0,4]A B = ,(2,4]=I U A C B 所以()(0,2]==I U U B C A C B 故选:C2. 某城新冠疫情封城前,某商品的市场需求量y 1(万件),市场供应量y 2(万件)与市场价格x (百元/件)分别近似地满足下列关系:150y x =-+,2210y x =-,当12y y =时的需求量称为平衡需求量,解封后,政府为尽快恢复经济,刺激消费,若要使平衡需求量增加6万件,政府对每件商品应给予消费者发放的消费券补贴金额是( )A. 6百元B. 8百元C. 9百元D. 18百元【答案】C【解析】【分析】求出封城前平衡需求量,可计算出解封后的需求量,利用需求量计算价格差距即为补贴金额.【详解】封城前平衡需求量时的市场价格x 为5021020x x x -+=-⇒=,平衡需求量为30,平衡价格为20,解封后若要使平衡需求量增加6万件,则11365014x x =-+⇒=,223621023x x =-⇒=,则补贴金额为23149-=.故选:C.3. 设[]x 表示不超过x 的最大整数,对任意实数x ,下面式子正确的是( )A. []x = |x|B. []xC. []x >-xD. []x > 1x -【答案】D 的【解析】【详解】分析:[]x 表示不超过x 最大整数,表示向下取整,带特殊值逐一排除.详解:设 1.5x =,[]1x =, 1.5x =1.5=,10.5x -=,排除A 、B ,设 1.5x =-,[]2x =-, 1.5x -=,排除C .故选D点睛:比较大小,采用特殊值法是常见方法之一.4. 已知函数2943,0()2log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数(())y f f x =的零点所在区间为( )A. (1,0)- B. 73,2⎛⎫ ⎪⎝⎭ C. 7,42⎛⎫ ⎪⎝⎭ D. (4,5)【答案】B【解析】【分析】当0x …时,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,根据()f x 为增函数,且(3)0f =可得函数(())y f f x =的零点为3()2log 12x g x x =+-的零点,根据零点存在性定理可得结果.【详解】当0x …时,()430x f x =+>,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,293()2log 92log 9x x f x x x =+-=+-为增函数,且(3)0f =.令(())0(3)f f x f ==,得3()2log 93x f x x =+-=,即32log 120x x +-=,令3()2log 12x g x x =+-,则函数(())y f f x =的零点就是3()2log 12x g x x =+-的零点,因为()3332log 31230g =+-=-<,72377()2log 1222g =+-37log 1202=+->,所以函数(())y f f x =的零点所在区间为73,2⎛⎫ ⎪⎝⎭.故选:B.【点睛】本题考查了分段函数的零点问题,考查了根据零点存在性定理判断零点所在的区间,考查了根据的解析式判断函数的单调性,属于中档题.5. 设函数()2,11,1x a x f x x x -⎧≤⎪=⎨+>⎪⎩,若()1f 是f(x)的最小值,则实数a 的取值范围为( )A [)1,2- B. []1,0- C. []1,2 D. [)1,+∞【答案】C【解析】【分析】由1x >,求得()f x 的范围;再求得||()2x a f x -=的单调性,讨论1a <,1a …时函数()f x 在1x …的最小值,即可得到所求范围.【详解】解:函数2,1()1,1x a x f x x x -⎧⎪=⎨+>⎪⎩…,若1x >,可得()12f x x =+>,由()1f 是()f x 的最小值,由于||()2x a f x -=可得在x a >单调递增,在x a <单调递减,若1a <,1x …,则()f x 在x a =处取得最小值,不符题意;若1a …,1x …,则()f x 在1x =处取得最小值,且122a -…,解得12a ……,综上可得a 的范围是[1,2].故选:C .【点睛】本题考查分段函数的最值的求法,注意运用分类讨论思想方法,以及指数函数的单调性,考查运算能力,属于中档题.6. 已知函数()f x 的定义域为R ,且()()()()0f x y f x y f x f y ++--=,()11f -=,则( )A. ()00f = B. ()f x 为奇函数C. ()81f =- D. ()f x 的周期为3【答案】C【解析】【分析】令 0x y ==,则得(0)2f =,再令0x =即可得到奇偶性,再令1y =-则得到其周期性,最后根.据其周期性和奇偶性则得到()8f 的值.【详解】令 0x y ==, 得()()22000f f -=得 (0)0f = 或 (0)2f =,当 (0)0f = 时,令0y =得 ()0f x = 不合题意, 故 (0)2f =, 所以 A 错误 ;令 0x = 得 ()()f y f y =-, 且()f x 的定义域为R ,故 ()f x 为偶函数, 所以B 错误 ;令 1y =-, 得 (1)(1)()f x f x f x -++=, 所以 ()(2)(1)f x f x f x ++=+,所以 (2)(1)f x f x +=--, 则(3)()f x f x +=-,则()(6)(3)f x f x f x +=-+=,所以 ()f x 的周期为 6 , 所以 D 错误 ;令 1x y ==, 得 2(2)(0)(1)f f f +=, 因为()()111f f -==所以 (2)1f =-,所以 ()(8)21f f ==-, 故C 正确.故选:C 【点睛】关键点点睛:本题的关键是利用赋值法得到其奇偶性和周期性,并依此性质求出函数值即可.7. 函数()(),f x g x 的定义域均为R ,且()()()()4488f x g x g x f x +-=--=,,()g x 关于4x =对称,()48g =,则()1812m f m =∑的值为( )A. 24- B. 32- C. 34- D. 40-【答案】C【解析】【分析】利用已知、方程、函数的对称性、周期性进行计算求解.【详解】因为()()44f xg x +-=①, ()()88g x f x --=②,对于②式有:()()88g x f x +-=③,由①+③有:()()8412g x g x ++-=,即()()1212g x g x +-=④,又()g x 关于4x =对称,所以()()8g x g x =-⑤,由④⑤有:()()81212g x g x -+-=,即()()81212g x g x +++=,()()4812g x g x +++=,两式相减得:()()1240g x g x +-+=,即()()124g x g x +=+,即()()8g x g x +=,因为函数()g x 的定义域为R ,所以()g x 的周期为8,又()48g =,所以()()()412208g g g ==== ,由④式()()1212g x g x +-=有:()66g =,.所以()()()614226g g g ==== ,由()48g =,()()1212g x g x +-=有:()84g =,所以()()()816244g g g ==== ,由⑤式()()8g x g x =-有:()()266g g ==,又()()8g x g x +=,所以()()1026g g ==,由②式()()88g x f x --=有:()()88f x g x =+-,所以()()()()()()()18122436101244818m f m f f f g g g ==+++=+++-⨯∑ ()686446881834=+++⨯++-⨯=-,故A ,B ,D 错误.故选:C.8. 已知函数()()()lg 2240f x x a x a a =+--+>,若有且仅有两个整数1x 、2x 使得()10f x >,()20f x >,则a 的取值范围是( )A. (]0,2lg 3- B. (]2lg 3,2lg 2--C. (]2lg 2,2- D. (]2lg 3,2-【答案】A【解析】【分析】由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,然后利用数形结合思想得出()20lg 33224a a a ->⎧⎨≤-+-⎩以及0a >,由此可得出实数a 的取值范围.【详解】由()()lg 2240f x x a x a =+--+>,得()lg 224x a x a >-+-.由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点.如下图所示:由图象可知,由于()()()22422y a x a a x =-+-=--,该直线过定点()2,0.要使得函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,则有()20lg 33224a a a ->⎧⎨≤-+-⎩,即22lg 3a a <⎧⎨-≥⎩,解得2lg 3a ≤-,又0a >,所以,02lg 3a <≤-,因此,实数a 的取值范围是(]0,2lg 3-.故选A.【点睛】本题考查函数不等式的求解,解题的关键利用数形结合思想找到一些关键点来得出不等关系,考查数形结合思想的应用,属于难题.二、多项选择题:本题共3小题,每小题6分,共18分.9. 下列命题正确的是( )A. “1a >”是“21a >”的充分不必要条件B. “M N >”是“lgM lgN >”的必要不充分条件C. 命题“2,10x R x ∀∈+<”的否定是“x R ∃∈,使得210x +<”D. 设函数()f x 的导数为()f x ',则“0()0f x '=”是“()f x 在0x x =处取得极值”的充要条件【答案】AB【解析】【分析】根据定义法判断是否为充分、必要条件,由全称命题的否定是∀→∃,否定结论,即可知正确的选项.【详解】A 选项中,211a a >⇒>,但211a a >⇒>或1a <-,故A 正确;B 选项中,当0M N >>时有lgM lgN >,而lgM lgN >必有0M N >>,故B 正确;C 选项中,否定命题为“x R ∃∈,使得210x +≥”,故C 错误;D 选项中,0()0f x '=不一定有()f x 在0x x =处取得极值,而()f x 在0x x =处取得极值则0()0f x '=,故D 错误;故选:AB【点睛】本题考查了充分、必要条件的判断以及含特称量词命题的否定,属于简单题.10. 若函数()f x 的定义域为R ,且()()2()()f x y f x y f x f y ++-=,(2)1f =-,则( )A. (0)0f =B. ()f x 为偶函数C. ()f x 的图象关于点(1)0,对称 D. 301()1i f i ==-∑【答案】BCD【解析】【分析】对于A ,令2,0x y ==,可得(0)1f =;对于B ,令0,x y x ==,可得()()f x f x =-,即可判断;对于C ,令1x y ==得f (1)=0,再令1,x y x ==即可判断;对于D ,根据条件可得()()2f x f x =--,继而()()2f x f x =-+,进一步分析可得函数周期为4,分析求值即可.【详解】对于A ,令2,0x y ==,则()()()22220f f f =⋅,因为(2)1f =-,所以()220f -=-,则(0)1f =,故A 错误;对于B ,令0,x y x ==,则()()()2(0)()2f x f x f f x f x +-==,则()()f x f x =-,故B 正确;对于C ,令1x y ==得,()()()220210f f f +==,所以f (1)=0,令1,x y x ==得,(1)(1)2(1)()0f x f x f f x ++-==,则()f x 的图象关于点(1)0,对称,故C 正确;对于D ,由(1)(1)0f x f x ++-=得()()2f x f x =--,又()()f x f x =-,所以()()2f x f x -=--,则()()2f x f x =-+,()()24f x f x +=-+,所以()()4f x f x =+,则函数()f x 的周期为4,又f (1)=0,(2)1f =-,则()()()3310f f f =-==,()()401f f ==,则f (1)+f (2)+f (3)+f (4)=0,所以()()301()12701i f i f f ==++⨯=-∑,故D 正确,故选:BCD.11. 已知函数()y f x =是R 上的奇函数,对于任意x R ∈,都有(4)()(2)f x f x f +=+成立,当[)0,2x ∈时,()21=-x f x ,给出下列结论,其中正确的是( )A. (2)0f =B. 点(4,0)是函数()y f x =的图象的一个对称中心C. 函数()y f x =在[6,2]--上单调递增D. 函数()y f x =在[6,6]-上有3个零点【答案】AB【解析】【分析】由(4)()(2)f x f x f +=+,赋值2x =-,可得(4)()f x f x +=,故A 正确;进而可得(4,0)是对称中心,故B 正确;作出函数图象,可得CD 不正确.【详解】在(4)()(2)f x f x f +=+中,令2x =-,得(2)0f -=,又函数()y f x =是R 上的奇函数,所以(2)(2)0f f =-=,(4)()f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以(4,0)也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[6,2]--上不具单调性,故C 不正确;函数()y f x =在[6,6]-上有7个零点,故D 不正确.故选:AB【点睛】本题考查了函数的性质,考查了逻辑推理能力,属于基础题目.三、填空题:本大题共3小题,每小题5分,共15分12. 设函数()()x x f x e ae a R -=+∈,若()f x 为奇函数,则a =______.【答案】-1【解析】【分析】利用函数为奇函数,由奇函数的定义即可求解.【详解】若函数()x xf x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-.故答案为:-1【点睛】本题主要考查函数奇偶性的应用,需掌握奇偶性的定义,属于基础题.13. 422log 30.532314964log 3log 2225627--⎛⎫⎛⎫⎛⎫⋅-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=______【答案】1-【解析】【分析】利用指数幂的运算性质和对数的运算性质计算即可求解.【详解】原式=4123232log 3494122563-⨯⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=42log 379121616-++131=-+1=-.故答案为:1-.14. 设m 为实数,若{}22250()|{30()|250x y x y x x y x y mx y -+≥⎧⎫⎪⎪-≥⊆+≤⎨⎬⎪⎪+≥⎩⎭,,,则m 的取值范围是 .【答案】403m ≤≤【解析】【详解】如图可得440033m m -≤-≤∴≤≤四、解答题:本题共5小题,共77分.15. 阅读下面题目及其解答过程.已知函数23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)求f (-2)与f (2)的值;(2)求f(x)的最大值.解:(1)因为-2<0,所以f (-2)= ① .因为2>0,所以f (2)= ② .(2)因为x≤0时,有f(x)=x +3≤3,而且f (0)=3,所以f(x)在(,0]-∞上的最大值为 ③ .又因为x >0时,有22()2(1)11f x x x x =-+=--+…,而且 ④ ,所以f(x)在(0,+∞)上最大值为1.综上,f(x)的最大值为 ⑤ .以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置(只需填写“A”或“B”).空格序号选项①A .(-2)+3=1 B .2(2)2(2)8--+⨯-=-②A.2+3=5 B .22220-+⨯=③A.3B.0④A .f (1)=1 B .f (1)=0的⑤ A.1 B.3【答案】(1)①A ; ②B ;(2)③A ; ④A ; ⑤B .【解析】【分析】依题意按照步骤写出完整的解答步骤,即可得解;【详解】解:因为23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)因为20-<,所以()2231f -=-+=,因为20>,所以()222220f =-+⨯=(2)因为0x ≤时,有()33f x x =+≤,而且()03f =,所以()f x 在(,0]-∞上的最大值为3.又因为0x >时,有22()2(1)11f x x x x =-+=--+…,而且()11f =,所以()f x 在(0,+∞)上的最大值为1.综上,()f x 的最大值为3.16. 如图,某小区要在一个直角边长为30m 的等腰直角三角形空地上修建一个矩形花园.记空地为ABC V ,花园为矩形DEFG .根据规划需要,花园的顶点F 在三角形的斜边BC 上,边DG 在三角形的直角边AC 上,顶点G 到点C 的距离是顶点D 到点A 的距离的2倍.(1)设花园的面积为S (单位:2m ),AD 的长为x (单位:m ),写出S 关于x 的函数解析式;(2)当AD 的长为多少时,花园的面积最大?并求出这个最大面积.【答案】(1)()()2303,010S x x x =-<<(2)当AD 的长为5m 时,花园的面积最大,最大面积为1502m .【解析】【分析】(1)根据矩形面积即可求解,(2)根据基本不等式即可求解.【小问1详解】,AD x =则2CG GF x ==,302303GD x x x =--=-,所以()()2303,010S GD GF x x x =⋅=-<<【小问2详解】()()()233032223033303150332x x S x x x x +-⎡⎤=-=⋅-≤=⎢⎥⎣⎦,当且仅当3303x x =-,即5x =时等号成立,故当AD 的长为5m 时,花园的面积最大,最大面积为1502m .17. 已知定义在R 上的奇函数f (x )满足:0x ≥时,21()21x x f x -=+.(1)求()f x 的表达式;(2)若关于x 的不等式()2(23)10f ax f ax ++->恒成立,求a 的取值范围.【答案】(1)21()21x x f x -=+ (2)(]4,0-【解析】【分析】(1)根据函数的奇偶性求得当0x <时的解析式,即可得到结果;(2)根据定义证明函数()f x 在R 上单调递增,然后再结合()f x 是定义在R 上的奇函数,化简不等式,求解即可得到结果.【小问1详解】设0x <,则0x ->,因为0x ≥时,21()21x x f x -=+,所以()21122112x xx xf x -----==++又因为()f x 是定义在R 上的奇函数,即()()12211221x x x x f x f x --=--=-=++所以当0x <时,21()21x x f x -=+综上,()f x 的表达式为21()21x x f x -=+【小问2详解】由(1)可知,212()12121x x x f x -==-++,设在R 上任取两个自变量12,x x ,令12x x <则()()121222112121⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭x x f x f x ()()()1221212222221212121x x x x x x -=-=++++因为12x x <,则12220x x -<,所以()()()()12120f x f x f x f x -<⇒<所以函数()f x 在R 上单调递增.即()()22(23)10(23)1f ax f ax f ax f ax ++->⇒+>--,由()f x 是定义在R 上的奇函数,可得()()2211f ax f ax ---=即()21(23)f ax f ax >-+,由函数()f x 在R 上单调递增,可得22231240ax ax ax ax +>-⇒--<恒成立,当0a =时,即40-<,满足;当0a ≠时,即20Δ4160a a a <⎧⎨=+<⎩,解得40a -<<综上,a 的取值范围为(]4,0-18. 已知0,a b a c d >≥≥≥,且ab cd ≥.(1)请给出,,,a b c d 的一组值,使得2()a b c d ++≥成立;(2)证明不等式a b c d ++≥恒成立.【答案】(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明见解析【解析】【分析】(1)找到一组符合条件的值即可;(2)由a c d ≥≥可得()()0a c a d --≥,整理可得2()a cd c d a ++≥,两边同除a 可得cd a c d a ++≥,再由ab cd ≥可得cd b a ≥,两边同时加a 可得cd a b a a+≥+,即可得证.【详解】解析:(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明:由题意可知,0a ≠,因为a c d ≥≥,所以()()0a c a d --≥.所以2()0a c d a cd -++≥,即2()a cd c d a ++≥.因为0a b >≥,所以cd a c d a++≥,因为ab cd ≥,所以cd b a≥,所以cd a b a c d a +++≥≥.【点睛】考查不等式的证明,考查不等式的性质的应用.19. 对于非负整数集合S (非空),若对任意,x y S ∈,或者x y S +∈,或者x y S -∈,则称S 为一个好集合.以下记S 为S 的元素个数.(1)给出所有的元素均小于3的好集合.(给出结论即可)(2)求出所有满足4S =的好集合.(同时说明理由)(3)若好集合S 满足2019S =,求证:S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【答案】(1){0},{0,1},{0,2},{0,1,2}.(2){0,,,}b c b c +;证明见解析.(3)证明见解析.【解析】【分析】(1)根据好集合的定义列举即可得到结果;(2)设{},,,S a b c d =,其中a b c d <<<,由0S ∈知0a =;由0d c S <-∈可知d c c -=或d c b -=,分别讨论两种情况可的结果;(3)记1009n =,则21S n =+,设{}1220,,,,n S x x x =⋅⋅⋅,由归纳推理可求得()1i x im i n =≤≤,从而得到22n M x nm ==,从而得到S ,可知存在元素m 满足题意.【详解】(1){}0,{}0,1,{}0,2,{}0,1,2.(2)设{},,,S a b c d =,其中a b c d <<<,则由题意:d d S +∉,故0S ∈,即0a =,考虑,c d ,可知:0d c S <-∈,d c c ∴-=或d c b -=,若d c c -=,则考虑,b c ,2c b c c d <+<= ,c b S ∴-∈,则c b b -=,{},,2,4S a b b b ∴=,但此时3b ,5b S ∉,不满足题意;若d c b -=,此时{}0,,,S b c b c =+,满足题意,{0,,,}S b c b c ∴=+,其中,b c 为相异正整数.(3)记1009n =,则21S n =+,首先,0S ∈,设{}1220,,,,n S x x x =⋅⋅⋅,其中1220n x m x x M <=<<⋅⋅⋅<=,分别考虑M 和其他任一元素i x ,由题意可得:i M x -也在S 中,而212210,n n M x M x M x M --<-<-<⋅⋅⋅<-<,()21i n i M x x i n -∴-=≤≤,2n M x ∴=,对于1i j n ≤<≤,考虑2n i x -,2n j x -,其和大于M ,故其差22n i n j j i x x x x S ---=-∈,特别的,21x x S -∈,2122x x m ∴==,由31x x S -∈,且1313x x x x <-<,3213x x x m ∴=+=,以此类推:()1i x im i n =≤≤,22n M x nm ∴==,此时(){}0,,2,,,1,,2S n m nm n m nm =⋅⋅⋅+⋅⋅⋅,故S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.。
2024-2025学年天津市高一数学上学期9月考试卷附答案解析
2024-2025学年天津市高一数学上学期9月考试卷第I 卷(选择题)一、单选题1.已知集合2{|2}A x x =<,{|1}B x y x =+,则A B = A .[0,2)B .2)C .[1,2)-D .[2)-2.命题“x ∃∈R ,210x kx --≥”的否定是()A .x ∃∈R ,210x kx --<B .x ∃∈R ,210x kx --≤C .x ∀∈R ,210x kx --≥D .x ∀∈R ,210x kx --<3.已知{|53}U x x =-≤<,{|23}A x x =-≤<,则图中阴影表示的集合是()A .{|52}x x -≤≤-B .{|5x x ≤-或3}x ≥C .{|52}x x -≤<-D .{|2}x x ≤-4.集合{}1,2,3,4,5A =,{}2,xB y y x ==∈N ,则 R A B ⋂ð中元素个数为().A .1B .2C .3D .45.已知非空集合M 满足:对任意x M ∈,总有2x M ∉x M .若{0,1,2,3,4,5}M ⊆,则满足条件的M 的个数是()A .11B .12C .15D .166.集合{}|52,Z M x x k k ==-∈,{}|53,Z P x x n n ==+∈,{}|103,Z S x x m m ==+∈的关系是()A .S P M ⊆⊆B .S P M =⊆C .S P M ⊆=D .P M S=⊆7.若集合{}21,9,A a =,{}9,3B a =,则满足A B B = 的实数a 的个数为()A .1B .2C .3D .48.已知,0x y >,且51x y +=,则54x y+的最小值为()A .45B .42C .40D .389.下列说法正确的是().A .若a b >,则22a b >B .若0a b >>,0c d <<,则a b d c>C .若a b >,c d <,则a c b d +>+D .若0a b >>,0c <,则b c ba c a->-二、填空题10.集合,,则11.已知正实数x ,y 满足2x y xy +=,则2x y +的最小值为.12.若命题“2000R,(1)(1)10x m x m x ∃∈-+-+≤”是假命题,则实数m 的取值范围是.13.集合{}230A x x x =-<,集合{}2B x x =<,则A B =.14.若命题“R x ∃∈,使得240ax ax +-≥”是假命题,则实数a 的取值范围为.15.已知正实数,a b 满足223ab a b ++=,则1121a b++的最小值为.第II 卷(非选择题)三、解答题16.已知集合{|14}A x x =-≤≤,{|1B x x =<或5}x >.(1)若全集R U =,求A B 、()U A B ð;(2)若全集R U =,求()U A B ð.17.已知全集U R =,集合{}20A x x a =+>,{}2230B x x x =-->.(1)当=2时,求集合A B ⋂;(2)若()R A C B ⋂=∅,求实数a 的取值范围.18.已知2:10p x mx ++=有两个不等的负根,2:44(2)10q x m x +-+=无实根,若p 、q 一真一假,求m 的取值范围.19.已知集合{|215}A x x =-≤-≤、集合{|121}B x m x m =+≤≤-(m ∈R ).(1)若A B =∅ ,求实数m 的取值范围;(2)设命题p :x A ∈;命题q :x B ∈,若命题p 是命题q 的必要不充分条件,求实数m 的取值范围.20.已知实数a 、b 满足:229410a b ab ++=.(1)求ab 和3a b +的最大值;(2)求229a b +的最小值和最大值.参考答案:题号123456789答案DDCBACBAD1.D【解析】先计算集合{|A x x =<<,{|1}B x x =≥-,再由交集运算即可得A B ⋂.【详解】由2{|2}{|A x x x x =<=,{|{|1}B x y x x ===≥-,得{|1A B x x =-≤ .故选D .【点睛】本题考查了集合的交集运算,不等式的解法,属于基础题.2.D【分析】由特称命题的否定为全称命题即可得答案.【详解】解:因为命题“x ∃∈R ,210x kx --≥”为特称命题,所以其否定为:x ∀∈R ,210x kx --<.故选:D.3.C【分析】根据补集的定义即得.【详解】因为{|53}U x x =-≤<,{|23}A x x =-≤<,所以{|52}U A x x =-≤<ð,即图中阴影表示的集合是{|52}x x -≤<.故选:C.4.B【分析】根据集合的定义求得B ,再由集合运算法则计算.【详解】由已知{1,2,4,8,}B = ,{3,5}R A B = ð,有2个元素.故选:B .5.A【分析】由题意得,集合M 是集合{}2,3,4,5的非空子集,且去掉元素2,4同时出现的集合,即可求解.【详解】当M 中有元素0时,2000M M =∈=∈,当M 中有元素1时,2111M M =∈=∈,所以0,1M M ∉∉,所以集合M 是集合{}2,3,4,5的非空子集,且去掉元素2,4同时出现的集合,故满足题意的集合M 有{}{}{}{}{}{}{}{}{}{}2352,32,53,43,52,3,5,,4,,,,,,4,5,,{}3,4,5共11个.故选:A.6.C【分析】根据结合的包含的定义和集合相等的定义判断,,M P S 的关系可得结论.【详解】任取a M ∈,则()1152513a k k =-=-+,1k Z ∈,所以a P ∈,所以M P ⊆,任取b P ∈,则()1153512b n n =+=+-,1Z n ∈,所以a M ∈,所以P M ⊆,所以M P =,任取c S ∈,则()11103523c m m =+=⋅+,1Z m ∈,所以c P ∈,所以S P ⊆,又8P ∈,8S ∉,所以S P ≠,所以S P M ⊆=,故选:C.7.B【分析】利用A B B = ,知B A ⊆,求出a 的值,根据集合元素的互异性舍去不合题意的值,可得答案.【详解】因为A B B = ,所以B A ⊆,即31a =或者23a a =,解之可得13a =或0a =或3a =,当13a =时,11,9,9A ⎧⎫=⎨⎬⎩⎭,{}9,1B =符合题意;当0a =时,{}1,9,0A =,{}9,0B =符合题意;当3a =时,{}1,9,9A =,{}9,9B =根据集合元素互异性可判断不成立。
北京市顺义区2024-2025学年高一上学期10月月考数学试题含答案
2024-2025学年北京市顺义高一(上)月考数学试卷(10月份)一、单选题:本题共10小题,每小题4分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{}210A x x =-=∣,下列式子错误的是()A.1A∈ B.A∅⊆ C.{}1A -∈ D.{}1,1A =-【答案】C 【解析】【分析】先求出集合A ,再利用元素与集合之间的关系依次判断各选项即可得解.【详解】{}2{|10}1,1A x x =-==- ,{}1,1,A A A ∴∈-⊆∅⊆,故ABD 正确;而{}1-与A 是两个集合,不能用“∈”表示它们之间的关系,故C 错误.故选:C2.命题“2,220x x x ∃∈++≤R ”的否定是A.2,220x x x ∀∈++>R B.2,220x R x x ∀∈++≤C.2,220x x x ∃∈++>R D.2,220x x x ∃∈++≥R 【答案】A 【解析】【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.【点睛】本小题主要考查全称命题与特称命题的否定,属于基础题.3.下列各组函数表示同一函数的是()A.()()211,1x f x x g x x -=+=- B.()()01,f x g x x==C.()()2f xg x == D.()()00x x f x g t t x x ≥⎧==⎨-<⎩,,,【答案】D 【解析】【分析】由相同函数定义可判断各选项正误;【详解】A 选项,()f x 定义域为R ,()g x 定义域为()(),11,-∞+∞ ,故不是同一函数,A 错误;B 选项,()f x 定义域为R ,()g x 定义域为()(),00,-∞+∞ ,故不是同一函数,B 错误;C 选项,()f x 定义域为R ,()g x 定义域为[)0,+∞,故不是同一函数,C 错误;D 选项,两函数定义域相同,解析式也相同,故为同一函数,故D 正确.故选:D4.已知x R ∈,则“11x>”是“1x <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义分析判断即可【详解】由11x>,得10xx ->,解得01x <<,因为当01x <<时,1x <成立,而当1x <时,01x <<不一定成立,所以“11x>”是“1x <”的充分不必要条件,故选:A5.已知{}min ,a b 表示,a b 中较小的数,设()()(){}min ,h x f x g x =,若()f x x =,()2g x x =,则函数()h x 的大致图象是()A. B.C.D.【答案】D 【解析】【分析】根据已知条件及分段处理的原则,结合绝对值函数和幂函数的图象即可求解.【详解】当()()f x g x ≤时,即2x x ≤,解得1x ≤-或1x ≥或0x =,所以()(]}[){()()2,,101,,1,00,1x x h x x x ∞∞⎧∈--⋃⋃+⎪=⎨∈-⋃⎪⎩,故图象为D.故选:D.6.若关于x 的不等式()210x a x a -++<的解中,恰有3个整数,则实数a 应满足()A .45a << B.32a -<<-或45a <<C.45a <≤ D.32a -≤<-或45a <≤【答案】D 【解析】【分析】解不等式,讨论()()10x a x --<中a 与1的大小求解集,再判断解集中含3个整数时参数a 的范围即可【详解】由()210x a x a -++<,得()()10x a x --<由解中恰有3个整数∴当1a <时,1<<a x ,得32a -≤<-;当1a >时,1x a <<,得45a <≤,综上所述,32a -≤<-或45a <≤故选:D【点睛】本题考查了由不等式解集的取值情况求参数范围,注意讨论不等式的参数求解集,按题意求满足要求的参数范围7.如图,OAB △是边长为2的正三角形,记OAB △位于直线()02x t t =≤≤左侧的图形的面积为()f t .则函数()y f t =的图象大致为()A.B.C.D.【答案】A 【解析】【分析】结合图形,分类讨论01t <≤与12t <≤,求得()f t 的解析式,从而得解.【详解】依题意,当01t <≤时,可得直角三角形的两条直角边分别为3t t ,从而可以求得213()322t f t t t ==,当12t <≤时,阴影部分可以看做大三角形减去一个小三角形,可求得223(2)3()323322t f t t t -=-=-+,所以223(01)2()3233(12)2t t f t t t t <≤⎪⎪=⎨⎪-+<≤⎪⎩,从而可知选项A 的图象满足题意.故选:A.8.今年某地因天气干旱导致白菜价格不稳定,假设第一周、第二周的白菜价格分别为a 元/斤、b 元/斤()a b ≠,王大妈每周购买10元的白菜,李阿姨每周购买8斤白菜,王大妈和李阿姨两周买白菜的平均价格分别记为1m ,2m ,则1m 与2m 的大小关系为()A.12m m =B.12m m >C.12m m <D.无法确定【答案】C 【解析】【分析】由题意可知12abm a b=+,22a b m +=,再利用作差法比较大小即可.【详解】由题意可得,0a >,0b >,a b ≠,12021010abm a b a b==++,288162a b a bm ++==,()()221224()()0222ab a b ab a b a b m m a b a b a b +-+---=-==<+++ ,12m m ∴<.故选:C .9.对于集合M ,N ,定义{},M N x x M x N -=∈∉且,()()M N M N N M ⊕=-- ,设94A y y ⎧⎫=≥-⎨⎬⎩⎭,{}0B y y =<,则A B ⊕=A.9,04⎛⎤-⎥⎝⎦B.9,04⎡⎫-⎪⎢⎣⎭C .[)9,0,4⎛⎫-∞-+∞ ⎪⎝⎭ D.()9,0,4⎛⎫-∞-+∞ ⎪⎝⎭ 【答案】C 【解析】【分析】由根据定义先求出集合A B -和集合B A -,再求这两个集合的并集可得A B ⊕,得解.【详解】因为94A y y ⎧⎫=≥-⎨⎬⎩⎭,{}0B y y =<,{|0}A B y y ∴-=≥,9{|}4B A y y -=<-,所以()(){}[)990|,0,44A B A B B A y y y y ⎧⎫⎛⎫⊕=-⋃-=≥⋃<-=-∞-⋃+∞⎨⎬ ⎪⎩⎭⎝⎭故选C .【点睛】本题考查集合的交、并、补集的运算,解题时注意理解A B -和B A -的含义,属于基础题.10.已知函数288,0()24,0x x x f x x x ⎧-+≥=⎨+<⎩.若互不相等的实根123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的范围是()A.(2,8) B.(8,4)- C.(6,0)- D.(6,8)-【答案】A 【解析】【分析】根据函数图象有三个实数根的函数值在()8,4-之间,第一段函数关于4x =对称,即可求出238x x +=,再根据图象得到1x 的取值范围,即可得到答案.【详解】根据函数的解析式可得如下图象若互不相等的实根123,,x x x 满足()()()123f x f x f x ==,根据图象可得2x 与3x 关于4x =,则238x x +=,当1248x +=-时,则16x =-是满足题意的1x 的最小值,且1x 满足160x -<<,则123x x x ++的范围是(2,8).故选:A.二、填空题:本题共5小题,每小题5分,共25分.11.已知函数()241,011,0x x f x x x⎧-≤⎪=⎨-+>⎪⎩,则15f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦______.【答案】63【解析】【分析】先计算145f ⎛⎫=- ⎪⎝⎭,再计算()4f -的值即可.【详解】因为1114155f ⎛⎫=-+=- ⎪⎝⎭,所以()144161635f f f ⎡⎤⎛⎫=-=⨯-= ⎪⎢⎥⎝⎭⎣⎦.故答案为:63.12.集合{}220A x x px =+-=,{}20B x x x q =-+=,若{}2,0,1A B =- ,则p =_________,q =_________.【答案】①.1②.0【解析】【分析】根据一元二次方程韦达定理以及集合并集的定义求得结果.【详解】因为{}220A x x px =+-=,{}20B x x x q =-+=,{}2,0,1A B =- ,设方程220x px +-=的两根为12,x x ,则1212,2x x p x x +=-=-,因为{}12,2,0,1x x ∈-,所以220x px +-=的两根为2,1-,所以()211p =--+=,所以集合{}20B x x x q =-+=中一定有元素0,所以0q =,故答案为:1;0.13.已知0x>,则42+3x x+的最小值等于_________.【答案】2+【解析】【详解】42322x x ++≥+=+,当且仅当3x =时取等号,故最小值为2+,故答案为2+14.若对任意实数x k 的取值范围是__________.【答案】[]0,8【解析】【分析】由题意得,220kx kx -+≥恒成立,然后对k 的取值进行分类讨论,结合二次函数的性质可求.【详解】对任意实数x 都有意义,即220kx kx -+≥恒成立,当0k =时,20≥恒成立,符合题意;故0k ≠,则2Δ80k k k >⎧⎨=-≤⎩,解得08k <≤,综上:k 的取值范围是[]0,8.故答案为:[]0,8.15.已知函数()22xf x x=+,则()()()()1111220222023202320222f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.【答案】40454【解析】【分析】先观察分析得()112f x f x ⎛⎫+= ⎪⎝⎭,再利用分组求和法即可得解.【详解】因为()22xf x x =+,则()114f =,而1112222xf x x x⎛⎫==⎪+⎝⎭+,则()()111212x f x f x x +⎛⎫+== ⎪+⎝⎭,则()()()()1111220222023202320222f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1112023202221202320222f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦1140452022244=⨯+=.故答案为:40454.三、解答题:本题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.已知不等式20x ax b ++<(,R)a b ∈的解集{}12A x x =-<<.(1)求实数a ,b 的值;(2)若集合{}0B x x =<,求A B ⋂,()R A B ⋃ð.【答案】(1)a =-1,b =-2(2){}10A B x x ⋂=-<<,(){}R 1A B x x ⋃=>-ð【解析】【分析】可根据题意条件,此一元二次不等式的解集转化成此一元二次方程的两个跟,然后利用根与系数的关系,即可完成求解;可根据集合A 、B 的范围分别求解出A B ⋂,()R A B ⋃ð即可.【小问1详解】因为不等式的解集为{}12A x x =-<<,所以11x =-,22x =是方程20x ax b ++=的两个实数根.则有10,420,a b a b -+=⎧⎨++=⎩解得a =-1,b =-2.【小问2详解】因为{}12A x x =-<<,{}0B x x =<,所以{}10A B x x ⋂=-<<,{}R 0B x x =≥ð,(){}R 1A B x x ⋃=>-ð17.已知集合{}2560A x x x =--<,{}121,B x m x m m R =+≤≤-∈.(1)若4m =,求集合R A ð,集合R A B U ð;(2)若A B A = ,求实数m 的取值范围.【答案】(1){}16R A x x x =≤-≥或ð,{}67R A B x x x ⋃=或ð;(2)7,2⎛⎫-∞ ⎪⎝⎭.【解析】【分析】(1)首先解一元二次不等式求出集合A ,再根据补集的定义求出R A ð、B R ð,最后根据并集的定义计算可得;(2)由A B A = ,可得B A ⊆,即可得到不等式组,解得即可.【详解】解:(1)因为{}2560A x x x =--<,所以{}16A x x =-<<,{|1R A x x =≤-ð或6}x ≥.当4m =时,{}57B x x =≤≤所以{|5R B x x =<ð或7}x >.所以{|6R A B x x ⋃=<ð或7}x >.(2)因为A B A = ,所以B A ⊆.当B =∅时,121m m +>-,则2m <;当B ≠∅时,由题意得21121611m m m m -≥+⎧⎪-<⎨⎪+>-⎩,解得272m ≤<.综上,实数m 的取值范围是7,2⎛⎫-∞ ⎪⎝⎭.【点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.18.解关于x 的不等式:()()2220ax a x a +--≥∈R .【答案】答案见解析【解析】【分析】分0a =,0a >和0a <三种情况,在0a <时,再分三种情况,求出不等式解集.【详解】①当0a =时,原不等式化为10x +≤,解得1x ≤-.②当0a >时,原不等式化为()210x x a ⎛⎫-+≥ ⎪⎝⎭,解得2x a ≥或1x ≤-.③当0a <时,原不等式化为()210x x a ⎛⎫-+≤ ⎪⎝⎭.当21a >-,即2a <-时,解得21x a -≤≤;当21a =-,即2a =-时,解得1x =-满足题意;当21a<-,即20a -<<时,解得21x a ≤≤-.综上所述,当0a =时,不等式的解集为{}1x x ≤-;当0a >时,不等式的解集为21x x x a ⎧⎫≥≤-⎨⎬⎩⎭或;当20a -<<时,不等式的解集为21x x a ⎧⎫≤≤-⎨⎬⎩⎭;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21x x a ⎧⎫-≤≤⎨⎬⎩⎭.19.根据下列条件,求()f x 的解析式:(1)已知()f x 满足()2141f x x x +=++;(2)已知()f x 是一次函数,且满足()()3129f x f x x +-=+.【答案】(1)()222f x x x +=-(2)()3f x x =+【解析】【分析】(1)令1t x =+,则1x t =-,利用换元法计算可得;(2)设()f x kx b =+()0k ≠,即可得到方程组,解得k 、b ,即可得解.【小问1详解】解:因为()2141f x x x +=++,令1t x =+,则1x t =-,故()()()22141122f t t t t t =-+-+=+-,所以()222f x x x +=-;【小问2详解】解:设()f x kx b =+()0k ≠,因为()()3129f x f x x +-=+,所以()31329k x b kx b x ++--=+,即23229kx k b x ++=+,所以22329k k b =⎧⎨+=⎩,解得13k b =⎧⎨=⎩,所以()3f x x =+;20.经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:2920(0)31600v y v v v =>++.(1)若要求在该时间段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?(2)该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时)【答案】(1)大于25km/h 且小于64km/h(2)40km/h v =,11.1千辆/时【解析】【分析】(1)只需要解不等式29201031600v v v >++即可.(2)把函数变形为92016003()y v v =++再根据基本不等求解.【小问1详解】由题意得29201031600v v v >++,整理得28916000v v -+<,即(25)(64)0v v --<.解得2564v <<.所以如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25/km h 且小于64/km h .【小问2详解】由题意得9209201600833(y v v =≤=++,当且仅当1600v v =,即40v =时取等号,所以max 92011.183y =≈(千辆/时).故当40/v km h =时,车流量最大,最大车流量约为11.1千辆/时.21.对于集合A ,定义()1,1,A x A g x x A ∉⎧=⎨-∈⎩.对于两个集合A 、B ,定义运算()(){}*1A B A B x g x g x =⋅=-.(1)若{}1,2,3A =,{}2,3,4,5B =,写出()1A g 与()1B g 的值,并求出*A B ;(2)证明:()()*()A B A B g x g x g x =⋅;【答案】(1)()11A g =-,()11B g =,{}*1,4,5A B =;(2)证明见解析.【解析】【分析】(1)根据题中定义可求得()11A g =-,()11B g =-,进一步可求得*A B ;(2)分x A ∈且x B ∈、x A ∈且x B ∉、x A ∉且x B ∈三种情况讨论,计算出()A g x 、()B g x 、()A B g x *的值,验证()()*()A B A B g x g x g x =⋅成立,即可证得结论成立.【详解】(1)因为{}1,2,3A =,{}2,3,4,5B =,则()11A g =-,()11B g =,根据定义可得()()()()()()1144551A B A B A B g g g g g g ⋅=⋅=⋅=-,()()()()22331A B A B g g g g ⋅=⋅=,()()331A B g g ⋅=,故{}*1,4,5A B =;(2)①当x A ∈且x B ∈时,()()1A B g x g x ==-,则x A B ∉*,则()1A B g x *=,所以,()()()*A B A B g x g x g x =⋅;②当x A ∈且x B ∉时,()1A g x =-,()1B g x =,x A B ∈*,则()*1A B g x =-.所以()()()*A B A B g x g x g x =⋅;③当x A ∉且x B ∈时,()1A g x =,()1B g x =-,所以,x A B ∈*,则()*1A B g x =-.综上所述,()()*()A B A B g x g x g x =⋅.。
广东省江门市鹤山市鹤华中学2024-2025学年高一上学期第一次月考数学试题 (含答案)
鹤华中学2024-2025学年度第一学期高一月考数学试卷考试时间:120分钟;一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个写法:①;②;③;④,其中错误写法的个数为( )A .1B .2C .3D .42.已知集合,集合,则的子集个数是( )A .16B .8C .4D .23.已知集合,集合C 满足,则所有满足条件的集合C 的个数为( )A .3B .4C .5D .64.若方程的一根为1,则另一根为( )A .2B .C.D .5.己知,则A 与B 的大小关系是( )A .B .C .D .6.若正数x ,y 满足,则的最小值是( )A .6B .C .D .7.下列结论正确的是()A .若,则 B .若,则C .若,则D .若,则8.已知,当时,取得最小值为b ,则( )A .B .2C .3D .8二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.集合U ,S ,T ,F 的关系如右图所示,那么下列关系中正确的是( ){0}{1,2,3}∈{0}∅⊆{0,1,2}{1,2,0}⊆0∈∅{1,2,3,4}A ={}B y y x A ==∈∣A B 6NN ,{2,3}1A a B a ⎧⎫⎨⎬⎭=⎩=∈∈-B C A ⊆⊆2210x ax +-=2-1212-10,2,x A x B x>=-=-A B ≥A B ≤A B >A B<x y xy +=2x y +2+2+3+0a b <<22a ab b >>0a b <<11<a ba b >ac bc >a b >22a b >1x >-x a =941x x -++a b +=3-A .B .C .D .10.若,且,则下列不等式成立的是( )AB .C .D .11.以下正确的选项是( )A .若,则B .若,则C .若,则D .若,则三、填空题:本题共3小题,每小题5分,共15分.12.已知,则____________.13.已知,则的取值范围是____________.14.若或,则M ____________N (填:≤,<,≥,>)四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)要制作一个体积为,高为的长方体纸盒,怎样设计用纸最少?16.(15分)关于x 的方程有两个不相等的实数根.(1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.17.(15分)设集合.(1)若,求实数a 的值;(2)若,求实数a 的取值范围;18.(17分)设全集,集合,集合(1)若,求;(2)若,求实数a 的取值范围;(3)若,求实数a 的取值范围.19.(17分)解答下列各题.S T ⊆U T F ⊆ðU F S ⊆ðU ()T S F ⊆ ð0,0a b >>4a b +=2≥114ab ≥228a b +≥111a b+≤,a b c d ><a c b d ->-,a b c d ><a bc d >22ac bc >33a b >,0a b m >>b m ba m a+>+{(,)46},{(,)4}A x y x y B x y x y =+==-=∣∣A B = 37,12x y <<<<yx2x ≠221,42,5y M x y x y N ≠-=+-+=-332m 2m 2(2)04kkx k x +++={}{}2228120,2(1)130A x x x B x x a x a =-+==+++-=∣∣{2}A B = A B A = U =R {15}A xx =≤≤∣{122}B x a x a =--≤≤-∣4a =()U A B A B 、ðA B ⊆B A ⊆(1)若正实数x ,y 满足,求的最小值;(2)设,求的最小值.1x y +=411x y++1x >-(3)(4)1x x x +++数学答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案BCBDADAC5.【答案】A .因为,所以,即,当且仅当时等号成立.6.【答案】D .因为正数x ,y 满足,所以,所以,当且仅当,即的最小值为8.【答案】C .因为,所以,故,当且仅当,即时,等号成立,故.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ACDBCAC三、填空题:本题共3小题,每小题5分,共15分.12. 13. 14.>四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)【解】由题意得,长方体纸盒的底面积为, 1分设长方体纸盒的底面一边长为,则另一边长为,长方体纸盒的全面积为, 2分则由题意得 5分10,2,x A x B x>=-=-1220A B x x -=-+≥-=A B ≥1x =x y xy +=111x y xy y x+=+=1122(2)333x y x y x y y x y x⎛⎫+=++=++≥+=+⎪⎝⎭2x y y x =1,x y ==2x y +3+1x >-910,01x x +>>+994155111x x x x -+=++-≥=++911x x +=+2x =2,1,3a b a b ==+={(2,2)}-1273y x <<216m m x 16m x2m y 32162216432(0)y x x x x x ⎛⎫⎛⎫=++=++> ⎪ ⎪⎝⎭⎝⎭,8分当且仅当,即时,等号成立10分∴当时,y 的最小值为6412分答:当长方体纸盒的底面是边长为的正方形时,用纸最少为. 13分16.(15分)【解】(1)∵方程有两个不等的实数根, 2分由5分的取值范围是,且 6分(2)设方程的两根分别为,由根与系数关系有:,10分又11分则13分由(1)知,时,,原方程无实根14分∴不存在符合条件的k 的值. 15分17.(15分)【解】(1)略(2)若,则,又,①当时,则关于x 的方程没有实数根, …8分则,解得,故当时,满足题意; 9分②当,即时,若集合B 中只有一个元素,则,即当时,,满足题意; 11分若集合B 中有两个元素,则, 12分即当时,要使,则,所以2和6是方程的两根,1608x x x >∴+≥ 16x x =4x =164x x==4m 264m 0k ∴≠2(2)404kk k ∆=+-⨯>1k ∴>-k ∴1k >-0k ≠2(2)04kkx k x +++=12x x 、121221,4k x x x x k ++=-⋅=12110x x +=20k k+-=2k ∴=-2k =-0∆<A B A = B A ⊆{2,6}A =B =∅222(1)130x a x a +++-=()224(1)4138(7)0a a a ∆=+--=+<7a <-7a <-B A =∅⊆B ≠∅7a ≥-()870a ∆=+=7a =-{}212360{6}{2,6},B x x x B A =-+==⊆⊆∣()870a ∆=+>7a >-B A ⊆{2,6}B A ==222(1)130x a x a +++-=则由韦达定理得,解得,满足条件. 14分综上所述,或. 15分18.(17分)【解】(1) 1分, 3分,或5分(2)因为,所以,解得.9分故实数a 的取值范围为 10分(3)因为.①当时,,解得; 12分②当时,,解得16分综上所述,实数a 的取值范围是17分19.(17分)【解】(1)因为,所以 1分又因为,所以所以 3分6分当且仅当,即时,等号成立2262(1)2613a a +=-+⎧⎨⨯=-⎩5a =-7a >-7a ≤-5a =-4,{92}a B xx =∴=-≤≤ ∣{95}A B x x =-≤≤ ∣U {9B x x =<-∣ð2}x >()U {25}A B x x =<≤ ∣ðA B ⊆12125a a --≤⎧⎨-≥⎩7a ≥{7}aa ≥∣B A ⊆B =∅122a a -->-13a <B ≠∅12125122a a a a --≥⎧⎪-≤⎨⎪--≤-⎩a ∈∅13a a ⎧⎫<⎨⎬⎩⎭0,0x y >>10x +>1x y +=(1)2x y ++=41411[(1)]112x y x y x y ⎛⎫⎛⎫+=+++⨯⎪ ⎪++⎝⎭⎝⎭14111955(54)12222x y y x ⎛⎛⎫+=++⨯≥+⨯=+⨯= ⎪ +⎝⎭⎝141x y y x +=+,1233x y ==所以的最小值为. 8分(2)因为,所以, 9分所以13分, 15分当且仅当,即时,等号成立所以的最小值为.17分411x y ++921x >-10x +>(3)(4)[(1)2][(1)3]11x x x x x x ++++++=++2(1)5(1)66(1)511x x x x x ++++==+++++55≥+=611x x +=+1x =(3)(4)1x x x +++5+。
湖南省长沙市2024-2025学年高一上学期10月月考数学试题含答案
2024年下学期10月份考试试卷高一数学(答案在最后)时量:120分钟分值:150分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示集合6N N A x x ++⎧⎫=∈∈⎨⎬⎩⎭和(){}22536B x x x=+=关系的Venn 图中正确的是()A.B.C.D.【答案】A 【解析】【分析】依题意可求得集合,A B ,根据集合中的元素可判断两集合之间的关系.【详解】根据题意由6N ,N x x++∈∈可得1,2,3,6x =,即{}1,2,3,6A =;解方程()22536x x+=可得256x x +=或256x x +=-,解得1x =或6x =-或2x =-或3x =-,即可得{}1,2,3,6B =---;因此可得集合,A B 有交集,但没有包含关系.故选:A2.如果对于任意实数x ,[]x 表示不超过x 的最大整数,例如[]π3=,[]0.60=,[]1.62-=-,那么“1x y -<”是“[][]x y =”的().A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】举出反例得到充分性不成立,再设[][]x y k ==,得到1k x k ≤<+,1k y k ≤<+,故1x y -<,必要性成立,得到答案.【详解】不妨设 1.6, 2.5x y ==,满足1x y -<,但[][]1,21.6 2.5==,不满足[][]x y =,充分性不成立,若[][]x y =,不妨设[][]x y k ==,则1k x k ≤<+,1k y k ≤<+,故1x y -<,必要性成立,故“1x y -<”是“[][]x y =”的必要条件.故选:B3.已知命题p :x ∀∈R ,01xx >-,则p ⌝为().A.x ∀∈R ,01xx ≤- B.x ∃∈R ,01xx ≤-C.x ∀∈R ,01xx ≤-或10x -= D.x ∃∈R ,01xx ≤-或10x -=【答案】D 【解析】【分析】利用全称命题的否定求解即可.【详解】由全称命题的否定是特称命题知:原命题的否定为x ∃∈R ,01xx ≤-或10x -=.故选:D4.若正实数x ,y 满足40x y xy +-=,则t xy =的取值范围为()A.{|04}t t <≤B.{|2}t t ≥C.{|4}t t ≥D.{|16}t t ≥【答案】D 【解析】【分析】由基本不等式得到4x y +≥,求出答案.【详解】正实数x ,y 满足40x y xy +-=,则4x y +≥,当且仅当x y =时取等号,所以t xy =,即xy ≥,即t ≥,两边平方,结合0t >,解的16t ≥.故选:D.5.已知命题2:,230p x ax x ∀∈++>R 为真命题,则实数a 的取值范围是()A.1|02a a ⎧⎫<≤⎨⎩⎭B.1|03a a ⎧⎫<<⎨⎬⎩⎭C.1|3a a ⎧⎫≥⎨⎬⎩⎭D.1|3a a ⎧⎫>⎨⎬⎩⎭【答案】D 【解析】【分析】问题转化为不等式2230ax x ++>的解集为R ,根据一元二次不等式解集的形式求参数的值.【详解】因为命题2:,230p x ax x ∀∈++>R 为真命题,所以不等式2230ax x ++>的解集为R .所以:若0a =,则不等式2230ax x ++>可化为230x +>⇒32x >-,不等式解集不是R ;若0a ≠,则根据一元二次不等式解集的形式可知:20Δ2120a a >⎧⎨=-<⎩⇒13a >.综上可知:13a >故选:D6.若实数αβ,满足1312αβ-<<<-,则αβ-的取值范围是()A.1312αβ-<-<-B.250αβ-<-<C.10αβ-<-<D.11αβ-<-<【答案】C 【解析】【分析】根据不等式的性质及题中条件即可得到结果.【详解】因为αβ<,所以0αβ-<,又1312α-<<-,1312β-<<-,所以1213β<-<所以11αβ-<-<,故10αβ-<-<,故选:C7.关于x 的一元二次不等式()()()2120x a x a --+->⎡⎤⎣⎦,当01a <<时,该不等式的解集为()A.2|21a x x x a -⎧⎫><⎨⎬-⎩⎭或 B.2|21a x x a -⎧⎫<<⎨⎬-⎩⎭C.2|21a x x x a -⎧⎫<>⎨⎬-⎩⎭或 D.2|21a x x a -⎧⎫<<⎨⎬-⎩⎭【答案】B 【解析】【分析】由01a <<,知10a -<,原不等式等价于()2201a x x a -⎛⎫--< ⎪-⎝⎭,再确定相应二次方程的根的大小得不等式的解集.【详解】由01a <<,则10a -<,原不等式等价于不等式()2201a x x a -⎛⎫--< ⎪-⎝⎭的解集,又由01a <<,则方程()2201a x x a -⎛⎫--= ⎪-⎝⎭的两根分别为1222,1a x x a -==-,当01a <<时,221a a -<-,故原不等式的解集为2|21a x x a -⎧⎫<<⎨⎬-⎩⎭.故选:B8.已知长为a ,宽为b 的长方形,如果该长方形的面积与边长为1k 的正方形面积相等;该长方形周长与边长为2k 的正方形周长相等;该长方形的对角线与边长为3k 的正方形对角线相等;该长方形的面积和周长的比与边长为4k 的正方形面积和周长的比相等,那么1k 、2k 、3k 、4k 大小关系为()A.1423k k k k ≤≤≤B.3124k k k k ≤≤≤C.4132k k k k ≤≤≤D.4123k k k k ≤≤≤【答案】D 【解析】【分析】先求出21ab k =,22a b k +=3=,2442k aba b k =+,然后利用基本不等式比较大小即可.【详解】由题意可得,21ab k=①,22a b k +=3=③,2442k aba b k =+④,且,0a b >,由基本不等式的关系可知,a b +≥a b =时等号成立,由①②得,2122k k ≥,所以21k k ≥⑤,因为()22222()22+=++≤+a b a b ab a b,所以222()2a b a b ++≥,当且仅当a b =时等号成立,由②③得,2223422k k ≥,所以32k k ≥⑥,又2ab aba b ≤=+,当且仅当a b =时等号成立,由①④得,241422k kk ≤,所以41k k ≤⑦,综合⑤⑥⑦可得,4123k k k k ≤≤≤.故选:D .二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.下列说法不正确的是()A.“a b <”是“11a b>”的必要不充分条件B.若1x y +=,则xy 的最大值为2C.若不等式20ax bx c ++>的解集为{|13}x x <<,则230a b c ++<D.命题“R x ∃∈,使得210x +=.”的否定为“R x ∀∉,使得210x +≠.”【答案】ABD 【解析】【分析】根据充分条件和必要条件的定义判断A ,消元,根据二次函数性质判断B ,根据一元二次不等式的解集与二次方程的关系求,,a b c 的关系,由此判断23a b c ++的正负,判断C ,根据含量词的命题的否定方法判断D.【详解】对于A ,取1a =-,1b =,则a b <,但11a b<,取1a =,1b =-,则11a b>,但a b >,所以“a b <”是“11a b>”的既不充分也不必要条件,A 错误;对于B ,因为1x y +=,所以()2211124xy x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,所以xy 的最大值为14,B 错误;因为不等式20ax bx c ++>的解集为{|13}x x <<,所以0a <,且1,3为方程20ax bx c ++=的根,所以13b a +=-,13c a⨯=,所以4b a =-,3c a =,所以238920a b c a a a a ++=-+=<,C 正确;命题“R x ∃∈,使得210x +=.”的否定为“R x ∀∈,使得210x +≠.”D 错误;故选:ABD.10.已知正数a ,b 满足238a b +=,则下列说法正确的是()A.83ab ≤ B.227a b +>C.224932a b +≥ D.11126436a b a b +≥++【答案】ACD 【解析】【分析】由已知条件结合基本不等式及相关结论检验选项A,C,D ,举出反例检验选项B ,即可判断.【详解】对于A ,因为823a b =+≥,故83ab ≤,当且仅当23,238a b a b =+=,即42,3a b ==时等号成立,故A 正确;对于B ,当2,1b a ==时,2267a b +=<,B 显然错误;对于C ,因为22249(23)12641232a b a b ab ab +=+-=-≥,当且仅当42,3a b ==时等号成立,故C 正确;对于D ,由238a b +=可得()6932324a b a b +=+=,即()264324a b a b +++=,所以111264326432643242643a b a b a b a b a b a b a b a b ++++++⎛⎫+=+ ⎪++++⎝⎭143261122242643246a b a b a b a b ⎛++⎛⎫=++≥+= ⎪ ++⎝⎭⎝当且仅当2643a b a b +=+,即42,3a b ==时等号成立,故D 正确.故选:ACD.11.对于一个非空集合B ,如果满足以下四个条件:①(){},,B a b a A b A ⊆∈∈,②(),,a A a a B ∀∈∈,③,a b A ∀∈,若(),a b B ∈且(),b a B ∈,则a b =,④,,a b c A ∀∈,若(),a b B ∈且(),b c B ∈,则(),a c B ∈,就称集合B 为集合A 的一个“偏序关系”,以下说法正确的是()A.设{}1,2A =,则满足是集合A 的一个“偏序关系”的集合B 共有3个B.设{}1,2,3A =,则集合()()()()(){}1,1,1,2,2,1,2,2,3,3B =是集合A 的一个“偏序关系”C.设{}1,2,3A =,则含有四个元素且是集合A 的“偏序关系”的集合B 共有6个D.(){},R,R,R a b a b a b =∈'∈≤是实数集R 的一个“偏序关系”【答案】ACD 【解析】【分析】A 选项,分析出()()1,1,2,2B ∈,分析③可知,()1,2和()2,1只能二选一,或两者均不能在B 中,从而得到足是集合A 的一个“偏序关系”的集合B 共有3个;B 选项,()1,2B ∈且()2,1B ∈,但12≠,B 错误;C 选项,分析出()()()1,1,2,2,3,3B ∈,再添加一个元素即可,从而得到答案;D 选项,通过分析均满足四个条件,D 正确.【详解】A 选项,{}1,2A =,则(){}()()()(){},,1,1,1,2,2,1,2,2a b a A b A ∈∈=,通过分析②可知,()()1,1,2,2B ∈,分析③可知,()1,2和()2,1只能二选一,或两者均不能在B 中,取()(){}1,1,2,2B =,或()()(){}1,1,2,2,1,2B =,或()()(){}1,1,2,2,2,1B =,故满足是集合A 的一个“偏序关系”的集合B 共有3个,A 正确;B 选项,集合()()()()(){}1,1,1,2,2,1,2,2,3,3B =,()1,2B ∈且()2,1B ∈,但12≠,故②不成立,故BC 选项,{}1,2,3A =,通过分析②可知,()()()1,1,2,2,3,3B ∈,结合③和④,可再添加一个元素,即()()()()()()1,2,2,1,1,3,3,1,2,3,3,2中任选一个,即取()()()(){}1,1,2,2,3,3,1,2B =,或()()()(){}1,1,2,2,3,3,1,3B =,或()()()(){}1,1,2,2,3,3,2,3B =,或()()()(){}11,1,2,2,3,3,,2B =,或()()()(){}11,1,2,2,3,3,,3B =,或()()()(){}21,1,2,2,3,3,,3B =,共6个,C 正确;D 选项,(){},R,R,R a b a b a b =∈'∈≤是R 的子集,满足①,且当a b =时,()R,,a a a R '∀∈∈,满足②,当a b =时,满足③,,,R a b c ∀∈,若(),a b R '∈且(),b c R '∈,则,a b b c ≤≤,所以a c ≤,则(),a c R ∈',满足④,故(){},R,R,R a b a b a b =∈'∈≤是实数集R 的一个“偏序关系,D 正确.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12.设,a b ∈R ,集合{}1,,0,b a b a a ⎧⎫+⊇⎨⎬⎩⎭,则a b +=______【答案】0【解析】【分析】根据ba可知0a ≠,故0a b +=.【详解】由ba可知0a ≠,又{}1,,0,b a b a a ⎧⎫+⊇⎨⎬⎩⎭,故0a b +=.故答案为:013.已知条件:30p x ⌝-<<,条件:q x a ⌝>,且q 是p 的充分不必要条件,则a 的取值范围是_________.【答案】(],3-∞-.【分析】根据充分、必要条件的定义及命题的否定形式计算参数范围即可.【详解】由题设得:0p x ≥或3x ≤-,设P ={0x x ≥或3x ≤-},同理可得:q x a £,设{}Q x x a =≤,因为q 是p 的充分不必要条件,所以Q P ⊆,因此3a ≤-.故答案为:(],3-∞-.14.出入相补是指一个平面(或立体)图形被分割成若干部分后面积(或体积)的总和保持不变,我国汉代数学家构造弦图,利用出入相补原理证明了勾股定理,我国清代的梅文鼎、李锐、华蘅芳、何梦瑶等都通过出入相补原理创造了不同的面积证法证明了勾股定理.在下面两个图中,若AC b =,()BC a b a =≥,AB c =,图中两个阴影三角形的周长分别为1l ,2l ,则12l l a b++的最小值为________.【答案】12+【解析】【分析】根据图形中的相似关系先表示出12l l +,然后利用基本不等式求解出最小值.【详解】如图1,易知BDE V ∽ACB △,且BD CD BC b a =-=-,所以1l BD b a AC b a b c -==++,所以()1b al a b c b-=⨯++;如图2,易知GFH ∽ACB △,且FG a =,所以2l FG a AC b a b c ==++,所以()2al a b c b=⨯++,所以22221222112l l a b c a b a b a b a b a b a b ab+++++==+=++++++221121ab a b =+++,又因为222a b ab +≥,所以2221ab a b +≤,当且仅当a b =时取等号,所以121211112l l a b +≥+=+++,所以最小值为212+,故答案为:212+.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知{|23}A x x =-≤≤,{|53}B x a x a =-<<,全集R U =.(1)若12a =,求A B ,A B ⋂;(2)若()U B A B =ðI ;求实数a 的取值范围.【答案】(1)9|32A B x x ⎧⎫⋃=-<≤⎨⎬⎩⎭,3|22A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭,(2)283a a a ⎧⎫≤-≥⎨⎬⎩⎭或【解析】【分析】(1)由条件根据集合运算法则求A B ,A B ⋂即可;(2)由条件可得U B A ⊆ð,根据集合包含关系列不等式可求a 的取值范围.【小问1详解】因为12a =,所以93{|53}|22B x a x a x x ⎧⎫=-<<=-<<⎨⎬⎩⎭,又{|23}A x x =-≤≤,所以9|32A x x B ⎧⎫-<≤=⎨⎬⎩⎭ ,3|22A B x x ⎧⎫=-≤<⎨⎬⎩⎭ ,【小问2详解】因为()U B A B =ðI ,所以U B A ⊆ð,因为{|23}A x x =-≤≤,所以{2U A x x =<-ð或}3x >,又{|53}B x a x a =-<<,当B =∅时,U B A ⊆ð,此时35a a ≤-,接的52a ≤-,当B ≠∅时,由U B A ⊆ð,可得3532a a a >-⎧⎨≤-⎩或3553a a a >-⎧⎨-≥⎩,所以5223a -<≤-或8a ≥,综上23a ≤-或8a ≥.所以a 的取值范围23a a ⎧≤-⎨⎩或}8a ≥.16.(1)设a b c d ,,,均为正数,且a b c d +=+,证明:若ab cd >>(2)已知,,a b c 为正数,且满足1abc =,证明:222111a b c a b c ++≤++.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先对(2)利用基本不等式结合1abc =可证得结论【详解】(1)因为222a b c d =++=++又因为,0a b c d ab cd +=+>>,,,a b c d >为正数,所以22>,>(2)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,当且仅当a b c ==时,取等号,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c ++≤++,当且仅当1a b c ===时取等号.17.已知p :2280x x +-≤,q :()22210x m x m m -+++≤.(1)若q 是p 的充分不必要条件,求实数m 的取值范围;(2)若q 是p 的既不充分也不必要条件,求实数m 的取值范围.【答案】(1)41m -≤≤(2)1m >或4m <-【解析】【分析】(1)解不等式化简命题,p q ,由充分不必要条件列出不等式求解;(2)根据命题,p q 的关系,可得对应集合互不包含,列出不等式求解.【小问1详解】由2280x x +-≤,可得42x -≤≤,则p :42x -≤≤,又由()22210x m x m m -+++≤,可得1m x m +≤≤,则q :1m x m +≤≤,若q 是p 的充分不必要条件,可得[],1m m +是[]4,2-的真子集,有412m m ≥-⎧⎨+≤⎩,解可得41m -≤≤;【小问2详解】若q 是p 的既不充分也不必要条件,则[],1m m +和[]4,2-互不包含,可得12m +>或4m <-,解得1m >或4m <-.18.某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为1S ;方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为2S .(其中4,4y x b a >>>>)(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系4224y x b a a =-=+-,求这两种购买方案花费的差值S 最小值(注:差值S =花费较大值-花费较小值).【答案】(1)采用方案二;理由见解析(2)24【解析】【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到214((4S S x a a -=-⋅+-,利用换元法和基本不等式,即可求解.【小问1详解】解:方案一的总费用为1S ax by =+(元);方案二的总费用为2S bx ay =+(元),由21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--,因为4,4y x b a >>>>,可得0,0y x a b ->-<,所以()()0y x a b --<,即210S S -<,所以21S S <,所以采用方案二,花费更少.【小问2详解】解:由(1)可知()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+⎪-⎝⎭,令t =,则24x t =+,所以2224(1)33x t t t -=-+=-+≥,当1t =时,即5x =时,等号成立,又因为4a >,可得40a ->,所以44(4)44844a a a a +=-++≥=--,当且仅当444a a -=-时,即6,14a b ==时,等号成立,所以差S 的最小值为2483=⨯,当且仅当5,8,6,14x y a b ====时,等号成立,所以两种方案花费的差值S 最小为24元.19.已知集合{}()*1,2,3,,2N ,4n S n n n =∈≥ ,对于集合n S 的非空子集A ,若n S 中存在三个互不相同的元素,,a b c ,使得,,+++a b b c c a 均属于A ,则称集合A 是集合n S 的“期待子集”.(1)试判断集合{}{}123,4,5,3,5,7A A ==是否为集合4S 的“期待子集”;(直接写出答案,不必说明理由)(2)如果一个集合中含有三个元素,,x y z ,同时满足①x y z <<,②x y z +>,③x y z ++为偶数.那么称该集合具有性质P .对于集合n S 的非空子集A ,证明:集合A 是集合n S 的“期待子集”的充要条件是集合A 具有性质P .【答案】(1)1A 是集合4S 的“期待子集”,2A 不是集合4S 的“期待子集”(2)证明见解析【解析】【分析】(1)根据所给定义判断即可.(2)先证明必要性,再证明充分性,结合所给“期待子集”的定义及性质P 的定义证明即可;【小问1详解】因为{}41,2,3,4,5,6,7,8S =,对于集合{}13,4,5A =,令345a b b c c a +=⎧⎪+=⎨⎪+=⎩,解得213a b c =⎧⎪=⎨⎪=⎩,显然41S ∈,42S ∈,43S ∈所以1A 是集合4S 的“期待子集”;对于集合2{3,5,7}A =,令111111357a b b c c a +=⎧⎪+=⎨⎪+=⎩,则111152a b c ++=,因为4111,,a b c S ∈,即111N *a b c ++∈,故矛盾,所以2A 不是集合4S 的“期待子集”【小问2详解】先证明必要性:当集合A 是集合n S 的“期待子集”时,由题意,存在互不相同的,,n a b c S ∈,使得,,a b b c c a A +++∈,不妨设a b c <<,令x a b =+,y a c =+,z b c =+,则x y z <<,即条件P 中的①成立;又()()()20x y z a b c a b c a +-=+++-+=>,所以x y z +>,即条件P 中的②成立;因为()()()()2x y z a b c a b c a b c ++=+++++=++,所以x y z ++为偶数,即条件P 中的③成立;所以集合A 满足条件P .再证明充分性:当集合A 满足条件P 时,有存在A ∈x,y,z ,满足①x y z <<,②x y z +>,③x y z ++为偶数,记2x y z a z ++=-,2x y z b y ++=-,2x y z c x ++=-,由③得,,Z a b c ∈,由①得a b c z <<<,由②得02x y z a z ++=->,所以,,n a b c S ∈,因为a b x +=,a c y +=,b c z +=,所以a b +,b c +,c a +均属于A ,即集合A 是集合n S 的“期待子集”【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.。
北京市朝阳区2024-2025学年高一上学期9月月考数学试题含答案
高一数学(答案在最后)2024.9本试卷共4页,150分.考试时长120分钟.考生务必将答案写在答题纸上,在试卷上作答无效.考试结束后,只需将答题纸交回.一、选择题(共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知集合{12},{3}M xx N x x =<<=<∣∣,则M N = ()A.{2}xx <∣ B.{3}xx <∣ C.{12}x x <<∣ D.{13}xx <<∣【答案】C 【解析】【分析】根据题意,由交集的运算,代入计算,即可得到结果.【详解】因为集合{12},{3}M x x N x x =<<=<∣∣,则{12}M N xx ⋂=<<∣.故选:C2.已知全集{}2,1,0,1,2,3U =--,集合{Z |2}A x x =∈<,则U A =ð()A.{}1,0,1- B.{}2,2,3- C.{}2,1,2-- D.{}2,0,3-【答案】B 【解析】【分析】由补集的运算即可求解.【详解】解:{}{Z |2}1,0,1A x x =∈<=-,{}2,2,3U A ∴=-ð,故选:B .3.已知x ,y ∈R ,则“x y >”是“22x y >”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D 【解析】【分析】通过特例,结合充分必要条件的判定方法即可判断.【详解】()12->-,而()()2212-<-同样()()2221->-,而()21-<-,所以充分性、必要性都不成立.故选:D4.命题:2R,0x x ∀∈≥的否定是()A.2R,0x x ∀∉≥B.2R,0x x ∀∈<C.2R,0x x ∃∈<D.2R,0x x ∃∈≥【答案】C 【解析】【分析】利用全称量词命题的否定是存在题词命题,再直接写出命题的否定.【详解】命题:2R,0x x ∀∈≥是全称量词命题,其否定是存在量词命题,所以命题:2R,0x x ∀∈≥的否定是:2R,0x x ∃∈<,故选:C5.设a ,b 为非零实数,则“0a b >>”是“11a b<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的定义判断即可.【详解】由0a b >>可以得到11a b<,故充分性成立,当2a =-,3b =-时满足11a b<,但是推不出0a b >>,故必要性不成立,所以“0a b >>”是“11a b<”的充分而不必要条件.故选:A6.函数224()(0)x x f x x x-+=>的最小值及取得最小值时x 的值为()A.当2x =±时最小值为2B.当1x =时最小值为3C.当0x =时最小值为4D.当2x =时最小值为2【答案】D 【解析】【分析】将函数224()x x f x x -+=化成4()2f x x x =+-的形式,然后用均值不等式即可求出答案.【详解】函数2244()2x x f x x x x-+==+-,当0x >时,4222x x +-≥=,当且仅当4x x =,即2x =时,等号成立,所以当2x =时最小值为2.故选:D.7.《西游记》、《三国演义》、《水浒传》和《红楼梦》被称为中国古典小说四大名著.学校读书社共有100位学生,其中阅读过《西游记》或《红楼梦》的人数为90,阅读过《红楼梦》的人数为80,阅读过《西游记》且阅读过《红楼梦》的人数为60,则这100名学生中,阅读过《西游记》的学生人数为()A.80B.70C.60D.50【答案】B 【解析】【分析】利用韦恩图分析出只阅读过西游记的人数为10,从而求出答案.【详解】如图所示,因为阅读过《红楼梦》的人数为80,阅读过《西游记》且阅读过《红楼梦》的人数为60,所以只阅读过红楼梦的人数为20,又其中阅读过《西游记》或《红楼梦》的人数为90,故只阅读过西游记的人数为10,所以这100名学生中,阅读过《西游记》的学生人数为601070+=.故选:B8.已知0a >,0b >,2a b +=,则14y a b=+的最小值是()A.72B.4C.92D.5【答案】C 【解析】【分析】将2a b +=化为12a b+=,即可将14y a b=+变形为142a b y a b +⎛⎫⎛⎫=+ ⎪⎪⎝⎭⎝⎭,结合基本不等式即可求得答案.【详解】0,0,2a b a b >>+= ,12a b+∴=,14142a b y a b a b +⎛⎫⎛⎫∴=+=+ ⎪⎪⎝⎭⎝⎭52525922222222b a b a a b a b =++≥+⋅=+=(当且仅当423b a ==时等号成立),故选:C9.已知不等式2304kx kx -+>对任意的实数x 恒成立,则实数k 的取值范围为()A.{|03}k k <<B.{|03}k k <≤C.{|03}k k ≤<D.{|03}k k ≤≤【答案】C 【解析】【分析】先对k 的取值进行分类讨论,在0k ≠时,需结合二次函数的图象分析,得到与之等价的不等式组,求解即得.【详解】因不等式2304kx kx -+>对任意的实数x 恒成立,则①当0k =时,不等式为304>,恒成立,符合题意;②当0k ≠时,不等式在R 上恒成立等价于20Δ30k k k >⎧⎨=-<⎩,解得:03k <<.综上可得:实数k 的取值范围为{|03}k k ≤<.故选:C.10.已知正数a ,b 满足26a b +=,则1221a b +++的最小值为()A.78B.109C.910 D.89【答案】C 【解析】【分析】由26a b +=,得到22210a b +++=,再利用“1”的代换求解.【详解】解:因为26a b +=,所以22210a b +++=,所以()1211419222521102221010a b a b a b ⎡⎛⎫+=++++≥+=⎢ ⎪++++⎝⎭⎢⎣,当且仅当()2222b a +=+,即43a =,73b =时,等号成立.故选:C二、填空题(共5小题,每小题5分,共25分).11.已知x >0,y >0,x +y =2,则xy 的最大值为________.【答案】1【解析】【分析】利用基本不等式求解即可.【详解】因为x >0,y >0所以x y +≥即2≤,解得1xy ≤,当且仅当1x y ==时等号成立.则xy 的最大值为1.故答案为:1.12.若不等式20ax bx c --<的解集是{23}xx <<∣,则不等式20cx bx a -->的解集为__________.【答案】1123x x ⎧⎫-<<-⎨⎬⎩⎭【解析】【分析】根据不等式的解集与对应方程的关系,结合韦达定理,求,,a b c 的关系,代入所求不等式,即可求解.【详解】由题意可知,0236a ba c a⎧⎪>⎪⎪=+⎨⎪⎪-=⎪⎩,5b a =,6c a =-,则220650cx bx a ax ax a -->⇔--->,即26510x x ++<,即()()21310x x ++<,解得:1123x -<<-,所以不等式的解集为1123x x ⎧⎫-<<-⎨⎩⎭.故答案为:1123x x ⎧⎫-<<-⎨⎩⎭13.某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人___________台.【答案】300【解析】【分析】由总成本表示出平均成本,利用基本不等式求最小值和取最小值时x 的值.【详解】购买x 台机器人的总成本为21()150600P x x x =++,则平均成本()150112600P x x x x =++≥+=,当且仅当150600x x=,即300x =时,平均成本最低为2万元.故答案为:300.14.已知1x >,则11y x x =+-的最小值为_____,当y 取得最小值时x 的值为______.【答案】①.3②.2【解析】【分析】利用基本不等式求出最小值以及y 取得最小值时x 的值.【详解】10x -> ,11111311y x x x x ∴=+=-++≥+=--当且仅当2x =时取等号故答案为:3;215.设S 为非空数集,若,a b S ∀∈,都有a b +,a b -,ab S ∈,则称S 为封闭集.下列命题:①整数集是封闭集;②自然数集是封闭集;③封闭集一定是无限集;④若S 为封闭集,则一定有0S ∈.其中所有真命题的序号为_______________.【答案】①④##④①【解析】【分析】根据集合新定义进行验证即可.【详解】解:对于①,当a ∈Z ,b ∈Z 时,a b +,a b -,ab ∈Z ,即整数集是封闭集,故①正确;对于②,当2a =,3b =时,1N a b -=-∉,自然数集不是封闭集,故②错误;对于③,当0a b ==时,{}0是封闭集,但不是无限集,故③错误;选项④,当a b =时,0a b -=,故0S ∈,,故④正确;故答案为:①④.三、解答题(共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.)16.设集合{}(){}222320,2150A x x x B x x a x a =-+==+++-=.(1)若{}2A B = ,求实数a 的值;(2)若A B A = ,求实数a 的取值范围.【答案】(1)1-或3-.(2)3a ≤-【解析】【分析】(1)由题可知2B ∈,将其代入集合B 中的方程求出a ,然后检验是否满足题意即可;(2)由题可知B A ⊆,因此根据判别式∆讨论集合B 中元素的个数即可.【小问1详解】由2320x x -+=得=1或=2,故集合{}1,2.A ={}2,2AB B ⋂=∴∈ ,代入B 中的方程,得2430a a ++=,解得=−1或3a =-;当=−1时,{}{}2402,2B xx =-==-∣,满足条件;当3a =-时,{}{}24402B xx x =-+==∣,满足条件;综上可得,a 的值为1-或3-.【小问2详解】对于集合B 中的方程,()()22Δ4(1)4583a a a =+--=+,A B A B A ⋃=∴⊆ ,①当Δ0<,即3a <-时,B =∅满足条件;②当Δ0=,即3a =-时,{}2B =,满足条件;③当Δ0>,即3a >-时,{}1,2B A ==才能满足条件,则由根与系数的关系得:()21221125a a ⎧+=-+⎨⨯=-⎩解得2527a a ⎧=-⎪⎨⎪=⎩,所以a 无解,综上可得,a 的取值范围是3a ≤-.17.已知集合{}2340,{0}A xx x B x x a =--≤=->∣∣.(1)当4a =时,求A B ;(2)若()A B =∅R ð,求实数a 的取值范围.【答案】(1){}1A B x x ⋃=≥-(2)1a <-【解析】【分析】(1)化简集合,A B ,直接利用并集运算求解即可;(2)化简集合,根据交集运算结果求解参数.【小问1详解】由题知,{}{}234014A xx x x x =--≤=-≤≤∣,{}{0}B x x a x x a =->=>∣,因为4a =,所以{}4B x x =>,所以{}1A B x x ⋃=≥-.【小问2详解】因为()A B =∅R ð,且{}14A x x =-≤≤,{}R B x x a =≤ð,所以1a <-.18.解关于x 的不等式:()2330ax a x -++≤.【答案】答案见解析.【解析】【分析】分类讨论解含参的一元二次不等式即得.【详解】不等式()2330ax a x -++≤化为(3)(1)0ax x --≤,当0a =时,解得1x ≥;当0a <时,不等式化为3(1)0x x a --≥,解得3x a≤或1x ≥;当0a >时,不等式化为3()(1)0x x a--≤,若0<<3a ,即31a>,解得31x a ≤≤;若3a =,解得1x =;若3a >,即31a <,解得31x a≤≤,所以当0a =时,原不等式的解集为{|1}x x ≥;当0a <时,原不等式的解集为3{|1}x x a a≤≥或;当0<<3a 时,原不等式的解集为3{|1}x x a≤≤;当3a =时,原不等式的解集为{1};当3a >时,原不等式的解集为3{|1}x x a≤≤.19.(1)已知3x >,求43x x +-的最小值.(2)已知102x <<,求()12x x ⋅-的最大值.【答案】(1)7;(2)18.【解析】【分析】(1)配凑后根据基本不等式求出和的最小值即可;(2)变形后根据基本不等式求出积的最大值即可.【详解】(1)因为3x >,所以30x ->,所以()443333x x x x +=+-+--∵()4343x x +-≥=-∴473x x +≥-(当且仅当5x =时等号成立),所以所求最小值为7.(2)因为102x <<,所以120x ->,所以()()()2212111122122248x x x x x x -⋅-=⨯≤+-⨯=,当且仅当212x x =-,即14x =时等号成立,所以所求最大值为18.20.已知:p x A ∈,且{}|11A x a x a =-<<+;:q x B ∈,且{}2|430B x x x =-+≥.(1)是否存在实数a ,使得A B =∅ ,A B = R ,若存在求出实数a 的值,若不存在,说明理由;(2)若p 是q 的充分条件,求实数a 的取值范围.【答案】(1)存在,2a =(2)(][),04,-∞+∞U 【解析】【分析】(1)化简集合B ,假设存在实数a 满足条件,由此可列不等式求a ;(2)结合充分条件定义可得A B ⊆,根据集合包含关系列不等式求a 的取值范围.【小问1详解】解不等式2430x x -+≥,得3x ≥或1x ≤,故{|3B x x =≥或}1x ≤假设存在a ,使得A B =∅ ,A B =R ,则有13a +=且11a -=,解得2a =,所以当2a =时满足题意;【小问2详解】若p 是q 的充分条件,则A B ⊆,则11a +≤,或13a -≥解得0a ≤,或4a ≥,所以a 的取值范围为(][),04,∞∞-⋃+.21.设(){}{}12,,,0,1,1,2,,n n i S x x x x i n =⋯∈=⋯(n 为正整数),对任意的()12,,,n x x x α=⋅⋅⋅,()12,,,n y y y β=⋅⋅⋅,定义1122n nx y x y x y αβ⋅=++⋅⋅⋅+(1)当3n =时,()1,1,0α=,()1,0,1β=,求αβ⋅;(2)当3n =时,集合n A S ⊆,对于任意α,A β∈,αβ⋅均为偶数,求A 中元素个数的最大值;(3)集合n A S ⊆,对于任意α,A β∈,αβ≠,均有0αβ⋅≠,求A 中元素个数的最大值.【答案】(1)1(2)4(3)12n -【解析】【分析】(1)直接根据定义计算即可;(2)当3n =时,集合n A S ⊆,对于任意α,A β∈,αβ⋅均为偶数,则有两种情况,一种任意两个元素相同位置不能同时出现1,另一种情况必有两个相同位置同时出现1,分别讨论即可判断个数最大值;(3)由()12,,,n x x x α=⋅⋅⋅得到()121,1,,1n x x x γ=--⋅⋅⋅-,再根据0αγ⋅=且0αβ⋅≠,得到A γ∉,由此即可判断A 中个数.【小问1详解】当3n =时,1122331110011x y x y x y αβ⋅=++=⨯+⨯+⨯=;【小问2详解】因为112233x y x y x y αβ⋅=++均为偶数,所以结果为0或2,若0αβ⋅=,则A 中的任意两个元素乘积为0,即()()()()0,0,0,0,0,1,0,1,0,1,0,0共有四个元素,若2αβ⋅=,则A 中必有两个位置为1,即()()0,1,1,1,1,1,所以A 中元素个数的最大值为4;【小问3详解】()12,,,n x x x α=⋅⋅⋅,α中的“1”变为“0”,“0”变为“1”,得到()121,1,,1n x x x γ=--⋅⋅⋅-,可得0αγ⋅=,因为0αβ⋅≠,A α∈,所以A γ∉,因为n S 中有2n 个元素,则A 中元素个数最多有1222nn -=个,所以A 中元素个数的最大值为12n -.【点睛】关键点点睛:本题主要考查集合中元素个数的最大值求法,关键在于理解材料中的定义,根据条件要求确定元素位置上的取值不同,再进行讨论得到个数最大值,而在不限n 时,需根据要求判断出对立条件下的情况,即可求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(每小题5分,共50分)
1.已知集合M ={}
2x y y =,用自然语言描述M 应为
A .函数2y x =的值域
B .函数2y x =的定义域
C .函数2y x =的图象上的点组成的集合
D .以上说法都不对.
2.下列关系中正确的个数为( );
①R ∈2
1
②Q ∉2③*|3|N ∉-④Q ∈-|3| A .1 个 B .2 个 C .3 个 D .4 个 3.设集合A={x |-1≤x ≤2},B={x |0≤x ≤4},则A ∩B=( )
A .[0,2]
B .[1,2]
C .[0,4]
D .[1,4] 4.集合A={x|x 2-2x-1=0,x ∈R}的所有子集的个数为( )
A .2
B .3
C .4
D .1 5.函数
2
1)(--=
x x x f 的定义域为( )
A .[1,2)∪(2,+∞)
B .(1,+∞)
C .[1,2)
D .[1,+∞) 6.下列各组中的两个函数是同一函数的为 ( )
A .2()y x =与y x =
B .2y x =与2()y x =
C .3
3
y x =与2
x y x
=D .33()y x =与y x =
7.二次函数342+-=x x y 在区间(]41,
上的值域是 A .[)∞+-,
1 B .(]30, C .[]31,- D .(]31,- 8.已知集合{239}A ⊆,,且A 中至少有一个奇数,则这样的集合有( )。
A .2个
B .6个
C .5个
D .4个 9.下列集合A 到集合B 的对应f 是映射的是( )
A .A f
B A :},1,0,1{},1,0,1{-=-=中的数的平方 B .A f B A :},1,0,1{},1,0{-==中的数的开方
C .A f Q B Z A :,,==中的数的倒数
D .A f B R A :},{,正实数==中的数取绝对值
10.某学生离家去学校,由于怕迟到,所以一开始就匀速跑步,等跑累了再匀速走余下的路程. 在下图中纵轴表示离学校的距离d ,横轴表示出发后的时间t ,则下图中的四个图形中较符合该学生走法的是( )
A B C D
二.填空题(每小题5分,共25分)11.用列举法表示集合(){}N y N x y x y x ∈∈=+,,3,:________ .
12.已知{}菱形=A ,{}正方形=B ,{}平行四边形=C ,则C B A ,,之间的关系为________
13.已知函数f(x)=⎩⎨⎧<-≥+,
0,4,
0,12x x x x 则f(f(-4))= ___________________14.设全集U=R ,集合{}|214,M x a x a a R =-<<∈,{}|12N x x =<<,若N M ⊆,则实数a
的取值范围是________
15.若函数)(x f 的定义域是[)2,2-,则函数)12(+=x f y 的定义域是________ 三.解答题(每小题9分,共45分)
16. 求函数21
()21
f x x x x =--++的定义域.
17.已知集合A={x|
5
3
2+-x x <0}, B={x|x 2-3x+2<0}, U=R ,求(1)A ∩B ;(2)A ∪B ;(3)B A C U )(.
18.已知.,},51|{}32|{的取值范围求若或,a B A x x x B a x a x A φ=⋂>-<=+≤≤=
19.已知{}3≥=x x
M ,{}5≤=x x
N ,{}0≥-=a x x
Q ,令N M P =
(1)求集合P ;
(2)若{}Q P x x =≤≤54,求实数a 的值; (3)若Q P ⊆,求实数a 的取值范围.
20.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >的解集为(1,3). (1)若方程()60f x a +=有两个相等的根,求()f x 的解析式; (2)若函数()f x 的最大值不小于8,求实数a 的取值范围。
参考答案
一.选择题(每小题5分,共50分)1. A2. B 3、 A4. C 5、A 6. D 7.C 8. B 9. A 10.D 二.填空题:本大题共4个小题,每小题5分,共25分。
11.{(0,3),(1,2),(2,1),(3,0)} 12.C A B ⊆⊆ 13.13 14.
1
12
a ≤≤
15.[)2
1
,23[-
三.解答题(每小题9分,共45分)
16. 依题意得220(1)
10(2)x x x ⎧--+≥⎨+≠⎩
由(1)得 21x -≤≤
由(2)得1x ≠-
则()f x 的定义域为[2,1)(1,1]--。
17.解:A={x|
532+-x x <0}={x|-5<x <2
3
} B={x|x 2-3x+2<0}={x|1<x<2}
(Ⅰ)A ∩B={x|1<x <2
3
}
(Ⅱ)A ∪B={x|-5<x<2}
(Ⅲ)(uA )={x|x ≤-5或x ≥2
3
}
(uA )∩B={x|2
3
≤x<2}
18.3,32>∴+>=a a a A ,则若φ,此时符
合题意;
22
1
531
232≤≤-∴⎪⎩
⎪
⎨⎧≤+-≥+≤≠a a a a a A ,则若φ,此时
亦符合题意。
}3,22
1
|{>≤≤-
∴a a a a 或的取值范围是 19.(1)P=[3,5]
(2) a=4 (3)a ≤3
20、解:f(x)=ax 2+bx +c ,则f(x)>2x ⇔ax 2+(b -2)x +c>0.
已知共解集为(1,3),
0242432a b b a a c
c a a
⎧
⎪<⎪
-⎪-
=⇒=-⎨⎪⎪=⇒=⎪⎩∴, ∴f(x)=ax 2+(2-4a)x +3a . (1)若f(x)+6a=0有两个相等实根,故ax 2-(4a -2)x +9a=0
△=4+16a 2-16a -36a 2=0,解得a=-1或15
(舍去正值)
∴a=-1
即f(x)=-x 2+6x -3 (2)由以上
可知
222141
()()a a a f x a x a A
--+-=-+
, ∵a<0,
2max
2241
()41841232.0,
(,2][23,0).
a a f x a
a a a a a a a a a -+-∴=-+-⇔++-+--<-∞---+≥8得
≥≥0
解得≥≤3又
的取值范围是3。