冀教版七年级上册数学知识汇总
【冀教版】初一数学上册知识点总结{完整}
【冀教版】初一数学上册知识点总结{完整}【冀教版】初一数学上册知识点总结在初一数学上册中,我们学习了许多重要的数学知识点。
这些知识点涵盖了数的概念、运算、代数方程式和几何等多个方面。
本文将对这些知识点进行总结和回顾。
一、数的概念在初一数学上册中,我们首先学习了数的概念。
数可以分为自然数、整数、有理数和实数等几种类型。
自然数是最基本的数,由1、2、3……无限延伸。
整数包括自然数和它们的相反数,例如 -1、-2、-3。
有理数是可以表示为分数的数,包括整数和分数。
实数是包括有理数和无理数在内的所有数。
二、运算在初一数学上册中,我们学习了数的四则运算。
加法和减法是最基本的运算,它们可以用于计算两个数的和与差。
乘法和除法是扩展的运算,它们可以用于计算两个数的积与商。
在进行运算时,我们需要遵守运算法则,包括交换律、结合律和分配律等。
三、代数方程式代数方程式是数学中的重要内容,在初一数学上册中也有涉及。
代数方程式是利用符号和变量表示数学关系的等式。
我们学习了如何解一元一次方程、一元一次方程组和简单的二元一次方程组。
通过解方程,我们可以计算未知数的值,进而解决实际问题。
四、几何几何是数学的一个分支,主要研究图形和空间的性质。
初一数学上册中,我们学习了平面图形的性质和计算方法,包括三角形、四边形和多边形等。
我们还学习了如何计算图形的面积和周长,以及相关的公式和定理。
五、统计与概率统计与概率是数学中的另一个重要内容,在初一数学上册中也有所涉及。
统计是研究数据收集、整理和分析的方法,通过统计我们可以得到有关数据的信息和结论。
概率是研究事件发生可能性的方法,通过计算概率我们可以预测事件的结果。
通过对初一数学上册的学习,我们不仅掌握了基本的数学概念和运算技巧,还学会了运用数学知识解决实际问题。
数学是一门非常重要的学科,它不仅可以培养我们的逻辑思维和分析能力,还有助于我们理解和应用其他学科的知识。
希望通过本文的总结和回顾,你对初一数学上册的知识点有了更清晰的了解。
七年级数学上册知识点冀教
七年级数学上册知识点冀教版七年级数学上册知识点七年级数学是初中数学中的起点,也是基础中的基础。
在数学学习过程中,我们需要掌握丰富的数学知识,以此打好基础,为以后的学习奠定坚实的基础。
下面,我们来一起回顾一下七年级数学上册的知识点。
第一章:小数小数是数学中一个非常重要的概念,其涉及到数的大小、大小比较、位值和四则运算等知识点。
在小数的学习过程中,我们需要理解小数的含义、写法及其与分数的互相转换等。
第二章:有理数有理数是我们在数学学习中最常接触到的一类数,它包括整数、分数和小数。
有理数的学习内容主要包括有理数的定义、有理数之间的大小比较、有理数的表示及四则运算等。
第三章:代数式代数式是数学中另一个重要的概念,是数学运算中实现有关思想的有效手段之一。
代数式的学习内容主要包括代数式的定义、如何列代数式、代数式的化简和展开等。
第四章:一元一次方程一元一次方程是初中数学中的重要知识点,它是重要的数学解题工具。
学习一元一次方程的内容包括一元一次方程的定义、如何列一元一次方程、一元一次方程的解法等。
第五章:平面图形的初步认识平面图形是初中数学的重要内容之一,它与生活中的几何图形有密切关系。
学习平面图形需要认识各种图形的性质、名称和分类,掌握几何图形的计算等。
第六章:相似形和图形的运动相似形是初中数学中另一个重要的概念,它是几何学中最基本的思想之一。
相似图形和图形的运动是初步认识后的延伸,其学习需要掌握相似形的定义、判定方法和应用、平移、旋转、对称等基本运动。
第七章:数据的探索数据的探索是数学实际应用非常广泛的知识点。
学习数据的探索主要包括数据的采集、表示和处理,以及概率与统计中的基本概念等。
总结以上就是七年级数学上册的知识点,这些知识点是初中数学学习的基础和重要内容。
在学习过程中,我们需要注重理论与实践的结合,掌握好每一个知识点的思想和实践,以此打牢初中数学的基础。
希望大家在数学学习中能够刻苦努力,取得良好的成绩!。
冀教版初一数学知识点上册
冀教版初一数学(上)知识点第一章 有理数1.有理数:(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数⇔ 0和正整数; a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n ,当n 为正偶数时: (-a)n =an 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 18.混合运算法则:先乘方,后乘除,最后加减;第二章 几何图形的初步认识1、知识结构2、直线的性质:经过两点有一条直线,并且只有一条直线。
【冀教版】初一数学上册知识点总结{完整}
【冀教版】初一数学上册知识点总结{完整}冀教版初一上册数学知识点总结有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û和正整数;a>Ûa是正数;a<Ûa是负数;a≥0Ûa是正数或Ûa是非负数;a≤ 0Ûa是负数或Ûa是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;的相反数还是;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为Ûa+b=0Ûa、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,的绝对值是,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永久比大,负数永久比小;(3)正数大于统统负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左侧的数大;(6)大数-小数>,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1Ûa、b互为倒数;若ab=-1Ûa、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取不异的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与相加,仍得这个数.8.有理数加法的运算律:(1)加法的交流律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交流律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数即是乘以这个数的倒数;留意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;留意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n ,当n为正偶数时: (-a)n =an或(a-b)n=(b-a)n .14.乘方的界说:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0Ûa=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,个中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的正确位:一个近似数,四舍五入到那一位,就说这个近似数的正确到那一位.17.有用数字:从左侧第一个不为零的数字起,到正确的位数止,所稀有字,都叫这个近似数的有用数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.非凡值法:是用符合问题请求的数代入,并验证题设建立而进行猜测的一种办法,但不能用于证明.代数开端常识【几何的初步认识】1、多姿多彩的图形1.从实物中抽象出的各种图形统称为几何图形。
完整word版,【冀教版】初一数学上册知识点总结{完整}
冀教版初一上册数学知识点总结有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① ②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û 0和正整数;a>0 Û a是正数;a<0 Û a是负数;a≥0 Û a是正数或0 Û a是非负数;a≤ 0 Û a是负数或0 Û a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;(3) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.代数初步知识【几何的初步认识】一、多姿多彩的图形1.从实物中抽象出的各种图形统称为几何图形。
冀教版初中数学七年级上册知识点汇总Microsoft Word 文档
冀教版初中数学七年级上册知识点汇总Microsoft Word 文档Chapter 1 nal XXXPositive integers (such as 1.2.3.etc.)XXXNegative integers (such as -1.-2.-3.etc.)nal numbers (including positive and negative ns。
decimals。
etc.)The three elements of a number line: origin。
positive n。
and unit length (all three are necessary).XXX by a point on the number line (but not all points on the number line represent nal numbers).If two numbers have opposite signs。
one is called the opposite of the other。
and they are also called opposite numbers (the opposite of a number is its negative).On a number line。
the points representing XXX of the origin and are equidistant from the origin.The numbers represented by two points on a number line are such that the number represented by the point on the right is greater than the number represented by the point on the left。
冀教版初一数学上册知识点总结(4篇)
冀教版初一数学上册知识点总结(4篇)冀教版初一数学上册知识点总结(4篇)积累知识的过程也是一个发现自我的过程,可以让我们更好地认识自己、提高自我意识和情商。
知识的积累需要保持开放、包容的心态,接纳不同的观点和思想,从而更好地发挥个人的创造力和创新力。
下面就让小编给大家带来冀教版初一数学上册知识点总结,希望大家喜欢!冀教版初一数学上册知识点总结1正数和负数⒈、正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2、具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:—8℃3、0表示的意义(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;(2)0是正数和负数的分界线,0既不是正数,也不是负数。
如:(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
有理数1、有理数的概念(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)(2)正分数和负分数统称为分数(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
③整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。
冀教版初一数学上册知识点总结2相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.3由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法冀教版初一数学上册知识点总结3第一章有理数1、大于0的数是正数。
冀教版七年级上册数学知识汇总
冀教版七年级上册数学知识汇总1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数;都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数;也不是负数;-a不一定是负数;+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中;1、0、-1是三个特殊的数;它们有自己的特性;这三个数把数轴上的数分成四个区域;这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a>0 ⇔ a是正数;a<0 ⇔ a是负1 / 16数;a≥0 ⇔ a是正数或0 ⇔ a是非负数;a≤ 0 ⇔ a是负数或0 ⇔ a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数;我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;(3)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身;0的绝对值是0;负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;(3)a1aa>⇔=;a1aa<⇔-=;2 / 163 / 16(4) |a|是重要的非负数;即|a|≥0;注意:|a|·|b|=|a ·b|;b ab a =.5.有理数比大小: (1)正数的绝对值越大;这个数越大;(2)正数永远比0大;负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小;绝对值大的反而小;(5)数轴上的两个数;右边的数总比左边的数大;(6)大数-小数 > 0;小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0;那么a 的倒数是a 1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加;取相同的符号;并把绝对值相加;(2)异号两数相加;取绝对值较大的符号;并用较大的绝对值减去较小的绝对值;(3)一个数与0相加;仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数;等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘;同号为正;异号为负;并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘;有一个因式为零;积为零;各个因式都不为零;积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数;无意义即a.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n4 / 16为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n;当n为正偶数时: (-a)n =a n 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算;叫做乘方;(2)乘方中;相同的因式叫做底数;相同因式的个数叫做指数;乘方的结果叫做幂;(3)a2是重要的非负数;即a2≥0;若a2+|b|=0 ⇔ a=0;b=0;(4)据规律⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位;平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式;其中a是整数数位只有一位的数;这种记数法叫科学记数法. 16.近似数的精确位:一个近似数;四舍五入到那一位;就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起;到精确的位数止;所有数字;都叫这个近似数的有效数字.5 / 1618.混合运算法则:先乘方;后乘除;最后加减;注意:怎样算简单;怎样算准确;是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入;并验证题设成立而进行猜想的一种方法;但不能用于证明.几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
冀教版七年级上册数学知识汇总
冀教版七年级上册数学知识汇总1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a>0 ⇔ a是正数;a<0 ⇔ a是负1 / 16数;a≥0 ⇔ a是正数或0 ⇔ a是非负数;a≤ 0 ⇔ a是负数或0 ⇔ a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;(3)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;(3)a1aa>⇔=;a1aa<⇔-=;2 / 163 / 16(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,b ab a =.5.有理数比大小: (1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n4 / 16为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ⇔ a=0,b=0;(4)据规律⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.5 / 1618.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
冀教版七年级上册数学知识汇总
- 1 -有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.- 2 - 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,ba b a =. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;- 3 -(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;- 4 -(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;- 5 -(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
(完整word版)冀教版七年级上册数学知识汇总,推荐文档
- 1 -有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.- 2 - 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,ba b a =. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;- 3 -(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;- 4 -(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;- 5 -(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
冀教版初中数学七年级上册知识点汇总Microsoft Word 文档
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧---)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数冀教版初中数学七年级上册知识点汇总(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)第一章 有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a ※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:①对任何有理数a ,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
冀教版七年级上册数学知识汇总
精选有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;精选(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;精选绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, b a b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔a、b互为倒数;若ab=-1 a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为精选精选零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,精选乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
冀教版七年级上册数学知识汇总
有理数1. 有理数:(1) 凡能写成q ( p, q为整数且 p0) 形式的数,都是有理数. 正整p数、 0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数 . 注意: 0 即不是正数,也不是负数;-a 不一定是负数, +a 也不一定是正数;不是有理数;正整数正有理数正分数(2) 有理数的分类: ①有理数零负整数负有理数负分数正整数整数零② 有理数负整数分数正分数负分数(3)注意:有理数中, 1、 0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4) 自然数0 和正整数; a> 0 a 是正数; a< 0a 是负数;a≥ 0 a 是正数或0 a 是非负数; a≤ 0 a 是负数或0 a 是非正数 .- 1 -2.数轴: 数轴是规定了原点、正方向、单位长度的一条直线 .3.相反数: (1) 只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2) 注意: a-b+c 的相反数是 -a+b-c ; a-b 的相反数是 b-a ;a+b 的相反数是 -a-b ;(3) 相反数的和为 0a+b=0a 、 b 互为相反数 .4. 绝对值: (1) 正数的绝对值是其本身, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原 点的距离;(2)a ( a 0)a (a 0)绝对值可表示为: a 0 ( a 0) 或 aa (a 0) ;a ( a 0)绝对值的问题经常分类讨论;(3) a a 0 ; a a 0 ;1 1 a a (4) |a| 是重要的非负数,即 |a| ≥ 0;注意: |a |2 |b|=|a 2 a a .b|,bb5.有理数比大小:( 1)正数的绝对值越大,这个数越大;- 2 -(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数 -小数> 0 ,小数 - 大数< 0.6. 互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a ≠ 0,那么 a 的倒数是 1 ;倒数是本身的数是± 1;若ab=1aa、 b 互为倒数;若ab=-1 a 、 b 互为负倒数 .7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数 .8.有理数加法的运算律:(1)加法的交换律: a+b=b+a ;(2)加法的结合律:( a+b)+c=a+( b+c) .9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+ ( -b ) .10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;- 3 -(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定 .11有理数乘法的运算律:(1)乘法的交换律: ab=ba;(2)乘法的结合律:( ab) c=a( bc);(3)乘法的分配律: a( b+c) =ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义 .13.有理数乘方的法则:( 1)正数的任何次幂都是正数;( 2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当nn n或 (a -b) n n当 n 为正偶数为正奇数时 : (-a) =-a =-(b-a) ,时 : (-a) n =a n或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;( 3) a2是重要的非负数,即a2≥ 0;若a2+|b|=0 a=0,b=0 ;- 4 -0.120.01( 4)据规律12 1底数的小数点移动一位,平方数的102100小数点移动二位.15.科学记数法:把一个大于10 的数记成 a3 10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位 .17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法 , 但不能用于证明 .几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
冀教版初中数学知识点学习资料
1. 数与式(实数,整式,分式, 二次根式) 2. 方程与不等式(整式方程,分 式方程,不等式) 3. 函数(函数及其图像,一次函 数,反比例函数,二次函数)
1、理解圆的相关概念, 熟练运用圆
的相关定理 ,会判断点、线、圆与圆
的位置关系,会与圆有关的计算
式分解
4、会解一元一次不等式和由两
个一元一次不等式组成的不等
式组,能根据具体问题中的数
量关系,用列出一元一次不等
44 2
4
式解决简单问题。
8.4 整式的乘法 8.5 乘法公式
5、掌握三角形的三边关系定 理,三角形内角和,外角,多
8.6 科学计数法
边形内角和
★★★
第九章、三角形 9.1 三角形的边 9.2 三角形的内角和外角
学习目标
同查
综
步 漏 冲刺 合
精 补 拔高 应
讲缺
用
1、理解有理数的概念, 熟练掌 4 2
2
4
握有理数的运算
2、认识线段、 射线、直线、角,
掌握线段及角的计算,了解立
体图形展开图
3、了解整式的相关概念, 理解
整式的加法和减法的法则
4、熟练掌握整式的加减运算
5、了解一元一次方程的有关概
念
6、熟练掌握一元一次方程的解
握特殊四边形的概念、判定和
性质,会用性质和判定解决简
24 2
4
单问题
21.5 一次函数与二元一次方程的关系
第二十二章、四边形
22.1 平行四边形的性质
22.2 平行四边形的判定
★★★
22.3 三角形的中位线 22.4 矩形
冀教版初中数学七年级上册知识点汇总MicrosoftWord文档.doc
冀 , 教版 , 初中 , 数学 , 七年级 , 上册 , 知识点 , 汇总 , 冀教版初中数学七年级上册知识点汇总(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)第一章有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
( 0 的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。
数 a 的绝对值记作 |a| 。
※正数的绝对值是它本身;负数的绝对值是它的数;0 的绝对值是0。
或※绝对值的性质:除0 外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0 外)的绝对值相等;任何数的绝对值总是非负数,即|a| ≥0※比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:①对任何有理数a,都有 |a| ≥0②若 |a|=0 ,则 |a|=0 ,反之亦然③若 |a|=b ,则 a=±b④对任何有理数a, 都有 |a|=|-a|※有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为 0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0 相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
初一数学上册知识点大全冀教版
初一数学上册知识点大全冀教版1.数的读法与数的大小:数的命名,数位,数和数位的关系,数的大小比较。
2.加法的意义和性质:加法的定义,加法的意义,加法的性质。
3.加法的口算能力:十以内、百以内的数的加法口算。
4.不进位加法和换组合加法:不进位加法的计算,换组合加法的计算。
5.两位数的加法:两位数的加法算式列竖式计算。
6.减法的意义和性质:减法的定义,减法的意义,减法的性质。
7.退位减法和交换式减法:退位减法的计算,交换式减法的计算。
8.两位数的减法:两位数的减法算式列竖式计算。
9.加法和减法的综合应用:加法和减法的综合应用题目。
10.乘法的意义和性质:乘法的定义,乘法的意义,乘法的性质。
11.乘法口诀表:乘法口诀表的记忆与应用。
12.两位数乘一位数:两位数乘一位数的算式列竖式计算。
13.两位数乘两位数:两位数乘两位数的算式列竖式计算。
14.除法的意义和性质:除法的定义,除法的意义,除法的性质。
15.两位数除一位数:两位数除一位数的算式列竖式计算。
16.两位数除两位数:两位数除两位数的算式列竖式计算。
17.增加量与减少量及均分:增加量与减少量的意义和计算,均分的意义和计算。
18.数据的收集与表示:数据的收集方式,根据数据绘制简单的统计图。
19.平均数的意义和计算:平均数的定义,平均数的计算。
20.三个数之间的关系:三个数之间的大小比较,三个数之间的变化规律。
21.半小时和一周:半小时和一周的换算。
22.直角三角形的性质:直角三角形的定义,直角三角形的性质。
23.直角坐标系:直角坐标系的概念,平面直角坐标系中的点和坐标。
24.二维图形的认识和作图:点、线、线段、射线、角的概念,用直尺和圆规作图。
25.周长的意义和计算:周长的定义,周长的计算。
26.面积的意义和计算:面积的定义,面积的计算。
27.长方形和正方形的性质:长方形和正方形的定义,长方形和正方形的性质。
28.长方形的周长和面积:长方形的周长的计算,长方形的面积的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数1、有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都就是有理数、正整数、0、负整数统称整数;正分数、负分数统称分数;整数与分数统称有理数、注意:0即不就是正数,也不就是负数;-a 不一定就是负数,+a 也不一定就是正数;π不就是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1就是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0与正整数;a>0 ⇔ a就是正数;a<0 ⇔ a就是负数;a≥0 ⇔ a就是正数或0 ⇔ a就是非负数;a≤ 0 ⇔ a就是负数或0 ⇔ a就是非正数、2.数轴:数轴就是规定了原点、正方向、单位长度的一条直线、3.相反数:(1)只有符号不同的两个数,我们说其中一个就是另一个的相反数;0的相反数还就是0;(2)注意: a-b+c的相反数就是-a+b-c;a-b的相反数就是b-a;a+b 的相反数就是-a-b;(3)相反数的与为0 ⇔ a+b=0 ⇔ a、b互为相反数、4、绝对值:(1)正数的绝对值就是其本身,0的绝对值就是0,负数的绝对值就是它的相反数;注意:绝对值的意义就是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|就是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, b a b a=、 5、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0、6、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数就是a1;倒数就是本身的数就是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数、7、 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数、8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)、9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)、10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定、11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 、12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a 、13.有理数乘方的法则:(1)正数的任何次幂都就是正数;(2)负数的奇次幂就是负数;负数的偶次幂就是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n、 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2就是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位、15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 就是整数数位只有一位的数,这种记数法叫科学记数法、16、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位、17、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字、18、混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,就是数学计算的最重要的原则、19、特殊值法:就是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明、几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
几何图形分为立体图形与平面图形。
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们就是立体图形。
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们就是平面图形。
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5、长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都就是几何体。
几何体简称为体。
6、包围着体的就是面,面有平的面与曲的面两种。
7、面与面相交的地方形成线(线有直的与曲的),线与线相交的地方就是点(点无大小之分)。
8、点动成线,线动成面,面动成体。
9、几何图形都就是由点、线、面、体组成的,点就是构成图形的基本元素。
10、正方体的11种展开图:①“141型”,中间一行4个作侧面,上下两个各作为上下底面,•共有6种基本图形。
②“132型”,中间3个作侧面,共3种基本图形。
③“222型”,两行只能有1个正方形相连。
④、“33型”,两行只能有1个正方形相连。
11、经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
12、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
13、射线与线段都就是直线的一部分。
14、点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
15、两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
(公理)16、连接两点间的线段的长度,叫做这两点的距离。
17、一般地,用一个大写字母表示一个点,用两个大写字母(也就就是两个点)或者一个小写字母来表示直线。
18、有公共端点的两条射线组成的图形叫做角,这个公共端点就是角的顶点,这两条射线就是角的两条边。
19、把一个周角360等分,每一份就就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
20、角的度、分、秒就是60进制的。
21、以度、分、秒为单位的角的度量制,叫做角度制。
22、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
23、如果两个角的与等于90°(直角),就就是说这两个叫互为余角,即其中的每一个角就是另一个角的余角。
24、如果两个角的与等于180°(平角),就说这两个角互为补角,即其中一个角就是另一个角的补角。
25、等角的补角相等,等角的余角相等。
代数初步知识1、代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式、注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也就是代数式、2、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a; (5)在代数式中出现除法运算时,一般用分数线将被除式与除式联系,如3÷a 写成a3的形式; (6)a 与b 的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 与b-a 、3、几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差就是: a 2-b 2; a 与b 差的平方就是:(a-b)2 ;(2)若a 、b 、c 就是正整数,则两位整数就是: 10a+b ,则三位整数就是:100a+10b+c;(3)若m、n就是整数,则被5除商m余n的数就是: 5m+n ;偶数就是:2n ,奇数就是:2n+1;三个连续整数就是: n-1、n、n+1 ;(4)若b>0,则正数就是:a2+b ,负数就是: -a2-b ,非负数就是: a2 ,非正数就是:-a2 、整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式、2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的与,叫单项式的次数、3.多项式:几个单项式的与叫多项式、4.多项式的项数与次数:多项式中所含单项式的个数就就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q就是常数)ax2+bx+c 与x2+px+q就是常见的两个二次三项式、5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式、整式分类为:⎩⎨⎧多项式单项式整式 、6.同类项:所含字母相同,并且相同字母的指数也相同的单项式就是同类项、7.合并同类项法则:系数相加,字母与字母的指数不变、8.去(添)括号法则:去(添)括号时,若括号前边就是“+”号,括号里的各项都不变号;若括号前边就是“-”号,括号里的各项都要变号、9.整式的加减:整式的加减,实际上就是在去括号的基础上,把多项式的同类项合并、10、多项式的升幂与降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)、注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列、一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式、注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍就是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍就是等式、3.方程:含未知数的等式,叫方程、4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项、移项的依据就是等式性质1、6.一元一次方程:只含有一个未知数,并且未知数的次数就是1,并且含未知数项的系数不就是零的整式方程就是一元一次方程、7.一元一次方程的标准形式: ax+b=0(x就是未知数,a、b就是已知数,且a≠0)、8.一元一次方程的最简形式: ax=b(x就是未知数,a、b就是已知数,且a≠0)、9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为 1 ……(检验方程的解)、10.列一元一次方程解应用题:(1)读题分析法:…………多用于“与,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,就是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程、(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题就是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系就是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数瞧做已知量),填入有关的代数式就是获得方程的基础、11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题: C 圆=2πR,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab,C 正方形=4a,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h 、。