水解酸化工艺

合集下载

水解酸化池工艺详解

水解酸化池工艺详解

水解酸化池工艺详解有关水解酸化工艺的解释,大家一起来学习吧!在回用水处理工艺中,水解酸化池的作用是重要的一个环节。

水解是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必需先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。

酸化是有机物降解的提速过程,由于它将水解后的小分子有机物步转化为简洁的化合物并分到细胞外。

这是回用水废水处理工艺中水解酸化作为预处理单元的缘由。

水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。

我公司污水站的水解酸化池,采纳下进上出的翻流运作型态,上升流速取0.765m/h,有效水深为6.5m。

设计进水流量为900m³/h,水力停留时间按8.5h,总有效容积为7600m3。

水解酸化池共4座,每座9格,共36格。

每格水解酸化池设置有4个梯形泥斗,在泥斗下部采纳水平喷射布水方式能使布水匀称。

每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。

一格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采纳负压气提排泥方式可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。

水解酸化池内采纳了立体弹性组合填料,填料高度3m,上部1m爱护区,底部2.4m布水区,每座池子组合填料为972m³。

池内采纳的立体弹性填料的丝条呈立体匀称排列辐射状态,使气、水、生物膜得到充分混和接触交换,生物膜不仅能匀称地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。

填料的作用事实上就是给微生物供应一个生长平台,微生物附着在填料上可增加污水与微生物的接触面积,提高水解酸化池的处理效率。

简洁的说填料就是细菌的附着床,其目的就是增加生物量和提高微生物与废水接触面积。

水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。

医院污水处理厂的设计-水解酸化-接触氧化工艺

医院污水处理厂的设计-水解酸化-接触氧化工艺
医院污水处理厂的 设计-水解酸化-接 触氧化工艺
contents
目录
• 医院污水处理厂设计概述 • 水解酸化工艺介绍 • 接触氧化工艺介绍 • 水解酸化-接触氧化联合工艺介绍 • 医院污水处理厂设计案例分析
01
CATALOGUE
医院污水处理厂设计概述
设计原则与目标
高效性
确保污水处理效率高,达到排放标准 。
水解酸化工艺的应用场景
医院污水处理
医院产生的污水含有大量的有机物和病菌,水解酸化工艺能 够有效去除有机物和病菌,为后续处理提供有利条件。
工业废水处理
对于含有高浓度有机物的工业废水,如食品加工废水、造纸 废水等,水解酸化工艺能够提高有机物去除率,降低后续处 理难度。
03
CATALOGUE
接触氧化工艺介绍
接触氧化工艺原理
接触氧化工艺是一种生物处理技术,通过在曝气池中设置填 料,使微生物附着在填料表面生长,形成生物膜。在曝气过 程中,废水与生物膜充分接触,废水中的有机物被微生物吸 附并氧化分解,最终转化为无害的物质。
接触氧化工艺利用了生物氧化的原理,通过提供足够的氧气 和适宜的环境条件,促进微生物的生长和代谢,从而达到净 化废水的目的。
酸化菌作用
酸化菌将小分子有机物进一步转化为 脂肪酸和醇类物质,为后续好氧处理 提供有利条件。
水解酸化工艺特点
提高有机物去除率
水解酸化工艺能够提高有机物的去除率,降低后续处 理负荷。
减少能耗
水解酸化工艺在厌氧环境下进行,相较于好氧处理, 能够减少能耗。
产生恶臭气体
水解酸化工艺过程中会产生一定量的恶臭气体,需要 注意通风和除臭措施。
04
CATALOGUE
水解酸化-接触氧化联合工艺介绍

水解酸化+接触氧化+混凝沉淀原理

水解酸化+接触氧化+混凝沉淀原理

水解酸化+接触氧化+混凝沉淀原理1. 引言1.1 什么是水解酸化水解酸化是一种水处理技术,通过向水中加入化学药剂来降低水的酸度。

在水中,存在着一定量的氢离子和氢氧根离子,当水的酸度增加时,氢离子的浓度会增加,导致水的PH值下降,水呈酸性。

水解酸化就是通过加入碱性物质来中和水中的酸性物质,使水的PH值逐渐恢复到中性或碱性。

水解酸化的主要作用是改善水的饮用水质量、减少污水中的有害物质、促进水中有害物质的沉淀和沉淀。

水解酸化的过程是一个化学反应过程,通过加入化学药剂使水中的酸性物质与碱性物质发生中和反应,生成氧化物质或其他中性物质,并释放出对水体有益的离子物质。

水解酸化不仅可以改善水质,还可以减少管道、设备的腐蚀,延长使用寿命。

水解酸化在工业生产、家庭生活中都有着广泛的应用。

通过水解酸化处理水质,可以保护环境,改善生活质量。

1.2 什么是接触氧化接触氧化是一种利用氧气的化学反应来去除废水中有机物质的高效处理技术。

在接触氧化过程中,氧气与废水中的有机物质在催化剂的作用下发生氧化反应,有机物质被转化为无害的物质,从而实现废水的处理和净化。

接触氧化过程中,氧气通过气体或气泡的方式与废水充分接触,促进氧气和废水中的有机物质之间的反应速度,加快废水处理的效率。

接触氧化技术被广泛应用于废水处理领域,特别是对高浓度有机废水的处理效果显著。

通过接触氧化,可以将有机废水中的有害物质氧化成无害的物质,提高废水的处理效率和质量。

接触氧化还可以减少处理过程中的化学药剂使用量,降低处理成本和环境污染。

接触氧化是一种高效、环保的废水处理技术,在工业生产和环境保护中具有重要的应用价值。

通过不断优化技术和提高设备性能,接触氧化技术将更好地满足不同领域对废水处理的需求,为实现清洁环境和可持续发展作出贡献。

1.3 什么是混凝沉淀混凝沉淀是一种常见的水处理技术,主要是通过添加混凝剂使水中的悬浮物和胶体颗粒凝聚成较大的团簇,然后沉降下来形成沉淀物。

关于水解酸化工艺的详解

关于水解酸化工艺的详解

关于水解酸化工艺的详解!1、水解酸化法的机理厌氧生物反应包括水解、酸化和甲烷化三个大的阶段,将反应控制在水解和酸化两个阶段的反应过程,可以将悬浮性有机物和大分子物质(碳水化合物、脂肪和脂类等)通过微生物胞外酶水解成小分子,小分子有机物在酸化菌作用下转化成挥发性脂肪酸的过程。

在这一过程中同时可以将悬浮性固体水解为溶解性有机物、将难生物降解的大分子物质转化为易生物降解的小分子物质。

首先,水解反应器中大量微生物将进水中颗粒状颗粒物质和胶体物质迅速截留和吸附,这是一个物理过程的快速反应。

一般只要几秒钟到几十秒即可完成。

因此,反应是迅速的。

截留下来的物质吸附在水解酸化污泥的表面,慢慢地被分解代谢,其在系统内的污泥停留时间要大于水力停留时间。

在大量水解酸化细菌的作用下,大分子、难于生物降解物质转化为易于生物降解的小分子物质后,重新释放到液体中。

在较高的水力负荷下随水流出系统。

由于水解和产酸菌世代期较短,往往以分钟和小时计,因此,这一降解过程也是迅速的。

在这一过程中溶解性 BOD、COD 的去除率虽然从表面上讲只有10%左右,但是由于颗粒状有机物发生水解增加了系统中溶解性有机物的浓度,因此,溶解性BOD、COD 去除率远大于10%。

但是由于酸化过程的控制不能严格划分,在污泥中可能仍有少量甲烷菌的存在,可能产生少量的甲烷,但甲烷在水中的溶解度也相当可观,故以气体形成释放的甲烷量很少。

可以看出,水解反应器集沉淀、吸附、网捕和生物絮凝等物理化学过程,与水解、酸化和甲烷化过程等生物降解功能于一体。

2、水解酸化法的反应器类型水解酸化反应器主要包括升流式水解反应器、复合式水解反应器及完全混合式水解反应器。

此外,水解反应器还可以包括采用其他厌氧反应器型式实现水解酸化的反应器,如厌氧折流板反应器、厌氧接触反应器等。

1、升流式水解反应器升流式水解反应器的示意图见图 1,水解酸化微生物与悬浮物形成污泥层,污水通过布水装置自反应器底部均匀上升至顶部出水堰排出过程中,污泥层可截留污水中悬浮物,并在水解酸化菌作用下降解有机物、提高污水可生化性等。

水解酸化池工艺详解

水解酸化池工艺详解

水解酸化池工艺详解在回用水处理工艺中水解酸化池的作用是重要的一个环节。

水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。

酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。

这是回用水废水处理工艺中水解酸化作为预处理单元的原因。

水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。

本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取0.765 m/h,有效水深为6.5m。

设计进水流量为900m³/h,水力停留时间按8.5h,总有效容积为7600m3。

水解酸化池共4座,每座9格,共36格。

每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。

每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。

每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。

水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部2.4m布水区,每座池子组合填料为972m³。

池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。

填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。

简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。

水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。

微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应;酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。

水解酸化-接触氧化工艺处理印染废水

水解酸化-接触氧化工艺处理印染废水

水解酸化-接触氧化工艺处理印染废水\摘要:印染行业是工业废水排放大户,本文对印染废水的处理方法进行归纳总结,着重介绍一种水解酸化—接触氧化法生化处理为主的印染废水处理方法。

水解酸化—接触氧化法是近年提出的一种新型处理工业废水的方法。

水解酸化串联接触氧化解决了印染废水中难降解物质多、单一传统活性污泥处理效果差的问题,这一工艺可产生较好的经济效益及处理效果,并且使其更易满足营养物质、温度、氨氮去除率的要求。

本文试设计水解酸化—好氧生物接触氧化工艺处理高浓度印染废水。

印染废水经工艺处理后CODcr去除率高达95.3%,SS去除率为92.5%,该工艺具有污泥少,耐冲击负荷能力强,难降解有机物去除率高等优点,在纺织印染废水处理中具有实用性。

关键词:印染废水水解酸化生物接触氧化前言随着纺织工业的高速发展,印染废水已经成为水系环境的重点污染源之一.染料是印染废水中的主要污染物,全世界投放市场的染料多达30000种,每年以废弃物的形式排放到环境中染料约为6×108kg。

特别是近年来化学纤维织物的发展,纺真丝的兴起和印染后整理技术的进步使PV A染料,人造丝碱解物(主要是邻苯二甲酸类物质)新型助剂等难生化降解有机物大量进入印染废水,其COD 浓度也由原先的数百毫克/升到2000~3000毫克/生,从而使得原有生物处理系统COD去除率从70%下降到50%左右,甚至更低,传统的生物处理工艺已受到严重挑战,传统的沉淀,气浮法对着类型的印染废水的COD去除率也仅为30%左右,因此,印染废水的经济有效的处理技术正日益成为当今环保的一大难题。

[1]1.废水来源及起特点印染废水的水质复杂,污染源按来源分为两类:一类来自纤维原料本身的夹带物,另一类是加工过程中所用的浆料,油剂,染料,化学助剂等。

分析其废水特点,主要有以下方面:1.1 水量大,有机物污染物含量高,色度深,碱性和pH值变化大,水质变化剧烈。

因此纤织物的发展和印染后整理技术的进步,使PV A染料,新型助剂等难以生化降解的有机物大量进入印染废水中,增加了处理难度1.2由于不同染料,不同助剂,不同织物的染整要求,所以废水中的pH值,CODcr,BOD5,颜色等也各不相同,但其共同特点是BOD5/ CODcr值均很低,一般在20%左右,可生化性差,因此需要采取措施,使BOD5/ CODcr值提高到30%左右或更高些,以利于进行生化处理1.3印染废水的碱减量废水,其CODcr值有的可达10万mg/L以上,pH≥12,因此必须进行预处理,把碱收回,并投加酸降低pH值,经预处理达到一定要求后,再进入调节池,与其他的印染废水一起进行处理1.4 印染废水的另一个特点是色度高,有的可达4000倍以上。

水解酸化工艺特点及其效果评定指标问题探析

水解酸化工艺特点及其效果评定指标问题探析

水解酸化工艺特点及其效果评定指标问题探析【摘要】水解酸化处理技术是在厌氧处理的基础上派生出来的一种工艺。

它是基于产甲烷菌与水解产酸菌生长速度不同,将厌氧生物处理过程控制在反应时间较短的水解酸化阶段,即在大量水解细菌、产酸菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的过程。

【关键词】水解酸化;评定指标;好氧工艺;有机物比例;可持续发展0 引言水解在化学上是指化合物和水进行的一类反应的总称。

在废水生物处理中,水解指的是有机底物进入细胞前,在胞外进行的生物化学反应。

水解是复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。

酸化则是一类典型的发酵过程,即产酸发酵过程,酸化是有机底物既作为电子受体也是电子供体的生物降解过程。

在酸化过程中溶解性有机物被转化为以挥发酸为主的末端产物。

1 水解酸化菌群特征在水生化处理过程中,微生物起决定性作用,微生物种群的组成与数量在很大程度上会影响出水水质,所以通过对微生物种群的组成分析对揭示生物处理机理十分重要。

在研究中发现,水解与酸化过程是相互作用,由相同的微生物种群完成的,所以这两个过程是不可分割的。

水解酸化段的生物相主要是发酵细菌。

发酵细菌是一个相当复杂而又庞大的细菌群,主要指兼性厌氧菌和专性厌氧菌,属异养菌,其中兼性菌数量要占到80%以上。

发酵细菌主要包括纤维素分解菌、淀粉分解菌、脂肪分解菌、蛋白质分解菌等,具有繁殖速度快,适应能力很强,对毒性不敏感的特性。

2 水解酸化工艺优点事实上,水解池是一种以水解酸化菌为主的厌氧上流式污泥床,水解工艺是一种预处理工艺,其后可以采用各种好氧工艺。

在水解酸化—好氧生物处理工艺中,水解酸化工艺要完成水解和酸化两个过程(酸化不一定彻底)。

采用水解池较之全过程的厌氧池(或消化池)具有以下的优点:(1)水解酸化过程可在常温下使固体迅速液化、降解,能有效减少废弃污泥量,水解好氧处理系统产泥量可减少28%,不需要经常加热的中温消化池;(2)反应器中,不需要搅拌器和水、气、液三相分高器,降低了造价并便于维修;(3)由于反应控制在第二阶段完成之前,出水无厌氧发酵所具有的不良气味,改善了污水处理厂的环境;(4)水解、产酸阶段的产物主要为小分子有机物,可生物降解性一般较好。

化工废水处理过程中水解酸化工艺的应用

化工废水处理过程中水解酸化工艺的应用

化工废水处理过程中水解酸化工艺的应用摘要:近几年我国的经济发展非常的快速,化工业发展的步伐也在不断加快,使得废弃物的量增大了很多,对环境造成了很大的污染,甚至已经开始危害人们的健康,处理化工产的废水就成了迫在眉睫的问题。

关键词:化工废水;处理;水解酸化工艺;应用1 水解酸化工艺的介绍水解酸化处理废水的发放大致可以分为四个阶段:①水解阶段。

就是说这个阶段的微生物的氧化催化反应是主要由于释放的胞外自由酶以及连接在细胞外壁的那些固定酶来发挥作用;②发酵或者说是酸化阶段。

酸化菌把上述小分子转化成为更加简单的一些化合物并将其分泌到细胞外,挥发性脂肪酸、乳酸以及醇类等都是这个过程的产物;③产酸阶段。

就是说挥发性脂肪酸、乳酸以及醇类被进步的转化成为碳酸、氢气、乙酸以及新的一些细胞物质;④产甲烷阶段,就是指上一个阶段的那些产物被转化成为了二氧化碳、甲烷以及新的一些细胞物质。

上面所说的第一还有第二阶段主要就是将其进行厌氧处理,其反应的时间通常很短,在水解酸化的这个工艺当中,产甲烷菌与水解产酸菌的速度存在着一定的差异,在它们共同作用下,那些不溶性的有机物能够被水解成为溶解性有机物,难生物降解的大分子物质能够被转化成为容易生物降解的小分子物质。

2 水解酸化工艺具备的优点水解酸化工艺和那些单独的好氧或者是厌氧进行比较的话,有下面几个优点:①这种工艺的适合使用的范围非常广,可以适宜较高的那些有机物浓度;②水解酸化工艺反应的容器比较小,操作也非常的方便,投入的资金比较少;③产酸菌还有水解的速度比较快,培养驯化的时间不长;代谢快。

除此之外,对厌氧的条件也比较低,对 PH 变化以及温度也不是很敏感,有利于后期的操作;④可以发挥出比较好的除氮脱磷的作用,对于那些有度物质的敏感性不高;⑤有机物以及悬浮物能够被去除,减少了在后期进行耗氧处理工艺产生的污泥量,从而减小了设备体积。

3 水解酸化工艺在化工废水处理中的应用3.1 在生物化工废水当中的应用在很多的情况下,产生的废水其成分都是非常的复杂,淀粉、啤酒、酒精、抗生素废水等这些工艺废水都是组成生物化工废水的一部分。

污水处理水解酸化工艺

污水处理水解酸化工艺

污水处理水解酸化工艺长期以来,在污水处理领域,好氧生物处理技术一直占据着重要的位置。

然而,近年来.随着越来越多人工合成的有机物和有毒有害化学物质的出现,污水处理尤其是工业污水的处理难度越来越大,传统的单纯依靠好氧生物处理技术已经无法满足需要。

而且好氧法的高运行费用及剩余污泥处理或处置问题也一直是个难题。

水解酸化处理技术由于其高效、低耗、投资省的特点,逐步成为人们关注的焦点。

顾名思义,水解酸化处理方法具有水解和酸化特点。

水解是指大分子有机物在被微生物利用前,在胞外降解为小分子有机物的生物化学反应。

酸化是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。

污水处理过程中,通过水解酸化工艺中较高的污泥浓度和厌氧环境,实现污水中难生物降解有机物的分解和去除,可以降低处理成本,提高处理效率。

一、水解酸化工艺原理有机物的厌氧生物降解过程可分为四个阶段:一是水解阶段,微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化氧化反应,二是发酵(或酸化)阶段,酸化菌将上述小分子转化为更为简单的化合物并分泌到细胞外,主要产物有挥发性脂肪酸、醇类、乳酸等;三是产乙酸阶段,指上一阶段产物被进一步转化为乙酸、氢气、碳酸及新的细胞物质;四是产甲烷阶段,指上一阶段产物被转化为甲烷、二氧化碳及新的细胞物质。

水解酸化工艺就是考虑到产甲烷菌与水解产酸菌生长速度不同,将厌氧处理控制在反应时间较短的厌氧处理第一和第二阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的过程,进而改善有机废水的可生化性,为后续处理奠定良好基。

二、水解酸化工艺特点水解酸化工艺有着突出的特点:①水解酸化阶段的产物主要为小分子有机物,可生物降解性较好,为好氧工艺提供优良的进水水质条件,提高好氧处理的效能,同时可利用产酸菌种类多、繁殖速度快及对环境条件适应性强的特点,简化控制运行条件和缩小设备体积,减少后续处理的反应时间和处理能耗;②厌氧工艺的产泥量远低于好氧工艺(仅为好氧工艺的1/10-1/6),并已高度矿化,易于处理。

酸化工艺流程工艺

酸化工艺流程工艺

水解酸化工艺流程工艺在厌氧条件下的混合微生物系统中,即使严格地控制条件,水解和酸化也无法截然分开,这是因为水解菌实际上是一种具有水解能力的发酵细菌,水解是耗能过程,发酵细菌付出能量进行水解是为了取得能进行发酵的水溶性底物,并通过胞内的生化反应取得能源,同时排出代谢产物(厌氧条件下主要为各种有机酸)。

如果废水中同时存在不溶性和溶解性有机物时,水解和酸化更是不可分割地同时进行。

如果酸化使pH值下降太多时,则不利于水解的进行。

厌氧发酵产生沼气过程可分为水解阶段、酸化阶段、乙酸化阶段和甲烷阶段等四个阶段。

水解酸化工艺就是将厌氧处理控制在反应时间较短的第一和第二阶段,即将不溶性有机物水解为可溶性有机物,将难生物降解的大分子物质转化为易生物降解的小分子有机物质的过程。

一、厌氧酸化工艺的操作步骤1.进水调节与预处理:废水首先进入处理系统之前,可能需要进行初步的物理或化学预处理,如格栅过滤去除大颗粒杂物,沉砂池去除砂粒,甚至化学沉淀法去除部分悬浮物和金属离子,以降低对厌氧微生物的潜在毒性。

2.水解阶段:在厌氧反应器内,首先经历的是水解阶段。

复杂的有机大分子(如蛋白质、脂肪和多聚糖)在水解菌作用下,通过胞外酶的催化,分解为较小的有机分子,如单糖、氨基酸、脂肪酸和甘油等。

3.酸化阶段:经过水解后形成的有机小分子接着在发酵菌的作用下进行酸化发酵。

这一过程中,有机物进一步被转化为挥发性脂肪酸(VFAs,如乙酸、丙酸等)、醇类、氢气和二氧化碳等。

同时,由于VFAs的积累,反应体系的pH值可能会有所下降。

4.控制参数:在整个厌氧酸化过程中,需要严格控制操作参数,包括但不限于:温度:根据所采用的微生物类型(嗜温菌或嗜热菌),维持反应器在适宜的温度范围(如中温厌氧反应器一般在30-40℃)。

pH值:适时调整pH值,使其保持在一个适合微生物生长和代谢的水平,通常在6.5-8.0之间。

污泥负荷:控制进水有机负荷,避免过快的有机物消耗造成系统负荷过重,导致酸化现象。

水解(酸化)工艺与厌氧发酵的区别

水解(酸化)工艺与厌氧发酵的区别

水解(酸化)工艺与厌氧发酵的区别从原理上讲,水解(酸化)是厌氧消化过程的第一、二两个阶段。

但水解(酸化)-好氧处理工艺中的水解(酸化)段和厌氧消化的目标不同,因此是两种不同的处理方法。

水解(酸化)-好氧处理系统中的水解(酸化)段的目的,对于城市污水是将原水中的非溶解态有机物截留并逐步转变为溶解态有机物;对于工业废水处理,主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。

水解工艺的开发过程是从低浓度城市污水开始的,与高浓度废水的厌氧消化中的水解、酸化过程是不同的。

在连续厌氧过程中水解、酸化的目的是为混合厌氧消化过程中的甲烷化阶段提供基质。

而两相厌氧消化中的产酸段(产酸相)是将混合厌氧消化中的产酸段和产甲烷段分开,以便形成各自的最佳环境。

因此,尽管水解(酸化)-好氧处理工艺中的水解(酸化)段、两相法厌氧发酵工艺中的产酸相和混合厌氧消化工艺中的产酸过程均产生有机酸,但是由于三者的处理目的的不同,各自的运行环境和条件有着明显的差异,主要表现在以下几个方面。

(1)氧化还原电位(Eh)不同在混合厌氧消化系统中,由于完成水解、酸化的微生物和产甲烷微生物共处于同一个反应器中,整个反应器的氧化还原电位(Eh)的控制必须首先满足对Eh要求严格的甲烷菌,一般为300mV以下,因此,系统中的水解(酸化)微生物也是在这一电位值下工作的。

而两相厌氧消化系统中,产酸相的氧化还原电位一般控制在-300—-100mV之间。

水解(酸化)-好氧处理工艺中的水解(酸化)段为一典型的兼性过程,只要Eh控制在0mV左右,该过程即可孙里进行。

(2)pH值不同在厌氧消化系统中,消化液的pH值控制在甲烷菌生长的最佳pH值范围,一般为6.8-7.2。

在两相厌氧消化系统中,产酸相的pH值一般控制在6.0-6.5之间,在酸化反应器pH值降低时,丙酸的相对含量增大,而丙酸对后续的甲烷相中的产甲烷菌将产生强烈的抑制作用。

详解水解酸化工艺!

详解水解酸化工艺!

详解水解酸化工艺!在众多的污水处理工艺之中的水解酸化工序始终担负着预处理这一重要环节中的一员。

水解酸化池在各个污水处理工艺中始终扮演着重要的角色。

水解是指污水中的大分子有机物降解过程,在这一过程中大分子有机物想要被微生物使用,就必需先经受水解为小分子有机物这一历练,之后才能进一步被降解。

酸化是指污水中有机物降解提速过程,在这一过程中,它会把水解后的小分子有机物进一步转化为简洁的化合物。

水解酸化池的主要有两个基本的作用:一是可以提高污水的可生化性,将大分子有机物转化为小分子;二是可以去除污水中的COD,将部分有机物降解合成自身细胞。

水解酸化池内一般采纳弹性填料、组合填料等,立体弹性填料的丝条呈立体匀称排列,使气、水、生物膜可以得到充分的混合接触并予以交换,生物膜不仅能匀称地挂在每一根填料之上,保持了良好的活性和空隙可变性,而且能在运行过程中猎取更大的表面积。

池中的填料主要是为了给微生物供应一个生活的平台,微生物附着在填料上这样可以增加污水与微生物的接触面积,进而提高水解酸化池的处理效率和效果。

简洁来说填料就是细菌的附着床,就是为了增加生物量和提高微生物与污水接触面积。

在不同的工艺中水解酸化工序扮演的角色也是不同的。

水解酸化在好氧生物处理工艺中的水解目的主要是将原有污水中的非溶解性有机物转变为溶解性有机物,并把其中难生物降解的有机物转变为易生物降解的有机物,进而提高污水的可生化性,以利于后续的好氧处理;而在厌氧消化工艺中的水解酸化的目的是为厌氧消化过程的甲烷发酵供应底物。

水解酸化处理是一种介于好氧和厌氧处理法之间的工序,可以将其视作厌氧处理第一和其次个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的反应过程。

因此我们也可以将水解酸化池视为兼氧池。

在目前的污水处理安装调试阶段中,水解酸化池的重要工作就是进行污泥的培育,活性污泥的培育我们一般会采纳间歇式的培育方式来进行,设定临时的进水管,并依据需要进行人工投加养分培育,进水采纳前段污水处理厂预培育的污泥液,进水量根据污水池的容积负荷递增投加。

污水处理中的水解酸化工艺

污水处理中的水解酸化工艺
子有机物。
随后,这些小分子有机物在产 氢产乙酸菌的作用下进一步转 化为乙酸和氢气等产物。
水解酸化反应过程中产生的能 量可以用于厌氧发酵的后续阶 段,如甲烷化阶段。
影响因素分析
温度
水解酸化反应过程中温度是一个重要的影 响因素,不同温度条件下厌氧菌的活性不
同,因此需要控制适宜的温度范围。
有机负荷
有机负荷过高或过低都会影响水解酸化反 应的效果,需要根据实际情况进行合理控
随着工业化和城市化的快速发展,污 水处理的需求日益增长,对处理工艺 的要求也越来越高。
水解酸化工艺简介
水解酸化工艺是一种常用的预处理工艺,主要用于将大分子有机物转化为 小分子有机物,提高废水的可生化性。
该工艺通过水解和酸化两个阶段,将不溶性有机物转化为溶解性有机物, 同时释放出沼气等能源物质。
水解酸化工艺具有高效、低耗、环保等特点,在污水处理领域得到了广泛 应用。
某垃圾渗滤液处理厂的水解酸化工艺应用
总结词
强化脱氮除磷
详细描述
针对垃圾渗滤液中高浓度的氨氮和磷,该厂采用水解酸化工艺进行预处理。通 过提高有机物的降解效率和调整运行参数,有效强化了后续生物脱氮除磷的效 果,显著降低了出水的氮、磷含量。
某企业废水处理的水解酸化工艺应用
总结词:节能降耗
详细描述:该企业废水的水解酸化工艺采用了新型的厌氧反应器,实现了高效率的有机物降解。同时 ,该工艺的能耗较低,为企业节省了运行成本。通过合理的工艺控制,保证了出水的水质稳定达标, 实现了废水的资源化利用。
制。
pH值
pH值对水解酸化反应的影响较大,适宜的 pH值范围为5.5-6.5之间。
停留时间
水解酸化反应需要一定的停留时间,停留 时间过短或过长都会影响反应效果,需要 根据实际情况进行合理控制。

水解(酸化)工艺

水解(酸化)工艺

水解(酸化)工艺水解(酸化)工艺属于升流式厌氧污泥床反应器的改进型,适用于处理低浓度的城市污水,它的水力停留时间为3~4小时,能在常温下正常运行,不产生沼气,流程简化,并在基本不需要能耗的条件下对有机物进行降解,降低了造价和运行费用。

水解池内分污泥床区和清水层区,待处理污水以及滤池反冲洗时脱落的剩余微生物膜由反应器底部进入池内,并通过带反射板的布水器与污泥床快速而均匀地混合。

污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。

由于污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解—产酸菌的作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质(如有机酸类)。

经过水解后的污水的可生化性进一步提高,通过清水区排出池外进入后续好氧系统进一步处理。

由于上述原因以及水解酸化的污泥龄较长,所以在污水处理的同时,污泥得以稳定减容。

在水解酸化池中,主要以兼性微生物为主,另含有部分甲烷菌。

水解酸化池中COD的降低,主要是由于微生物的生长过程中吸收有机污染物作为营养物质,以及大分子物质降解为有机酸过程中产生二氧化碳,同时还包括硫酸盐的还原、氢气的产生及少量的甲烷化过程等。

总之,水解(酸化)工艺具有以下特点:1)在城市污水处理中,多功能的水解(酸化)池较功能专一的传统初沉池对各类有机物的去除效率高,节能降耗。

以多功能的水解池取代功能专一的初沉池,水解(酸化)池对各类有机物的去除率远远高于传统的初沉池,其COD、BOD、SS去除率分别达到25-30%、15-25%、65-70%,从数量上降低了对后续处理构筑物的负荷。

水解池用较短的时间和较低的能耗完成了部分有机污染物的净化过程,使该组合工艺较常规工艺节能20%~30%。

2)污泥相对稳定水解(酸化)—曝气生物滤池工艺较常规工艺污泥量减少了15~30%,整个工艺的剩余污泥最终从水解酸化池排出。

水解酸化池加a2o工艺流程

水解酸化池加a2o工艺流程

水解酸化池加a2o工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classicarticles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!水解酸化池加A2O工艺是一种常用的污水处理工艺,主要用于处理工业废水和生活污水。

水解酸化池工艺详解

水解酸化池工艺详解

水解酸化池工艺详解 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-水解酸化池工艺详解在回用水处理工艺中水解酸化池的作用是重要的一个环节。

水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。

酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。

这是回用水废水处理工艺中水解酸化作为预处理单元的原因。

水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。

本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取0.765 m/h,有效水深为6.5m。

设计进水流量为900m3/h,水力停留时间按8.5h,总有效容积为7600m3。

水解酸化池共4座,每座9格,共36格。

每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。

每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。

每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。

水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部 2.4m 布水区,每座池子组合填料为972m3。

池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。

填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。

简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。

水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。

水解酸化

水解酸化

水解酸化1、技术简介水解(酸化)处理方法是一种介于好氧和厌氧处理法之间的方法,和其它工艺组合可以降低处理成本提高处理效率。

水解酸化工艺根据产甲烷菌与水解产酸菌生长速度不同,将厌氧处理控制在反应时间较短的厌氧处理第一和第二阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质的过程,从而改善废水的可生化性,为后续处理奠定良好基础。

水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。

微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。

水解酸化池酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。

从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。

水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。

考虑到后续好氧处理的能耗问题,水解主要用于低浓度难降解废水的预处理。

混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。

而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开,以创造各自的最佳环境。

2、结构酸化水解池内分污泥床区和清水层区,待处理污水以及滤池反冲洗时脱落的剩余微生物膜由反应器底部进入池内,并通过带反射板的布水器与污泥床快速而均匀地混合。

污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。

由于污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解—产酸菌作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质;同时,生物滤池反冲洗时排出的剩余污泥(剩余微生物膜)菌体外多糖粘质层发生水解,使细胞壁打开,污泥液态化,重新回到污水处理系统中被好氧菌代谢,达到剩余污泥减容化的目的。

水解酸化工艺包

水解酸化工艺包

水解酸化工艺包嘿,朋友们!今天咱来聊聊水解酸化工艺包,这可真是个神奇的玩意儿啊!你想想看,污水那叫一个脏啊,各种杂质、污染物搅和在一起,就像一锅乱炖。

但水解酸化工艺包就像是个有魔法的大厨,能把这锅乱炖给调理得有模有样。

它是怎么做到的呢?就好比是一群勤劳的小精灵,在污水里忙忙碌碌。

它们把那些大分子的有机物啊,一点点地拆解开来,变成小分子的,让后续的处理变得容易多了。

这就好像是把一个大西瓜切成小块,吃起来就方便多了,对吧?而且啊,水解酸化工艺包特别皮实,不怎么挑环境。

不管污水有多脏多乱,它都能不嫌弃地冲上去,努力工作。

这多厉害呀!不像有些工艺,稍微有点不合适就闹脾气,罢工啦!它的作用可大了去了。

有了它,污水处理的效率能大大提高,效果也会更好。

就像给污水处理厂安上了一双有力的翅膀,能飞得更高更远。

咱再说说它的安装和使用吧。

这可不像搭积木那么简单哦!得找专业的人来干,不然万一弄错了,那不就白费功夫啦?就好像你要做一道大餐,材料都准备好了,结果步骤弄错了,那做出来的能好吃吗?在运行的时候呢,也得时刻留意着。

就跟照顾小孩子似的,得时刻关心它有没有不舒服,有没有出问题。

要是发现有啥不对劲的地方,得赶紧想办法解决呀!还有哦,水解酸化工艺包也不是万能的。

它虽然厉害,但也得和其他工艺配合好,才能发挥出最大的效果。

这就像打篮球,一个人再厉害也不行,得团队配合,才能赢得比赛呀!总之呢,水解酸化工艺包就是污水处理领域的一个宝贝。

它能让污水变干净,让我们的环境更美好。

咱可得好好珍惜它,让它为我们的生活服务,为我们的地球贡献力量!你们说是不是这个理儿?原创不易,请尊重原创,谢谢!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水解酸化工艺
1、原理
水解酸化净水原理主要包括两个方面:首先是在细菌胞外酶的作用下,将复杂的大分子不溶性有机物水解为简单的小分子水溶性有机物;然后是发酵细菌将水解产物吸收进细胞内,排出挥发性脂肪酸(VFA)、醇类、乳酸等代谢产物。

在厌氧条件下,水解和酸化无法截然分开,水解菌实际上是一种具有水解能力的发酵细菌,水解是耗能过程,发酵细菌付出能量进行水解是为取得能进行发酵的水溶性底物,并通过胞内的生化反应取得能源。

水解酸化工艺能将污水中的非溶性有机物转变为溶解性有机物,将难生物降解有机物转变为易生物降解有机物,提过污水的可生化性,通常用于生化工艺的预处理,同时由于水解酸化可以去除一部分有机污染物,减少后续处理设备的曝气量,降低污泥产率,节约能耗。

2、设计计算
(1)、动力学法
水解是水解酸化过程的限制性阶段,颗粒性有机物的水解反应是颗粒性有机物浓度的一级反应,对于连续式无污泥回流的完全混合系统,所需的反应器容积V为:
V=Q(S po-S p)/(K b S p)
式中:Q ——进水流量,m3/h
S po——进水颗粒性有机物浓度,mg/l
S p——出水颗粒性有机物浓度,mg/l
K b——水解速率常数,h-1
K b通过试验确定,对于生活污水K b一般为0.1~0.2h-1
(2)、水力停留时间法
水力停留时间法是一种经验计算方法,反应器容积V为:
V=Qt
式中:Q——进水流量,m3/h
t——水力停留时间,h
水力停留时间根据经验或试验确定,一般城市污水的水解酸化-好氧处理中,t为2~3h;难降解工业污水的水解酸化-好氧处理中,可参照类似或相关工程经验确定,如印染废水可为t8~12h。

(3)、有机负荷法
反应器有效容积可根据处理污水的水量、浓度及容积负荷确定。

V=QS/q
式中:Q——进水流量,m3/h
S——COD浓度,kg/m3
q——容积负荷,kg/(m3·d)
容积负荷需要试验确定,或参照同类污水经验值,一般可取1~3kg/(m3·d)。

相关文档
最新文档