基于MATLAB的数学建模题

合集下载

matlab数学建模实例

matlab数学建模实例

第四周3.中的三个根。

,在求8] [0,041.76938.7911.1-)(23=-+=x x x x ffunction y=mj()for x0=0:0.01:8x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0endend4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。

简单迭代法: function y=jddd(x0)x1=(20+10*x0-2*x0^2-x0^3)/20;k=1;while (abs(x1-x0)>=1.0e-3)x0=x1;x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;endx1k埃特金法:function y=etj(x0)x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10;x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1;while (abs(x3-x0)>=1.0e-3)x0=x3;x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10;x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end2,020102)(023==-++=x x x x x fx3k牛顿法:function y=newton(x0)x1=x0-fc(x0)/df(x0);k=1;while (abs(x1-x0)>=1.0e-3)x0=x1;x1=x0-fc(x0)/df(x0);k=k+1;endx1kfunction y=fc(x)y=x^3+2*x^2+10*x-20;function y=df(x)y=3*x^2+4*x+10;第六周1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。

数学建模题目2道 解答 matlab

数学建模题目2道 解答 matlab

1.某市为了创建园林型城市,计划在该市的望湖公园里栽花1800支,由于施工队加强了施工力量,实际每天栽花的数量是原计划的3倍,最终提前2天完成了栽花任务,
问题一:原计划每天栽花的数量是多少支?
问题二:用Matlab求出问题一中的值。

解:问题一:设原计划每天栽花的数量是x支,由题意可得等量关系为:
原计划所用天数-实际所用天数=2,
所以根据等量关系可以列出方程:
18001800
-=
2
3
x x
x =600
故原计划每天栽花的数量是600支。

问题二:
输入命令:
syms x
x=solve(1800/x-1800/(3*x)==2,x) %解方程
运行结果:
x =600
2.一牧场每天支出15元经费用于养一头牛,估计可使一头250公斤重的生牛每天增加5公斤。

目前生牛市场售价为每公斤70元,但是预测每天会降低0.5元,问该牧场应该什么时候出售这样的生牛,可以使获得的利润最大。

(要求用Matlab求解,并附有Matlab 截图)
解:设在第x天出售这样的生牛(初始重250公斤的牛)可以获得的利润为y元。

每头牛投入:15x元
产出:(70-0.5x)(250+5x)元
利润:y=(70-0.5x)(250+5x)-15x=-2.5x^2+210x+17500
使用Matlab软件计算,得
当天数x=42时,利润y取得最大值21910(元)。

故该牧场应该在第42天时候出售这样的生牛,可以使获得的利润最大。

附Matlab计算截图:
①利润y取得最大值的Matlab计算截图
②天数x=42天的Matlab计算截图。

matlab数学建模100例

matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。

在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。

1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。

2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。

3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。

4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。

5. 数值积分:使用Matlab计算函数的定积分。

6. 微分方程求解:使用Matlab求解常微分方程。

7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。

8. 线性规划:使用Matlab求解线性规划问题。

9. 非线性规划:使用Matlab求解非线性规划问题。

10. 整数规划:使用Matlab求解整数规划问题。

11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。

12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。

13. 动态规划:使用Matlab解决动态规划问题。

14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。

15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。

16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。

17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。

18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。

19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。

20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。

21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。

22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

三峡大学数学建模matlab题目

三峡大学数学建模matlab题目

1.在4×4的棋盘上安置4个皇后,要求任意两个皇后不在同一行、不在同一列、不在同一对角线上,输出所有的方案。

for i1=1:4 %i1.。

表示皇后的位置for i2=1:4for i3=1:4for i4=1:4hh=zeros(4,4);%用于模拟棋盘hh(1,i1)=1; % 1表示此处有皇后由于分列,所以不再同一列hh(2,i2)=1;hh(3,i3)=1;hh(4,i4)=1;if i1==i2 || i1==i3 || i1==i4 || i2==i3 || i2==i4 || i3==i4 % 判断是否在同一行continue;endif abs(i1-i2)==1 || abs(i1-i3)==2 || abs(i1-i4)==3 || abs(i2-i3)==1 || abs(i2-i4)==2 ...|| abs(i3-i4)==1 % 判断是否在一条对角线上continue;enddisp(hh);%打印棋盘,1为皇后endendendend2.问题描述:有形如下图所示的数塔,从顶部出发,在每一结点可以选择向左走或是向右走,一直走到底层,要求找出一条路径,使路径上的数值的和最接近零。

n=input('输入数塔的层数n(正整数n<=20) ');st=zeros(n);for i1=1:nfor j1=1:i1fprintf('输入第%d行第%d个数据(且数字的绝对值不超过1000000) ',i1,j1);st(i1,j1)=input(' ');endendsz=inf;ls=zeros(1,n(1)-1);lj=zeros(1,n(1)-1);for i1=0:2^n-1ss=st(1,1);for j1=1:n(1)-1ls(j1)=mod(i1,2);i1=floor(i1/2);endk=1;for j1=1:n(1)-1k=k+ls(j1);ss=ss+st(j1+1,k);endif ss<szsz=ss;lj=ls;endendfprintf(' %d ',st(1,1));for i1=1:n(1)-1if lj(i1)==1fprintf(' 向右选择');elsefprintf(' 向左选择');endfprintf('%3d ',st(i1+1));endfprintf(' 最终的最小值是%d \n',sz);3. 现有21根火柴,两人轮流取,每人每次可取走1- 4根,不可多取,也不能不取,谁取最后一根火柴则谁输。

用matlab解决数学建模

用matlab解决数学建模

2、已知速度曲线v(t) 上的四个数据点下表所示t=[0.15,0.16,0.17,0.18];v=[3.5,1.5,2.5,2.8];x=0.15:0.001:0.18y=i n t e r p1(t,v,x,'s p l i n e')S=t r a p z(x,y)p=p o l y f i t(x,y,5);d p=p o l y de r(p);d p x=p o l y v a l(d p,0.18)运行结果S=0.0687Dpx=-3、计算图片文件tu.bmp 给出的两个圆A,B 的圆心,和两个圆的两条外公切线和两条内公切线的切点的坐标。

(1)计算A 圆的圆心坐标I=imread('tu.bmp');[m,n]=size(I)BW=im2bw(I)BW(:,200:512)=1;figure, imshow(BW)ed=edge(BW);[y,x]=find(ed);x0=mean(x), y0=mean(y)r1=max(x)-min(x),r2=max(y)-min(y)r=(r1+r2)/4x0 =109.7516y0 =86.7495r1 =162r2 =158r =80(2)B圆的圆心坐标和半径I=imread('tu.bmp');BW=im2bw(I)BW(:,1:200)=1;imshow(BW)ed=edge(BW);[y,x]=find(ed);x0=mean(x), y0=mean(y)r1=max(x)-min(x),r2=max(y)-min(y)r=(r1+r2)/4x0 =334.0943y0 =245.7547r1 =165r2 =158 r = 80.7500外公切线上的切点f=@(x)[(x(1,1)-109.7516)^2+(x(1,2)-86.7495)^2-80.5^2(x(2,1)-334.0943)^2+(x(2,2)-245.7547)^2-80.75^2(x(2,2)-x(1,2))*(x(1,2)-86.7495)+(x(2,1)-x(1,1))*(x(1,1)-109.7516)(x(2,2)-x(1,2))*(x(2,2)-245.7547)+(x(2,1)-x(1,1))*(x(2,1)-334.0943)(x(1,1)-x(2,1))^2+(x(1,2)-x(2,2))^2+0.75^2-(334.0943-109.7516)^2-(245.7 516-86.7495)^2];xy1=fsolve(f,rand(2,2))xy2=fsolve(f,100*rand(2,2))xlswrite('book1.xls',xy1)xlswrite('book1.xls',xy2,'Sheet1','A4')xy1 =156.2419 21.0312380.7270 179.8309xy2 =153.7425 48.4651289.4819 284.38084、求微分方程组的数值解,并画出解曲线dy=@(t,y)[-10*y(1)+10*y(2);28*y(1)-y(2)-y(1)*y(3);-8/3*y(3)+y(1)*y(2)]; [t,y]=ode45(dy,[0,10],[1;0;0])subplot(3,1,1),plot(t,y(:,1),'*')subplot(3,1,2),plot(t,y(:,2),'*')subplot(3,1,3),plot(t,y(:,3),'*')0123456789105、预测2012-2020年美国人口数量。

用MATLAB求解数学建模问题基础

用MATLAB求解数学建模问题基础
j 1

a AVA aBVB a VA VB
问题转化为求函数
n
VA (aB a A ) ,b VA VB
2
1 1 SK ( ) t j VA VB E ( K , a , b) a be Cj j 1
VA
的最小值点 ( K , a, b) 。
案例1:地区人口模型[1]
表 1 是某地区 1971—2000 年的人口数据,试给出该地区人口增长的数学模型。 表 1 某地区人口变化数据 年份 人口数量(人) 年份 人口数量(人) 年份 人口数量(人) 1971 33815 1981 34483 1991 34515 1972 33981 1982 34488 1992 34517 1973 34004 1983 34513 1993 34519 1974 34165 1984 34497 1994 34519 1975 34212 1985 34511 1995 34521 1976 34327 1986 34520 1996 34521 1977 34344 1987 34507 1997 34523 1978 34458 1988 34509 1998 34525 1979 34498 1989 34521 1999 34525 1980 34476 1990 34513 2000 34527
数学建模基础之
用MATLAB解数学模型问题
西南交通大学峨眉校区基础课部数学教研室
内容提要:
1. 案例1:确定某地区人口增长模型
2. 案例2:薄膜渗透率的测定
3. 案例3:原子弹爆炸的能量估计 4. 案例4:街头骗局揭秘 5. 案例5:生物种群增长的Logistic模型 6. 学习资源

2023研赛数学建模d题matlab程序

2023研赛数学建模d题matlab程序

2023研赛数学建模D题Matlab程序一、背景介绍2023研赛数学建模竞赛是一项面向大学生的数学建模挑战赛,旨在激发学生对数学及其应用的兴趣,培养学生的创新能力和团队合作精神。

在本次竞赛中,D题是一个涉及Matlab编程的实践题目,要求参赛选手利用Matlab软件完成指定的数学问题模型,并撰写相关的程序文档。

二、题目要求D题的具体内容是针对某个实际问题设计数学模型,通过提供的数据集和背景信息,运用数学建模的知识和Matlab编程技能,解决该问题并给出相应的数据分析结果。

具体要求如下:1. 根据所给材料,建立相关的数学模型,包括但不限于方程、不等式、函数等;2. 利用Matlab编写相应的程序,进行模型的数值计算和图形展示;3. 通过数据分析和模拟实验,得出对问题的定量解释和定性描述。

三、解题思路在解答D题时,首先需要对所给的实际问题进行深入理解,明确问题的核心内容和解决的关键点。

在建立数学模型时,应充分考虑问题背后的逻辑关系和数学规律,提出合理的假设和方程,并构建相应的算法。

在编写Matlab程序时,需要注重代码的规范性和效率性,保证程序的准确性和稳定性。

四、Matlab程序设计下面是本次竞赛D题的Matlab程序设计示例:1. 数据处理与预处理导入所需数据文件,并对数据进行处理和预处理,包括数据清洗、格式转换等操作;例如:```matlabdata = xlsread('data.xlsx'); 从Excel文件中读取数据data_cleaned = data(data(:, 3) > 0 data(:, 4) < 100, :); 清洗数据```2. 模型建立与求解根据所建立的数学模型,利用Matlab提供的数值计算和优化工具,对模型进行求解;例如:```matlabfun = (x) x(1)^2 + x(2)^2; 定义优化目标函数x0 = [1, 1]; 设定初始猜测值options = optimoptions('fmincon', 'Algorithm', 'interior-point'); 设定优化选项x = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options); 调用优化函数```3. 结果展示与分析根据模型的求解结果,利用Matlab绘制相应的图表和图像,进行数据分析和结果展示;例如:```matlabfigure;plot(data(:, 1), data(:, 2), 'b.'); 绘制散点图title('数据分布图');xlabel('X轴');ylabel('Y轴');```五、总结与展望通过以上的Matlab程序设计示例,可以看出在解答D题时,需要灵活运用数学建模和Matlab编程的知识,结合实际问题,进行科学的分析与求解。

数学建模 第3讲 MATLAB的具体实例

数学建模 第3讲 MATLAB的具体实例
返 回
解答
用MATLAB优化工具箱解线性规划
1、模型: min z=cX s.t. AX b 命令:x=linprog(c,A,b)
2、模型:min z=cX s.t. AX b Aeq X beq 命令:x=linprog(c,A,b,Aeq,beq)
AX b 存在,则令A=[ ],b=[ ]. 注意:若没有不等式:
三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即 pixi xi>ui 交易费 = piui xi≤ui 而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(r i-pi)xi
五、 结果分析 1.风险大,收益也大。
2.当投资越分散时,投资者承担的风险越小,这与题意一致。即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险。对于不同风险的承受能力,选择该风险水平下的最优投资组合。 4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长 很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和 收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合, 大约是a*=0.6%,Q*=20% ,所对应投资方案为: 风险度 收益 x0 x1 x2 x3 x4 0.0060 0.2019 0 0.2400 0.4000 0.1091 0.2212
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:

MATLAB数学建模14个范例

MATLAB数学建模14个范例

1.整数规划的蒙特卡洛解法2015-06-10 (2)2. 罚函数法 2015-06-11 (3)3. 层次分析 2015-06-12 (4)4. 粒子群优化算法的寻优算法--非线性函数极值寻优 2015-06-13 (5)5有约束函数极值APSO寻优 2015-06-14 (12)6.模拟退火算法 TSP问题2015-06-15 (17)7. 右端步连续微分方程求解2015-06-16 (19)8. 多元方差分析 2015-06-17 (22)9. 基于MIV的神经网络变量筛选 2015-06-18 (25)10. RBF网络的回归--非线性函数回归的实现 2015-06-19 (29)11. 极限学习机在回归拟合中的应用 2015-06-20 (32)12. 极限学习机在分类中的应用 2015-06-21 (34)13. 基于PSO改进策略 2015-06-22 (37)14. 神经网络遗传算法函数极值寻优 2015-06-23 (46)1.1.整数规划的蒙特卡洛解法2015-06-10 已知非线性整数规划为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++≤++≤++++≤++++=≤≤-----++++=200520062800622400)5,....,1(9902328243max 54233216432154321543212524232221x x x x x x x x x x x x x x x x i x x x x x x x x x x x z i如果用显枚举试探,共需要计算100^5=10^10个点,其计算量非常大。

然而应用蒙特卡洛去随机模拟计算10^6个点,便可以找到满意解,那么这种方法的可信度究竟怎么样呢? 下面就分析随机采样10^6个点计算时,应用概率理论估计下可信度。

不是一般性,假设一个整数规划的最优点不是孤立的奇点。

假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算10^6个点后,有任一个点落在高值区的概率分别为:1-0.99^1000000=0.99...99(100多位) 1-0.99999^1000000=0.999954602解 (1)首先编写M 文件 mengte.m 定义目标函数f 和约束向量g,程序如下:function [f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-... x(4)-2*x(5); g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800 2*x(1)+x(2)+6*x(3)-200 x(3)*x(3)+x(4)+5*x(5)-200];(2)编写M 文件mainint.m 如下求问题的解: rand('state',sum(clock)); p0=0; ticfor i=1:10^5x=99*rand(5,1);x1=floor(x);%向下取整 x2=ceil(x);%向上取整 [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f x0=x1; p0=f; end end[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=fx0=x2; p0=f; end end end x0,p0Matlab 求解整数规划祥见第二章(优秀教材)2.罚函数法 2015-06-11利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为系列无约束最小化技术,简记为SUMT 。

数学建模matlab例题参考及练习

数学建模matlab例题参考及练习

数学建模matlab例题参考及练习数学实验与数学建模实验报告学院:专业班级:姓名:学号:完成时间:年⽉⽇承诺书本⼈承诺所呈交的数学实验与数学建模作业都是本⼈通过学习⾃⾏进⾏编程独⽴完成,所有结果都通过上机验证,⽆转载或抄袭他⼈,也未经他⼈转载或抄袭。

若承诺不实,本⼈愿意承担⼀切责任。

承诺⼈:年⽉⽇数学实验学习体会(每个⼈必须要写字数1200字以上,占总成绩的20%)练习1 ⼀元函数的图形 1.画出x y arcsin =的图象.2.画出x y sec =在],0[π之间的图象. 3.在同⼀坐标系中画出x y =,2x y =,3x y =,3x y =,x y =的图象.4.画出3232)1()1()(x x x f ++-=的图象,并根据图象特点指出函数)(x f 的奇偶性.5.画出)2ln(1++=x y 及其反函数的图象.6.画出321+=x y 及其反函数的图象.练习2 函数极限1.计算下列函数的极限.(1)xxx1lim4-+π→.程序:sym x;f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4)运⾏结果:lx21ans =1(2).程序:sym x;f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2)运⾏结果:lx22ans =exp(3)(3)22)2xx-ππ→.程序:sym x;f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2)运⾏结果:lx23ans =-1/8(4)212lim xxex→.程序:x xx sec32)sym x ;f=x^2*exp(1/x); limit(f,x,0) limit(f,x,0,'right') limit(f,x,0,'left')运⾏结果:lx24ans = NaNans = Infans = 0%左极限为零,存在,右极限为⽆穷⼤,在x 趋近于零时函数没有极限(5))215(lim 122x x x x +-∞→.程序:sym x ;f=5*x^2/(1-x^2)+2^(1/x); limit(f,x,inf)运⾏结果:>> lx25ans = -4(6)x x x x x -+-→32112lim .程序:sym x ;f=(x^2-2*x+1)/(x^3-x); limit(f,x,1)运⾏结果:>> lx26ans = 0(7)x x x 11lim 20-+→.程序:sym x ;f=(sqrt(1+x^2)-1)/x; limit(f,x,0))3sin(cos 21lim 3π--π→x x x . 程序:sym x ;f=(1-2*cos(x))/sin(x-pi/3); limit(f,x,pi/3)运⾏结果:>> lx28ans = 3^(1/2)(9)tgxx x )1(lim 0+→.程序:sym x ;f=(1/x)^tan(x); limit(f,x,0,'right')运⾏结果:>> lx29ans =(10)xx arctgx )2(lim π+∞→.程序:sym x ;f=(2/pi*atan(x))^x; limit(f,x,inf,'left')运⾏结果:>> lx210ans =Inf2.解⽅程012=-?x x . 程序:sym x ;X=solve(x*2^x-1)运⾏结果:>> lx202 X =lambertw(0, log(2))/log(2)%⽅程有两个解X=solve(3*sin(x)+1-x)运⾏结果:>> lx203 X =-0.53847936154.解⽅程03=++q px x .(p 、q 为实数) 程序:X=solve('x^3+p*x+q=0','x')运⾏结果: X =((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3) - p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) p/(6*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) -((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)/2 - (3^(1/2)*i*(p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) + ((p^3/27 + q^2/4)^(1/2) -q/2)^(1/3)))/2 p/(6*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) - ((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)/2 + (3^(1/2)*i*(p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) + ((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)))/2练习 3 导数及偏导数计算1.求下列函数的导数.(1))11)(1(-+=x x y程序:sym x ;f=(sqrt(x)+1)*(1/sqrt(x)-1); diff(f)运⾏结果:>> lx31ans =(1/x^(1/2) - 1)/(2*x^(1/2)) - (x^(1/2) + 1)/(2*x^(3/2))(2)x x x y ln sin =程序:sym x ;f=x*sin(x)*log(x); diff(f)运⾏结果:>> lx32ans =sin(x) + log(x)*sin(x) + x*cos(x)*log(x)2.求下列参数⽅程所确定的函数的导数.(1)??==t y t x 44程序:ans =1/t^3(2)??-=+=arctgt t y t x )1ln(2程序:sym t ;f1=log(1+t^2);f2=t-atan(t); diff(f2)/diff(f1)运⾏结果:>> lx322ans =-((t^2 + 1)*(1/(t^2 + 1) - 1))/(2*t) 3.求下列隐函数的导数.(1)22ln y x xyarctg+=程序:syms x y ;f=atan(y/x)-log(sqrt(x^2+y^2));yx=-diff(f,x)/diff(f,y)运⾏结果;>> lx331 yx =(x/(x^2 + y^2) + y/(x^2*(y^2/x^2 + 1)))/(1/(x*(y^2/x^2 + 1)) - y/(x^2 + y^2)) (2)x y y x=程序:syms x y ; f=x^y-y^xyx=-diff(f,x)/diff(f,y)运⾏结果:>> lx332 f =x^y - y^x yx =f=exp(x)*sin(x); diff(f,x,4)运⾏结果:>> lx34 ans =(-4)*exp(x)*sin(x)5.验证x e y xsin =满⾜关系式:022=+'-''y y y程序:sym x ;f=exp(x)*sin(x); y2=diff(f,x,2); y1=diff(f,x,1); y=f;y2-y1*2+2*y=='0' 运⾏结果:>> lx35ans =1%运⾏结果为1表⽰y2-y1*2+2*y=='0'成⽴6.设)ln(y x x u +=,求22x u ??,22y u,y x u 2. 程序:syms x y ; f=x*log(x+y); uxx=diff(f,x,2) uyy=diff(f,y,2) f1=diff(f,x); uxy=diff(f1,y)运⾏结果: >> lx36uxx =2/(x + y) - x/(x + y)^2uyy =-x/(x + y)^2uxy =1/(x + y) - x/(x + y)^27.求下列多元隐函数的偏导数y zx z ,.(1)1cos cos cos 222=++z y x程序:syms x y z ;-(cos(x)*sin(x))/(cos(z)*sin(z)) zy =-(cos(y)*sin(y))/(cos(z)*sin(z))(2)xyz e z= 程序:syms x y z ; f=exp(z)-x*y*zzx=-diff(f,x)/diff(f,z) zy=-diff(f,y)/diff(f,z)运⾏结果:>> lx372 f =exp(z) - x*y*z zx =(y*z)/(exp(z) - x*y) zy =(x*z)/(exp(z) - x*y) 8.证明函数22)()(lnb y a x u -+-=(b a ,为常数)满⾜拉普拉斯⽅程:02222=??+??y u x u (提⽰:对结果⽤simplify 化简)练习4 积分计算1.计算下列不定积分.(1)?+dxx x 12 (2)+x xdx 2sin 12sin2.计算下列定积分.(1)?exdxx 1ln (2)ππ342sin dxxx3.求?+tdx x x x4.求摆线)cos 1(),sin (t a y t t a x -=-=的⼀拱(π≤≤20t )与x 轴所围成的图形的⾯积.5.计算⼆重积分 (1)??≤++122)(y x dxdyy x (2)??≤++xy x dxdyy x 22)(226.计算?+Ldsy x 22 L 为圆周)0(22>=+a ax y x7.计算?++-L dy y x dx y x )()(2222,其中L 为抛物线2x y =上从点(0,0)到点(2,4)的⼀段弧.练习5 matlab ⾃定义函数与导数应⽤1.建⽴函数x x a a x f 3sin 31sin ),(+=,当a 为何值时,该函数在3π=x 处取得极值,它是极⼤值还是极⼩值,并求此极值.2.确定下列函数的单调区间.(1)7186223---=x x x y (2))0(82>+=x xx y3.求下列函数的最⼤值、最⼩值.(1)2332x x y -=41≤≤-x(2)312824≤≤-+-=x x x y练习6 matab 矩阵运算与数组运算1.计算(1)???--521111204321+???21(2)??-01301213?03010*******????? ??-205101(3)52422??- 2.设????? ??-=243121013A ,??-=112111201B ,求满⾜关系B X A =-23的X .练习7 矩阵与线性⽅程组1.求下列矩阵的秩.(1)???-321110021 (2)4820322513454947513253947543173125 2.求下列矩阵的⾏列式,如可逆,试⽤不同的⽅法求其逆矩阵.(1)??--285421122 (2)??---6201111121324321 3.设X ????? ?-111012111==--+=+-+=+-+=+-+6223312433862344224221432143214321x x x x x x x x x x x x x x x x (2)-=+--=+--=-+-212201432143214321x x x x x x x x x x x x练习8 常微分⽅程与级数求1-6题微分⽅程的通解1.1222+='y y y x 2.x y x y dx dy -+= 3.x xx y y +='cos 4.1)2sin cos (='+y y y x 5.x e y y y x2cos 3=-'+'' 6.x x y y sin 14++=+'' 求7、8题初值问题的解7.==-++-+=10)2(212222x y dx dy x xy y y xy x8.===++==0000222,02V dt dx x x x a dt dxn dtx d t t9.给出函数x x e x f xx cos 2sin )(+=在点0=x 的7阶taylor 展开式以及在x=1处的 5阶taylor 展开式.10.判别下列级数的敛散性,若收敛求其和.(1)+++311(2)∑∞=+112n nntgπ11.求幂级数∑∞=--22)1(nnnnnx的和函数.12.求函数项级数∑∞=-1nnnn xπ的和函数.。

2023五一杯数学建模b题matlab代码

2023五一杯数学建模b题matlab代码

2023五一杯数学建模B题MATLAB代码一、概述在2023年五一杯数学建模比赛中,B题是一个充满挑战性的数学建模问题,需要运用MATLAB等工具进行数据处理和模型求解。

本文将针对该题目展开讨论,介绍相应的MATLAB代码。

二、问题描述B题的问题描述如下:对某一地区的N个城市进行规划建设,其中每个城市都需要连接到其他城市,但是连接的方式需要最大程度地降低总成本。

现有每个城市之间建设高速公路的成本数据,问题要求设计出一种最优的高速公路规划方案。

三、MATLAB代码展示1. 数据处理首先需要载入城市之间的成本数据,假设成本数据保存在一个名为cost_matrix的N*N矩阵中。

则可以使用MATLAB代码进行数据载入和处理,示例如下:```matlab假设成本数据保存在cost_matrix矩阵中N = size(cost_matrix, 1);```2. 模型求解需要设计一个数学模型来求解最优的高速公路规划方案。

这里可以采用最小生成树算法(Minimum Spanning Tree,MST)来解决问题。

以下是基于Prim算法的MATLAB代码示例:```matlab初始化生成树selected = ones(N, 1);selected(1) = 0;tree = zeros(N-1, 2);total_cost = 0;用Prim算法生成最小生成树for i = 1:N-1min_cost = inf;for j = 1:Nif selected(j)for k = 1:Nif ~selected(k)if cost_matrix(j, k) < min_costmin_cost = cost_matrix(j, k);x = j; y = k;endendendendendtree(i, :) = [x, y];selected(y) = 0;total_cost = total_cost + min_cost;end```3. 结果展示可以将生成的最小生成树结果进行可视化展示,以便于分析和进一步优化。

Matlab数学建模题

Matlab数学建模题

Matlab作业题:
1、作出函数y=x4-4x3+3x+5 (x [0,6])的图形,用小红点标出其在[0,6]之间的最小值点,并在最小值点附近标出该最小值点的坐标值;
2、某公司有一批以每桶2元购进的彩漆,为了获得较高的利润,希望以较高的价格卖出,但价格越高,售出量就越少,二者之间的关系由表一给出。

于是打算增加广告投入来促销。

而广告费与销售量的关系可由销售增长因子来描述。

例如,投入3万元的广告费,销售因子为1.85,意味着做广告后的销售量将是未做广告销售量的1.85倍。

根据经验,广告费与销售因子的关系如表2,现请你作出决策:投入多少广告费和售价为多少时所获得的利润最大?
表1
表2
、。

2023数学建模c题matlab代码

2023数学建模c题matlab代码

2023数学建模C题MATLAB代码一、概述数学建模作为一种综合性的学科,已经在科研、工程等领域得到了广泛的应用。

而MATLAB作为一种强大的数学建模工具,其代码编写简单易懂,因此被广泛应用于数学建模领域。

本文将针对2023年数学建模C题,结合MATLAB编写代码,解决相关问题。

二、题目背景C题的题目背景主要涉及到某公司的生产与销售问题,需要通过数学模型进行分析和优化。

三、问题分析1. 题目要求建立某公司的销售预测模型,需要考虑销售额与时间的关系。

2. 题目还要求将该公司的人力资源分配问题建模,需要最大化效益。

3. 题目涉及到该公司的生产成本和销售收入之间的关系,需要建立相应的数学模型。

四、MATLAB代码编写以下是我根据题目要求编写的MATLAB代码:销售预测模型代码:```matlab定义时间序列time = [1:12];定义销售额序列sales = [100, 120, 150, 130, 140, 160, 180, 200, 220, 250, 270, 300];绘制销售额与时间的关系图plot(time, sales);xlabel('时间(月份)');ylabel('销售额(万元)');title('销售额与时间关系图');```人力资源分配优化模型代码:```matlab定义人力资源需求demand = [30, 40, 50, 45, 55, 60, 70, 80, 90, 100, 110, 120]; 定义人力资源成本cost = [3000, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200];定义效益函数benefit = -demand.*cost;最大化效益[max_benefit, index] = max(benefit);输出最优人力资源分配方案disp(['最优人力资源分配方案为:在第', num2str(index), '个月达到最大效益']);```生产成本与销售收入关系模型代码:```matlab定义生产成本production_cost = [100, 120, 150, 130, 140, 160, 180, 200, 220, 250, 270, 300];定义销售收入revenue = [200, 240, 300, 260, 280, 320, 360, 400, 440, 500, 540, 600];计算毛利润profit = revenue - production_cost;绘制毛利润与时间的关系图plot(time, profit);xlabel('时间(月份)');ylabel('毛利润(万元)');title('毛利润与时间关系图');```五、模型评价通过以上的MATLAB代码,我们成功建立了销售预测模型、人力资源分配优化模型和生产成本与销售收入关系模型。

数学建模(Matlab)

数学建模(Matlab)

数学规划作业(MatLab)1、某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为 ()2f x ax bx=+(单位:元), 其中x 是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c 元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a =50、b =0.2、c =4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a 、b 、c 变化对计划的影响,并作出合理的解释.解:问题的分析和假设: 分析:问题的关键在于由于工厂的生产能力足以满足每个季度用户的需求,但是为了使总费用最少,那么利用每个季度生产费用的不同,可用利用上个生产费用低的季度多生产来为下个季度进行准备,前提是本月节省下的费用减去总的发动机存储费用还有剩余,这样生产才有价值,才可能满足合同的同时又能使总费用最低。

基本假设:1工厂的生产能力不受外界环境因素影响。

2为使总费用最低,又能满足合同要求,各个季度之间的生产数量之间是有联系的。

3第一季度开始时无存货。

4工厂每季度的生关费用与本季度生产的发动机台数有关。

5生产要按定单的数量来进行,生产的数量应和订单的数量相同,以避免生产出无用的机器。

符号规定:X1―――第一季度生产发动机的数量 X2―――第二季度生产发动机的数量 X3―――第三季度生产发动机的数量 建模:1.三个季度发动机的总的生产量为180台。

2.每个季度的生产量和库存机器的数量之和要大于等于本季度的交货数量。

3.每个月的生产数量要符合工厂的生产能力。

4.将实际问题转化为非线性规划问题,建立非线性规划模型 目标函数min f(x)=50(x1+x2+x3)+0.2(x12+x22+x32)+4(x1-40)+4(x1+x2-100) 整理,得min f(x)=50(x1+x2+x3)+0.2(x12+x22+x32)+4(2x1+x2-140) 约束函数 s.t x1+x2≥100; x1+x2+x3=180; 40≤x1≤100; 0≤x2≤100;0≤x3≤100;求解的Matlab程序代码:M-文件 fun.m: function f=fun (x);f=50*(x(1)+x(2)+x(3))+0.2*(x(1)^2+x(2)^2+x(3)^2)+4*(2*x(1) +x(2)-140)主程序fxxgh.m:x0=[60;60;60];A=[-1 -1 0];b=[-100];Aeq=[1 1 1];beq=[180];vlb=[40;0;0];vub=[100;100;100];[x,fval]=fmincon('fun',x0,A,b,Aeq,beq,vlb,vub)计算结果与问题分析讨论:计算结果:x = 50.000060.000070.0000fval = 11280问题分析讨论:由运算结果得:该厂第一季度、第二季度、第三季度的生产量分别是50台、60台和70台时,才能既满足合同又使总费用最低,费用最低为11280元。

2023五一杯数学建模b题matlab代码

2023五一杯数学建模b题matlab代码

2023五一杯数学建模b题matlab代码摘要:1.2023 五一杯数学建模b 题概述2.Matlab 代码编写方法3.Matlab 代码在数学建模中的应用4.总结正文:【2023 五一杯数学建模b 题概述】2023 年五一杯数学建模比赛b 题要求参赛者使用Matlab 编程语言,解决一个与数学建模相关的问题。

五一杯数学建模比赛是我国高校学子展现自己数学建模能力的重要平台,每年吸引了大量学生参加。

此次比赛b 题的题目为“基于Matlab 的数学建模”,要求参赛者运用Matlab 编程语言,解决实际问题。

【Matlab 代码编写方法】Matlab 是一种广泛应用于科学计算和工程设计的编程语言,其强大的数值计算和数据处理功能为数学建模提供了便捷。

编写Matlab 代码,首先需要了解Matlab 的基本语法和常用函数。

以下是编写Matlab 代码的一些建议:1.熟悉Matlab 的基本语法。

Matlab 语法简洁明了,易于上手。

可以通过阅读Matlab 官方文档或参加相关培训课程,了解Matlab 的基本语法。

2.学会使用Matlab 进行数据处理。

Matlab 提供了丰富的函数库,可以方便地进行数据处理。

例如,可以使用Matlab 进行数据插值、拟合、变换等操作。

3.学会使用Matlab 进行数值计算。

Matlab 具有强大的数值计算功能,可以解决各种数学问题。

例如,可以使用Matlab 求解微分方程、线性规划等问题。

4.编写结构清晰、注释详细的代码。

为了便于自己和他人阅读理解,编写Matlab 代码时,应注重代码结构,添加适当的注释。

【Matlab 代码在数学建模中的应用】在解决五一杯数学建模b 题时,可以运用Matlab 代码进行以下方面的操作:1.数据处理。

可以利用Matlab 对题目给出的数据进行清洗、整理、分析,提取有用信息,为后续建模打下基础。

2.建立数学模型。

根据题目要求,可以使用Matlab 构建数学模型,如方程组、概率分布等,描述实际问题。

数学建模2023d题第一题matlab

数学建模2023d题第一题matlab

数学建模2023D题第一题分析与求解问题背景本题考察了一场商业竞赛中的激励机制设计问题。

在这场竞赛中,有多个参赛队伍,每个队伍根据完成任务的进展情况和所花费的时间来获得相应的奖金。

竞赛规则如下:1.参赛队伍根据任务的要求,用时可能不同。

2.完成任务越早,奖金越高。

完成任务耗时越长,奖金越低。

3.完成任务的奖金计算方式为:奖金 = 基础奖金 × (任务要求时间 - 实际完成时间)。

问题分析假设我们假设在这场竞赛中,有n个参赛队伍,记为队伍1, 队伍2, …, 队伍n。

目标我们的目标是设计一个激励机制,以使得参赛队伍能够在竞赛中尽可能地努力完成任务,并获得高额的奖金。

模型建立对于每个参赛队伍,我们可以设定一个完成时间的概率分布函数,记为F(x)。

这个函数表示了参赛队伍在x时刻前完成任务的概率。

根据题目要求,我们可以知道,每个队伍完成任务的奖金计算公式为:奖金 = 基础奖金 × (任务要求时间 - 实际完成时间)我们可以将队伍完成任务的奖金与完成时间的概率分布函数进行结合,来计算每个队伍能够获得的期望奖金。

设队伍i在某个时间t完成任务的概率为p(i,t),则队伍i能够获得的期望奖金可以表示为:E(i) = ∫[0,任务要求时间]{(任务要求时间 - t) × p(i,t) × 基础奖金} dt为了简化计算,我们可以将每个参赛队伍的完成时间视为一个连续随机变量,可以考虑使用概率密度函数f(i,t)来描述队伍i完成任务的分布情况。

对于任意一个参赛队伍i,我们有:∫[0,任务要求时间]{f(i,t) dt} = 1通过最大化每个参赛队伍的期望奖金,我们可以设计一个激励机制,以使得参赛队伍尽可能地努力完成任务。

最优解求解在实际求解中,我们可以使用优化算法来求解最优解。

其中,常用的优化方法有遗传算法、粒子群优化算法等。

这些算法可以通过优化目标函数来找到最优解。

结论与讨论本文对数学建模2023D题第一题进行了分析与求解。

数学建模Matlab上机实训题目

数学建模Matlab上机实训题目

数学建模Matlab上机实训题目一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4)。

2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。

3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。

二、绘图:4.在同一图形窗口画出下列两条曲线图像:y1=2x+5;y2=x^2-3x+1,并且用legend标注。

5.画出下列函数的曲面及等高线:z=x^2+y^2+sin(xy).三、程序设计:6.编写程序计算(x在[-3,3],间隔0.01)7.有一列分数序列:求前15项的和。

8.用至少三种方法编写函数实现求任意整数n的阶乘。

9*.将任意偶数m写成两个素数p1、p2的和(试着写出所有的m=p1+p2的可能形式)。

10*.是否任意3的倍数m可以写成两个素数p1、p2、p3的和(试着写出所有的m=p1+p2+p3 的可能形式)?四、数据处理与拟合初步:分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出拟合曲线进行对比。

12.计算下列定积分:13.微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。

14.设通过测量得到时间t与变量y的数据:t=[0 0.3 0.8 1.1 1.6 2.3];y=[0.5 0.82 1.14 1.25 1.35 1.41];分别采用多项式:y=a0+a1t+a2t2和指数函数y=b0+b1e-t+b2te-t进行拟合,并计算均方误差、画出拟合效果图进行比较。

15.V an der Pol(范德堡)方程是典型的二阶非线性方程之一:y”-u(1-y^2)y’+y=0,y(0)=2,y‘(0)=0;其中u>0为标量。

2023五一杯数学建模b题matlab代码

2023五一杯数学建模b题matlab代码

2023五一杯数学建模b题matlab代码摘要:1.题目背景及分析2.MATLAB代码实现3.结果分析与讨论4.总结与建议正文:一、题目背景及分析2023年五一杯数学建模B题,要求使用MATLAB编写代码,解决一个关于数学建模的问题。

题目内容涉及数学模型、数据分析、算法实现等环节。

解题过程中,需要运用MATLAB的优越性能,高效地完成题目要求的任务。

二、MATLAB代码实现1.数据处理:首先,读取题目给出的数据,对数据进行预处理,如去除异常值、平滑处理等。

2.模型建立:根据题目所给的条件,选择合适的数学模型,如线性回归、神经网络等。

利用MATLAB内置的函数,编写模型建立的代码。

3.模型训练与优化:利用训练数据对模型进行训练,通过调整模型参数,提高模型的预测精度。

4.模型验证:使用验证数据集对模型进行验证,评估模型的泛化能力。

5.预测与结果分析:根据模型预测的结果,分析模型的可行性、稳定性和准确性。

三、结果分析与讨论1.对比分析:将预测结果与实际值进行对比,评估模型的预测性能。

2.误差分析:分析模型预测过程中产生的误差,探讨误差来源,并提出改进措施。

3.模型优化:根据分析结果,对模型进行优化调整,提高模型的性能。

四、总结与建议1.总结:回顾整个解题过程,总结经验教训,归纳关键步骤。

2.建议:针对题目中存在的问题,提出改进措施,为今后类似问题的解决提供参考。

通过以上步骤,我们可以完成2023年五一杯数学建模B题的MATLAB代码编写与实现。

在实际操作过程中,需要注意代码的可读性和实用性,便于后期维护与改进。

MATLAB数学建模习题

MATLAB数学建模习题

MATLAB 数学建模习题1一、单项选择题(将选择答案写在答题纸上,每小题2分共20分)1.在MA TLAB 命令窗口中键入命令,Vname=prod(7:9)/prod(1:3),可计算组合数!6!3!939⨯=C ,如果省略了变量名Vname ,MA TLAB 表现计算结果将用下面的哪一变量名做缺省变量名A )ans ;B )pi ;C )NaN ;D )eps2.宝石切割问题中,石料左右长度、前后长度、上下高度分别为a 1、a 2、a 3,即a 1×a 2×a 3(cm 3),而精品尺寸为b 1×b 2×b 3(cm 3)。

操作时,同向切割连续两次再旋转刀具。

某一切割方案的切割面积依次为:2a 1a 2→ 2a 1b 3 → 2b 2b 3,则这一切割方案为A )左右→前后→上下;B )上下→前后→左右;C )前后→上下→左右;D )前后→ 左右→上下3.机场指挥塔位置:北纬30度35.343分,东经104度2.441分,在MA TLAB 中用变量B=[30 35.343]表达纬度,L=[104 2.441]表达经度。

将数据转化为以度为单位的实数,下面正确的语句是A ) P=B(1)+B(2)/60,Q=L(1)+L(2); B) P = 60*B(1) + B(2),Q=60*L(1)+L(2)C ) P = B(1) + B(2)/60,Q=L(1)+L(2)/60; D) P=B(1)+B(2),Q=L(1)+ L(2);。

4.用MA TLAB 随机产生60个1到365之间的正整数,应该使用下面的哪一条命令A ) fix(365*rand(1,60));B )1+fix(366*rand(1,60));C )1+fix(364*rand(1,60));D )1+fix(365*rand(1,60))5.用A 、B 、C 表示三角形的三条边,用MA TLAB 表示条件“任意两条边之和大于第三条边”的逻辑表达式应该用下面哪一行语句A ) A+B>C | A+C>B | B+C>A ; B ) A+B>=C | A+C>=B | B+C>=A ;C ) A+B>=C&A+C>=B&B+C>=A ;D ) A+B>C & A+C>B & B+C>A ;6.在MATLAB 命令窗口中,键入命令syms x ; y=int(6*x^4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档