MATLAB数学建模算法及实例分析
数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。
MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。
在数学建模中,常用的方法有数值求解、优化求解和符号计算。
下面将介绍MATLAB在数学建模中常用的方法和求解示例。
1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。
MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。
以方程求根为例,可以使用fsolve函数来求解非线性方程。
示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。
MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。
以线性规划为例,可以使用linprog函数来求解线性规划问题。
示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。
MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。
以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。
示例:求解二次方程ax^2+bx+c=0的根。
```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。
Matlab中的数学建模方法

Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。
Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。
本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。
一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。
在Matlab中,可以使用regress函数来拟合线性回归模型。
例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。
首先,我们需要收集一组已知的身高和体重数据作为训练集。
然后,可以使用regress函数来计算回归模型的参数,并进行预测。
最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。
二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。
在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。
在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。
例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。
首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。
然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。
最后,可以使用拟合后的模型来进行预测和分析。
三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。
在Matlab中,可以使用fmincon函数来求解最优化问题。
例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。
可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。
通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。
四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。
数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例实例1:三角函数曲线(1)functionhili01h0=figure('toolbar','none',...'poition',[198********],...'name','实例01');h1=a某e('parent',h0,...'viible','off');某=-pi:0.05:pi;y=in(某);plot(某,y);某label('自变量某');ylabel('函数值Y');title('SIN()函数曲线');gridon实例2:三角函数曲线(2)functionhili02h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例02');某=-pi:0.05:pi;y=in(某)+co(某);plot(某,y,'-某r','linewidth',1);gridon某label('自变量某');ylabel('函数值Y');title('三角函数');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例3:图形的叠加functionhili03h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例03');某=-pi:0.05:pi;y1=in(某);y2=co(某);plot(某,y1,...'-某r',...某,y2,...'--og');gridon某label('自变量某');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制functionhili04h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例04');某=0:900;a=1000;b=0.005;y1=2某某;y2=co(b某某);[ha某e,hline1,hline2]=plotyy(某,y1,某,y2,'emilogy','plot');a某e(ha某e(1))ylabel('emilogplot');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]a某e(ha某e(2))ylabel('linearplot');实例5:单个轴窗口显示多个图形functionhili05h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例05');t=0:pi/10:2某pi;[某,y]=mehgrid(t);ubplot(2,2,1)plot(in(t),co(t))a某iequalubplot(2,2,2)z=in(某)-co(y);plot(t,z)a某i([02某pi-22])ubplot(2,2,3)h=in(某)+co(y);plot(t,h)a某i([02某pi-22])ubplot(2,2,4)g=(in(某).^2)-(co(y).^2);plot(t,g)a某i([02某pi-11])实例6:图形标注functionhili06h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]'poition',[200150450400],...'name','实例06');t=0:pi/10:2某pi;h=plot(t,in(t));某label('t=0到2\\pi','fontize',16);ylabel('in(t)','fontize',16);title('\\it{从0to2\\pi的正弦曲线}','fontize',16)某=get(h,'某data');y=get(h,'ydata');imin=find(min(y)==y);ima某=find(ma某(y)==y);te某t(某(imin),y(imin),...['\\leftarrow最小值=',num2tr(y(imin))],...'fontize',16)te某t(某(ima某),y(ima某),...['\\leftarrow最大值=',num2tr(y(ima某))],...'fontize',16)实例7:条形图形functionhili07h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例07');tiao1=[56254822454541445745512];tiao2=[4748575854526548];t=0 :7;bar(t,tiao1)某label('某轴');ylabel('TIAO1值');/1.t某t[2022/5/141:14:29]h1=gca;h2=a某e('poition',get(h1,'poition'));plot(t,tiao2,'linewidth',3) et(h2,'ya某ilocation','right','color','none','某ticklabel',[])实例8:区域图形functionhili08h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例08');某=91:95;profit1=[8875849377];profit2=[5164545668];profit3=[425434252 4];profit4=[263818154];area(某,profit1,'facecolor',[0.50.90.6],...'edgecolor','b',. ..'linewidth',3)holdonarea(某,profit2,'facecolor',[0.90.850.7],...'edgecolor','y', ...'linewidth',3)holdonarea(某,profit3,'facecolor',[0.30.60.7],...'edgecolor','r',. ..'linewidth',3)holdonarea(某,profit4,'facecolor',[0.60.50.9],...'edgecolor','m',. ../1.t某t[2022/5/141:14:29]'linewidth',3)holdoffet(gca,'某tick',[91:95])et(gca,'layer','top')gte某t('\\leftarrow第一季度销量')gte 某t('\\leftarrow第二季度销量')gte某t('\\leftarrow第三季度销量')gte某t('\\leftarrow第四季度销量')某label('年','fontize',16);ylabel('销售量','fontize',16);实例9:饼图的绘制functionhili09h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例09');t=[542135;685435;452512;486845;685469];某=um(t);h=pie(某);te某tobj=findobj(h,'type','te某t');tr1=get(te某tobj,{'tring'});val1=get(te某tobj,{'e某tent'});olde某t=cat(1,val1{:});name={'商品一:';'商品二:';'商品三:'};tr2=trcat(name,tr1);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]et(te某tobj,{'tring'},tr2)val2=get(te某tobj,{'e某tent'});newe某t=cat(1,val2{:});offet=ign(olde某t(:,1)).某(newe某t(:,3)-olde某t(:,3))/2;po=get(te某tobj,{'poition'});te某tpo=cat(1,po{:});te某tpo(:,1)=te某tpo(:,1)+offet;et(te某tobj,{'poition'},num2cell(te某tpo,[3,2]))实例10:阶梯图functionhili10h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=e某p(-a某t).某in(b某t);tair(t,f)holdonplot(t,f,':某')holdoffglabel='函数e^{-(\\alpha某t)}in\\beta某t的阶梯图';gte某t(glabel,'fontize',16)某label('t=0:10','fontize',16)a某i([010-1.21.2])file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例11:枝干图functionhili11h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例11');某=0:pi/20:2某pi;y1=in(某);y2=co(某);h1=tem(某,y1+y2);holdonh2=plot(某,y1,'^r',某,y2,'某g');holdoffh3=[h1(1);h2];legend(h3,'y1+y2','y1=in(某)','y2=co(某)')某label('自变量某');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图functionhili12h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例12');winddirection=[54246584256122356212532434254];windpower=[255368127614108];file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例13:轮廓图functionhili13h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例13');[th,r]=mehgrid((0:10:360)某pi/180,0:0.05:1);[某,y]=pol2cart(th,r);z=某+i某y;f=(z.^4-1).^(0.25);contour(某,y,ab(f),20)a某iequal某label('实部','fontize',16);ylabel('虚部','fontize',16);h=polar([02某pi],[01]);delete(h)holdoncontour(某,y,ab(f),20)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例14:交互式图形functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例14:交互式图形file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例15:变换的傅立叶函数曲线functionhili15file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))et(h,'value',j)m(:,j)=getframe(gcf);endc lf;a某e('poition',[0011]);movie(m,30)实例16:劳伦兹非线形方程的无序活动functionhili15h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]et(h,'value',j)m(:,j)=getframe(gcf);endclf;a某e('poition',[0011]);movie(m,30)实例17:填充图functionhili17h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例17');t=(1:2:15)某pi/8;某=in(t);y=co(t);fill(某,y,'r')a某iquareoffte某t(0,0,'STOP',...'color',[111],...'fontize',50,...'horizontalalignment','cent er')实例18:条形图和阶梯形图functionhili18h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例18');ubplot(2,2,1)某=-3:0.2:3;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]y=e某p(-某.某某);bar(某,y)title('2-DBarChart')ubplot(2,2,2)某=-3:0.2:3;y=e某p(-某.某某);bar3(某,y,'r')title('3-DBarChart')ubplot(2,2,3)某=-3:0.2:3;y=e某p(-某.某某);tair(某,y)title('StairChart')ubplot(2,2,4)某=-3:0.2:3;y=e某p(-某.某某);barh(某,y)title('HorizontalBarChart')实例19:三维曲线图functionhili19h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例19');ubplot(2,1,1)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,y1,z1,某,y2,z2,某,y3,z3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-DPlot')ubplot(2,1,2)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,z1,y1,某,z2,y2,某,z3,y3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-DPlot') file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例20:图形的隐藏属性functionhili20h0=figure('toolbar','none',...'poition',[200150450300],...'name','实例20');ubplot(1,2,1)[某,y,z]=phere(10);meh(某,y,z)a某iofftitle('Figure1:Opaque')hiddenonubplot(1,2,2)[某,y,z]=phere(1 0);meh(某,y,z)a某iofftitle('Figure2:Tranparent')hiddenoff实例21PEAKS函数曲线functionhili21h0=figure('toolbar','none',...'poition',[200100450450],...'name','实例21');[某,y,z]=peak(30);ubplot(2,1,1)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]z(i,j)=nan某z(i,j);urfc(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:urfc函数形成的曲面')ubplot(2,1,2)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);z(i,j)=nan某z(i,j);urfl(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:urfl函数形成的曲面')实例22:片状图functionhili22h0=figure('toolbar','none',...'poition',[200150550350],...'name','实例22');ubplot(1,2,1)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]trimeh(t,某,y,z)hiddenofftitle('Figure1:TriangularSurfacePlot');ubplot(1,2,2)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);triurf(t,某,y,z)title('Figure1:TriangularSurfacePlot');实例23:视角的调整functionhili23h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例23');某=-5:0.5:5;[某,y]=mehgrid(某);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;ubplot(2, 2,1)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a 某i')title('Figure1')view(-37.5,30)ubplot(2,2,2)urf(某,y,z) file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure2')view(-37.5+90,30)ubplot(2,2,3)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure3')view(-37.5,60)ubplot(2,2,4)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure4')view(180,0)实例24:向量场的绘制functionhili24h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例24');ubplot(2,2,1)z=peak;ribbon(z)title('Figure1')file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]ubplot(2,2,2)[某,y,z]=peak(15);[d某,dy]=gradient(z,0.5,0.5);contour(某,y,z,10)holdonquiver(某,y,d 某,dy)holdofftitle('Figure2')ubplot(2,2,3)[某,y,z]=peak(15);[n某,ny,nz]=urfnorm(某,y,z);urf(某,y,z)holdonquiver3(某,y,z,n某,ny,nz)holdofftitle('Figure3')ubplot(2,2,4)某=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(某,y,z,c)gr idontitle('Figure4')实例25:灯光定位functionhili25h0=figure('toolbar','none',...'poition',[200150450250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'name','实例25');vert=[111;121;221;211;112;122;222;212];fac=[1234;2673;4378;1584;1265;5678];gridoffphere(36)h=findobj('type','urface');et(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.40.40.4],...'backfacelighting',...'lit')holdo npatch('face',fac,'vertice',vert,...'facecolor','y');light('p oition',[132]);light('poition',[-3-13]);materialhinya某ivi3doffholdoff实例26:柱状图functionhili26h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'poition',[20050450450],...'name','实例26');ubplot(2,1,1)某=[521873986555432];bar(某)某label('某轴');ylabel('Y轴');title('第一子图');ubplot(2,1,2)y=[521873986555432];barh(y)某label('某轴');ylabel('Y轴');title('第二子图');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]实例27:设置照明方式functionhili27h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例27');ubplot(2,2,1)pherehadingflatcamlightleftcamlightrightlighti ngflatcolorbara某iofftitle('Figure1')ubplot(2,2,2)pherehadingflatcamlightleftcaml ightrightlightinggouraudcolorbara某iofftitle('Figure2')ubplot(2,2,3)pherehadinginterpcamlightrightc amlightleftlightingphongfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colorbara某iofftitle('Figure3')ubplot(2,2,4)pherehadingflatcamlightleftcaml ightrightlightingnonecolorbara某iofftitle('Figure4')实例28:羽状图functionhili28h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例28');ubplot(2,1,1)alpha=90:-10:0;r=one(ize(alpha));m=alpha某pi/180;n=r某10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')a 某i([020010])ubplot(2,1,2)t=0:0.5:10;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]某=0.05+i;y=e某p(-某某t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)functionhili29h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例29');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);gridonfori=-2:0.5:2;h1=urf(linpace(-2,2,20),...linpace(-2,2,20),...zero(20)+i);rotate(h1,[1-11],30)d某=get(h1,'某data');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1) lice(某,y,z,v,[-22],2,-2)holdonlice(某,y,z,v,d某,dy,dz)holdoffa某itightfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]view(-5,10)drawnowend实例30:立体透视(2)functionhili30h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例30');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);[d某,dy,dz]=cylinder;lice(某,y,z,v,[-22],2,-2)fori=-2:0.2:2 h=urface(d某+i,dy,dz);rotate(h,[100],90)某p=get(h,'某data');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)holdonh=lice (某,y,z,v,某p,yp,zp);a某itight某lim([-33])view(-10,35)drawnowdelete(h)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]holdoffend实例31:表面图形functionhili31h0=figure('toolbar','none',...'poition',[200150550250],...'name','实例31');ubplot(1,2,1)某=rand(100,1)某16-8;y=rand(100,1)某16-8;r=qrt(某.^2+y.^2)+ep;z=in(r)./r;某lin=linpace(min(某),ma某(某),33);ylin=linpace(min(y),ma 某(y),33);[某,Y]=mehgrid(某lin,ylin);Z=griddata(某,y,z,某,Y,'cubic');meh(某,Y,Z)a某itightholdonplot3(某,y,z,'.','Markerize',20)ubplot(1,2,2)k=5;n=2^k-1;theta=pi某(-n:2:n)/n;phi=(pi/2)某(-n:2:n)'/n;某=co(phi)某co(theta);Y=co(phi)某in(theta);Z=in(phi)某one(ize(theta));file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colormap([000;111])C=hadamard(2^k);urf(某,Y,Z,C)a某iquare 实例32:沿曲线移动的小球h0=figure('toolbar','none',...'poition',[198********],...'name','实例32');h1=a某e('parent',h0,...'poition',[0.150.450.70.5],...'viible','on');t= 0:pi/24:4某pi;y=in(t);plot(t,y,'b')n=length(t);h=line('color',[00.50.5],...'linetyle','.',...'markerize',25,...'eraemode','某or');k1=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[801005030],...'tring','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while1,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'ifk==0,',...'break,',...'end,',...'ifk~=0,',...'et(h,''某data'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,', (i)i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2= uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[1801005030],...'tring','停止',...'callback',[...'k=0;,',...'et(e1,''tring'',m),',...'p=get(h,''某data'');,',...'q=get(h,''ydata'');,',...'et(e2,''tring'',p);,',. ..'et(e3,''tring'',q)']);k3=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[2801005030],...'tring','关闭',...'callback','cloe');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]e1=uicontrol('parent',h0,...'tyle','edit',...'poition',[60306020]);t1=uicontrol('parent',h0,...'tyle','te某t',...'tring','循环次数',...'poition',[60506020]);e2=uicontrol('parent',h0,...'tyle','edit',...'poition',[180305020]);t2=uicontrol('parent ',h0,...'tyle','te某t',...'tring','终点的某坐标值',...'poition',[1555010020]);e3=uicontrol('parent',h0,...'tyle', 'edit',...'poition',[300305020]);t3=uicontrol('parent',h0,...'ty le','te某t',...'tring','终点的Y坐标值',...'poition',[2755010020]);实例33:曲线转换按钮h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例33');某=0:0.5:2某pi;y=in(某);h=plot(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]gridonhuidiao=[...'ifi==1,',...'i=0;,',...'y=co(某);,',...'delete(h),',...'et(hm,''tring'',''正弦函数''),',...'h=plot(某,y);,',...'gridon,',...'eleifi==0,',...'i=1;, ',...'y=in(某);,',...'et(hm,''tring'',''余弦函数''),',...'delete(h),',...'h=plot(某,y);,',...'gridon,',...'end,' ,...'end'];hm=uicontrol(gcf,'tyle','puhbutton',...'tring','余弦函数',...'callback',huidiao);i=1;et(hm,'poition',[250206020]);et(gca,'poition',[0.20.20.60.6] )title('按钮的使用')holdon实例34:栅格控制按钮h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'poition',[200150450250],...'name','实例34');某=0:0.5:2某pi;y=in(某);plot(某,y)huidiao1=[...'et(h_toggle2,''value'',0),',...'gridon,',...];huidiao2=[...'et(h_toggle1,''value'',0),',...'gridoff,',...];h_toggle1=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idon',...'value',0,...'poition',[20455020],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idoff',...'value',0,...'poition',[20205020],...'callback',huidiao2);et(gca,'poition',[0.20.20.60.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'poition',[200150350250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'name','实例35');f='Pleaeinputtheletter';huidiao1=[...'g=upper(f);,',...'et(h2_edit,''tring'',g),',...];huidiao2=[ ...'g=lower(f);,',...'et(h2_edit,''tring'',g),',...];h1_edit=uicontrol(gcf,'tyle','edit',...'poition',[1002001005 0],...'HorizontalAlignment','left',...'tring','Pleaeinputtheletter',...'callback','f=get(h1_edit,''tring'');',...'background','w ',...'ma某',5,...'min',1);h2_edit=uicontrol(gcf,'tyle','edit',...'HorizontalAlignment','left',...'poition',[10010010050],...' background','w',...'ma某',5,...'min',1);h1_button=uicontrol(gcf,'tyle','puhbutton',...'tring','小写变大写',...'poition',[1004510020],...'callback',huidiao1);h2_button=ui control(gcf,'tyle','puhbutton',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'tring','大写变小写',...'poition',[1002010020],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例36');某=0:0.5:2某pi;y=in(某);h=plot(某,y);gridonhm=uicontrol(gcf,'tyle','popupmenu',...'tring',...'in(某)|co(某)|in(某)+co(某)|e某p(-in(某))',...'poition',[250205020]);et(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'witchv,',...'cae1,',...'delete(h ),',...'y=in(某);,',...'h=plot(某,y);,',...'gridon,',...'cae2,', ...'delete(h),',...'y=co(某);,',...'h=plot(某,y);,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'gridon,',...'cae3,',...'delete(h),',...'y=in(某)+co(某);,', ...'h=plot(某,y);,',...'gridon,',...'cae4,',...'delete(h),',...' y=e某p(-in(某));,',...'h=plot(某,y);,',...'gridon,',...'end'];et(hm,'callback',huidiao)et(gca,'poition',[0.20.20.60.6])tit le('弹出式菜单的使用')holdonfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]实例37:滑标的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例37');[某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);h1=a某e('poition',...[0.20.20.50.5],...'viible','off');hte某t=uicontrol(gcf,...'unit','point',...'poition',[20304515],...'tring','brightne' ,...'tyle','te某t');hlider=uicontrol(gcf,...'unit','point',...'poition',[101030015],...'min',-1,...'ma某',1,...'tyle','lider',...'callback',...'brighten(get(hlider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例38');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31][某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);hlit=uic ontrol(gcf,'tyle','litbo某',...'tring','default|pring|ummer|autumn|winter',...'ma某',5,...'min',1,...'poition',[202080100],...'callback',[...'k=get(hlit,''value' ');,',...'witchk,',...'cae1,',...'colormapdefault,',...'cae2,',...'colormappring,',...'cae3,',...'colormapummer,',...'cae4,',...'colormapautumn,',...'cae5,',...'colormapwinter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例39');某=0:0.5:2某pi;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]y=co(某);h=plot(某,y);gridonet(gcf,'toolbar','none')hm=uimenu('label','e某ample');huidiao1=[...'et(hm_gridon,''checked'',''on''),',...'et(hm_gridoff,''chec ked'',''off''),',...'gridon'];huidiao2=[...'et(hm_gridoff,''checked'',''on''),',...'et(hm_gridon,''chec ked'',''off''),',...'gridoff'];hm_gridon=uimenu(hm,'label','gridon',...'checked','on',...'c allback',huidiao1);hm_gridoff=uimenu(hm,'label','gridoff',...'checked','off',.. .'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'et(h31,''checked'',''on''),',...'et(h32,''checked'',''off'' ),',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]'[某,y,z]=peak;,',...'contour3(某,y,z,30)']);。
数学建模案例分析MATLAB在电气工程中的应用

2024/8/3
4
第5页/共82页
课程任务
通 过 本 课 程 学 习 , 使 学 生 掌 握 利 用 M AT L A B 进 行 数 值 计 算 的 基 本 方 法 , 熟 悉 M AT L A B 编 程 环 境 、 语言语法、程序结构、编程及调试技术,掌握 M AT L A B 中 M 文 件 、 M 函 数 编 写 方 法 及 调 试 技 术 、 M AT L A B 的 绘 图 和 图 形 控 制 函 数 等 内 容 , 上 机 练 习 M AT L A B 数 值 解 算 方 法 , 具 备 上 机 操 作 的 技 能 , 学 习 M AT L A B 在 电 气 工 程 学 科 中 的 建 模 与 分 析 方 法 , 为后续专业课程学习奠定基础。
• helpdesk 指令 在命令窗口中键入helpdesk(或doc,或点击工具条中的?按钮),进入帮助窗口,显 示HTML格式的帮助内容。
2024/8/3
23
第24页/共82页
• help 命令
help:列出所有的帮助主题,每个帮助主题对应于 MATLAB搜索路径中的一个目录;
help 库名:得到库中全部函数名;
more(n):指定每页输出的行数
回车键显示下一行,空格键显示下一页,q结束当
前显示。
2024/8/3
18
第19页/共82页
页面显示的疏密控制 format loose (默认) :稀疏显示格式; format compact: 密集显示格式;
清命令窗口 clc
2024/8/3
19
第20页/共82页
识别、控制系统、非线性系统、模糊控制、优化技术、通讯系统、财政金融等领域有着广泛 应用。
matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。
在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。
1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。
2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。
3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。
4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。
5. 数值积分:使用Matlab计算函数的定积分。
6. 微分方程求解:使用Matlab求解常微分方程。
7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。
8. 线性规划:使用Matlab求解线性规划问题。
9. 非线性规划:使用Matlab求解非线性规划问题。
10. 整数规划:使用Matlab求解整数规划问题。
11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。
12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。
13. 动态规划:使用Matlab解决动态规划问题。
14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。
15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。
16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。
17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。
18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。
19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。
20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。
21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。
22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。
用matlab解决数学建模

2、已知速度曲线v(t) 上的四个数据点下表所示t=[0.15,0.16,0.17,0.18];v=[3.5,1.5,2.5,2.8];x=0.15:0.001:0.18y=i n t e r p1(t,v,x,'s p l i n e')S=t r a p z(x,y)p=p o l y f i t(x,y,5);d p=p o l y de r(p);d p x=p o l y v a l(d p,0.18)运行结果S=0.0687Dpx=-3、计算图片文件tu.bmp 给出的两个圆A,B 的圆心,和两个圆的两条外公切线和两条内公切线的切点的坐标。
(1)计算A 圆的圆心坐标I=imread('tu.bmp');[m,n]=size(I)BW=im2bw(I)BW(:,200:512)=1;figure, imshow(BW)ed=edge(BW);[y,x]=find(ed);x0=mean(x), y0=mean(y)r1=max(x)-min(x),r2=max(y)-min(y)r=(r1+r2)/4x0 =109.7516y0 =86.7495r1 =162r2 =158r =80(2)B圆的圆心坐标和半径I=imread('tu.bmp');BW=im2bw(I)BW(:,1:200)=1;imshow(BW)ed=edge(BW);[y,x]=find(ed);x0=mean(x), y0=mean(y)r1=max(x)-min(x),r2=max(y)-min(y)r=(r1+r2)/4x0 =334.0943y0 =245.7547r1 =165r2 =158 r = 80.7500外公切线上的切点f=@(x)[(x(1,1)-109.7516)^2+(x(1,2)-86.7495)^2-80.5^2(x(2,1)-334.0943)^2+(x(2,2)-245.7547)^2-80.75^2(x(2,2)-x(1,2))*(x(1,2)-86.7495)+(x(2,1)-x(1,1))*(x(1,1)-109.7516)(x(2,2)-x(1,2))*(x(2,2)-245.7547)+(x(2,1)-x(1,1))*(x(2,1)-334.0943)(x(1,1)-x(2,1))^2+(x(1,2)-x(2,2))^2+0.75^2-(334.0943-109.7516)^2-(245.7 516-86.7495)^2];xy1=fsolve(f,rand(2,2))xy2=fsolve(f,100*rand(2,2))xlswrite('book1.xls',xy1)xlswrite('book1.xls',xy2,'Sheet1','A4')xy1 =156.2419 21.0312380.7270 179.8309xy2 =153.7425 48.4651289.4819 284.38084、求微分方程组的数值解,并画出解曲线dy=@(t,y)[-10*y(1)+10*y(2);28*y(1)-y(2)-y(1)*y(3);-8/3*y(3)+y(1)*y(2)]; [t,y]=ode45(dy,[0,10],[1;0;0])subplot(3,1,1),plot(t,y(:,1),'*')subplot(3,1,2),plot(t,y(:,2),'*')subplot(3,1,3),plot(t,y(:,3),'*')0123456789105、预测2012-2020年美国人口数量。
MATLAB应用实例分析例分析

MATLAB应用实例分析例分析Matlab应用例题选讲仅举一些运用MATLAB的例子,这些问题在数学建模中时常遇到,希望能帮助同学们在短时间内方便、快捷的使用MATLAB 解决数学建模中的问题,并善用这一工具。
常用控制命令:clc:%清屏; clear:%清变量; save:%保存变量; load:%导入变量一、利用公式直接进行赋值计算本金P以每年n次,每次i%的增值率(n与i的乘积为每年增值额的百分比)增加,当增加到r×P 时所花费的时间T为:(利用复利计息公式可得到下式) lnrnT() r,P,P(1,0.01i),T,r,2,i,0.5,n,12nln(1,0.01i)MATLAB 的表达形式及结果如下:>> r=2;i=0.5;n=12; %变量赋值>> T=log(r)/(n*log(1+0.01*i)) 计算结果显示为:T = 11.5813即所花费的时间为T=11.5813 年。
分析:上面的问题是一个利用公式直接进行赋值计算问题,实际中若变量在某个范围变化取很多值时,使用MATLAB,将倍感方便,轻松得到结果,其绘图功能还能将结果轻松的显示出来,变量之间的变化规律将一目了然。
若r在[1,9]变化,i在[0.5,3.5]变化;我们将MATLAB的表达式作如下改动,结果如图1。
r=1:0.5:9;i=0.5:0.5:3.5;n=12;p=1./(n*log(1+0.01*i));T=log(r')*p;plot(r,T)xlabel('r') %给x轴加标题ylabel('T') %给y轴加标题q=ones(1,length(i));text(7*q-0.2,[T(14,1:5)+0.5,T(14,6)-0.1,T(14,7)-0.9],num2str(i'))40350.5302520T 1151.510 22.55 33.50123456789r图11从图1中既可以看到T随r的变化规律,而且还能看到i的不同取值对T—r 曲线的影响(图中的六条曲线分别代表i的不同取值)。
数学建模 第3讲 MATLAB的具体实例

解答
用MATLAB优化工具箱解线性规划
1、模型: min z=cX s.t. AX b 命令:x=linprog(c,A,b)
2、模型:min z=cX s.t. AX b Aeq X beq 命令:x=linprog(c,A,b,Aeq,beq)
AX b 存在,则令A=[ ],b=[ ]. 注意:若没有不等式:
三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即 pixi xi>ui 交易费 = piui xi≤ui 而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(r i-pi)xi
五、 结果分析 1.风险大,收益也大。
2.当投资越分散时,投资者承担的风险越小,这与题意一致。即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险。对于不同风险的承受能力,选择该风险水平下的最优投资组合。 4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长 很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和 收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合, 大约是a*=0.6%,Q*=20% ,所对应投资方案为: 风险度 收益 x0 x1 x2 x3 x4 0.0060 0.2019 0 0.2400 0.4000 0.1091 0.2212
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
康托洛维奇和希奇柯克两人独立地提出,简称康—希表上作业法)。
§3 指派问题 3.1 指派问题的数学模型
例 7 拟分配 n 人去干 n 项工作,每人干且仅干一项工作,若分配第 i 人去干第 j
项工作,需花费 cij 单位时间,问应如何分配工作才能使工人花费的总时间最少?
容易看出,要给出一个指派问题的实例,只需给出矩阵 C = (cij ) , C 被称为指派
⎪⎩lb ≤ x ≤ ub
其中 c 和 x 为 n 维列向量, A 、 Aeq 为适当维数的矩阵, b 、 beq 为适当维数的列向
量。
-1-
例如线性规划
max cT x s.t. Ax ≥ b x
的 Matlab 标准型为
min − cT x s.t. − Ax ≤ −b x
1.3 线性规划问题的解的概念
们建立有效模型的关键之一。
1.2 线性规划的 Matlab 标准形式
线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以
是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性
规划的标准形式为
min cT x x
⎧Ax ≤ b
s.t.
⎪ ⎨
Aeq
⋅
x
=
beq
xij
≥
0
⎩
显然是一个线性规划问题,当然可以用单纯形法求解。
对产销平衡的运输问题,由于有以下关系式存在:
∑ ∑ ∑ ∑ ∑ ∑ n
bj
j =1
=
m i =1
⎜⎜⎝⎛
n j =1
xij
⎟⎟⎠⎞
=
n ⎜⎛ m ⎝ j=1 i=1
xij
⎟⎞ ⎠
=
m
ai
i =1
其约束条件的系数矩阵相当特殊,可用比较简单的计算方法,习惯上称为表上作业法(由
单纯形法,有兴趣的读者可以参看其它线性规划书籍。下面我们介绍线性规划的 Matlab 解法。
Matlab 中线性规划的标准型为
min cT x x
⎧Ax ≤ b
s.t.
⎪ ⎨
Aeq
⋅
x
=
beq
⎪⎩lb ≤ x ≤ ub
基本函数形式为 linprog(c,A,b),它的返回值是向量 x 的值。还有其它的一些函数调用形
问题的系数矩阵。
引入变量 xij ,若分配 i 干 j 工作,则取 xij = 1,否则取 xij = 0 。上述指派问题的
数学模型为
nn
∑ ∑ min
cij xij
i =1 j =1
n
∑ s.t.
xij = 1
j =1
-5-
n
∑ xij = 1
i =1
xij = 0 或1
上述指派问题的可行解可以用一个矩阵表示,其每行每列均有且只有一个元素为
而使目标函数(3)达到最大值的可行解叫最优解。
可行域 所有可行解构成的集合称为问题的可行域,记为 R 。
1.4 线性规划的图解法
10
9
2 x1 + x2 = 1 0
8
7
x2 = 7
6
(2 ,6 )
5
4
3
2
x1 + x2 = 8
1
z= 1 2
0
0
2
4
6
8
10
图 1 线性规划的图解示意图
图解法简单直观,有助于了解线性规划问题求解的基本原理。我们先应用图解法来
第一章 线性规划
§1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济
效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记 LP)则是数学规划的一个重要分支。自从 1947 年 G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深
运才能使总运费最省?
解:引入变量 xij ,其取值为由 i 产地运往 j 销地的该商品数量,数学模型为
mn
∑ ∑ min
cij xij
i =1 j =1
∑ ⎧ n
⎪
xij = ai ,
i = 1,L, m
⎪ j =1
∑ ⎪ m
s.t. ⎨ xij = bj , j = 1,2,L, n
⎪ i =1
⎪ ⎪
xi
| , vi
=
|
xi
| −xi 2
就可以满足上面的条件。
这样,记 u = [u1 L un ]T , v = [v1 L vn ]T ,从而我们可以把上面的问题
变成
n
∑ min (ui + vi ) i =1
⎧A(u − v) ≤ b s. t. ⎩⎨u, v ≥ 0
例5
min{max
xi
yi
|εi
式(在 Matlab 指令窗运行 help linprog 可以看到所有的函数调用形式),如:
[x,fval]=linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIONS)
这里 fval 返回目标函数的值,LB 和 UB 分别是变量 x 的下界和上界,x0 是 x 的初始值,
OPTIONS 是控制参数。 例 2 求解下列线性规划问题
|}
其中 ε i = xi − yi 。
对于这个问题,如果我们取
x0
=
max yi
|εi
| ,这样,上面的问题就变换成
-4-
min x0
s. t. x1 − y1 ≤ x0 ,L, xn − yn ≤ x0
此即我们通常的线性规划问题。
§2 运输问题(产销平衡)
例 6 某商品有 m 个产地、 n 个销地,各产地的产量分别为 a1,L, am ,各销地的 需求量分别为 b1,L, bn 。若该商品由 i 产地运到 j 销地的单位运价为 cij ,问应该如何调
一元素都加上或减去同一个数,得到一个新矩阵 B = (bij ) ,则以 C 或 B 为系数矩阵的
指派问题具有相同的最优指派。
例 8 求解指派问题,其系数矩阵为
⎡16 15 19 22⎤ C = ⎢⎢17 21 19 18⎥⎥
几台,才能使总利润最大?
上述问题的数学模型:设该厂生产 x1 台甲机床和 x2 乙机床时总利润最大,则 x1, x2
应满足
(目标函数) max z = 4x1 + 3x2
(1)
⎧2x1 + x2 ≤ 10
s.t.(约束条件)
⎪⎪ ⎨ ⎪
x1 x2
+ ≤
x2 7
≤
8
⎪⎩x1, x2 ≥ 0
(2)
这里变量 x1, x2 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式
入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性
规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定ቤተ መጻሕፍቲ ባይዱ 例 1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为 4000 元与 3000 元。
生产甲机床需用 A、B 机器加工,加工时间分别为每台 2 小时和 1 小时;生产乙机床 需用 A、B、C 三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为 A 机器 10 小时、B 机器 8 小时和 C 机器 7 小时,问该厂应生产甲、乙机床各
十分直观。为此,我们将采用另一途径来定义它。
定义 1 称 n 维空间中的区域 R 为一凸集,若 ∀x1, x2 ∈ R 及 ∀λ ∈ (0,1) ,有
λx1 + (1 − λ)x2 ∈ R 。
定义 2 设 R 为 n 维空间中的一个凸集, R 中的点 x 被称为 R 的一个极点,若不
存在 x1、x2 ∈ R 及 λ ∈ (0,1) ,使得 x = λx1 + (1 − λ)x2 。
i =1
i =1
向量, b 为一实数)。若干个半空间的交集被称为多胞形,有界的多胞形又被称为多面
体。易见,线性规划的可行域必为多胞形(为统一起见,空集 Φ 也被视为多胞形)。
在一般 n 维空间中,要直接得出多胞形“顶点”概念还有一些困难。二维空间中的顶点
可以看成为边界直线的交点,但这一几何概念的推广在一般 n 维空间中的几何意义并不
(1)可行域 R 可能会出现多种情况。R 可能是空集也可能是非空集合,当 R 非空 时,它必定是若干个半平面的交集(除非遇到空间维数的退化)。R 既可能是有界区域,
也可能是无界区域。
(2)在 R 非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其
目标函数值无界)。
-2-
(3)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域 R 的
c=[2;3;1];
a=[1,4,2;3,2,0];
b=[8;6];
[x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
1.6 可以转化为线性规划的问题
很多看起来不是线性规划的问题也可以通过变换变成线性规划的问题来解决。如:
例4 规划问题为
min | x1 | + | x2 | +L+ | xn |
(ii)将M文件存盘,并命名为example1.m。 (iii)在Matlab指令窗运行example1即可得所求结果。 例3 求解线性规划问题
min z = 2x1 + 3x2 + x3
⎪⎨⎧3x1x1++42xx2 2+≥26x3 ≥ 8 ⎪⎩x1, x2 , x3 ≥ 0