MATLAB及在数学建模中的应用

合集下载

第二讲 MATLAB软件及其在数学建模竞赛中的应用(上)

第二讲 MATLAB软件及其在数学建模竞赛中的应用(上)

说明: 空格或逗号分隔的元素指定的是不同列的 说明:以空格或逗号分隔的元素指定的是不同列的 元素,而以分号分隔的元素指定了不同行的元素 元素,而以分号分隔的元素指定了不同行的元素. 分号分隔的元素指定了不同行的元素
2. 数组元素的访问
访问一个元素: x(i)表示访问数组x的第i个元素. (1)访问一个元素 访问一个元素 (2)访问一块元素 访问一块元素: x(a :b :c)表示访问数组x的第a 访问一块元素 个元素开始,以步长b到第c个元素(但不超过c),b可以为负 数,b缺省时为1. (3)直接使用元素编址序号 x([a b c d]) 表示 直接使用元素编址序号. 直接使用元素编址序号 提取数组x的第a、b、c、d个元素构成一个新的数组 、 、 、
(2)数组 数组运算 )数组-数组运算 当两个数组有相同维数时, 当两个数组有相同维数时,加、减、乘、除、 幂运算可按元素对元素方式进行, 元素对元素方式进行 幂运算可按元素对元素方式进行,不同大小或维数 的数组是不能进行运算的. 的数组是不能进行运算的
设:a=[a1,a2,…,an], b=[b1,b2,…,bn] 则:a+b= [a1+b1,a2+b2,…,an+bn] a.*b= [a1*b1,a2*b2,…,an*bn] a./b= [a1/b1,a2/b2,…,an/bn] a.\b=[b1/a1,b2/a2,…,bn/an] a.^b=[a1^b1,a2^b2,…,an^bn]
各种输出格式
格式 format format short format long format short e format long e format short g format long g format compact format loose 解释 短格式(缺省显示格式),同short 短格式(缺省显示格式),只显示5位 长格式,双精度数15位,单精度数7位 短格式e方式(科学计数格式) e 长格式e方式 短格式g方式 长格式g方式 压缩格式 自由格式 例 3.1416 3.1416 3.14159265358979 3.1416e+000 3.141592653589793e+000 3.1416 3.14159265358979

MatLab图形功能及其在数学建模中的应用

MatLab图形功能及其在数学建模中的应用
2 2
x2 + y2
王远干主讲
2 三维图形
用以下程序实现: x=-7.5:0.5:7.5;y=x; [X,Y]=meshgrid(x,y); R=sqrt(X.^2+Y.^2)+eps; Z=sin(R)./R; mesh(X,Y,Z)
王远干主讲
2 三维图形
王远干主讲
2 三维图形
将mesh改为surf
时刻 (h) 水位 (cm) 时刻 (h) 水位 (cm) 时刻 (h) 水位 (cm) 0 968 9.98 // 0.92 948 1.84 931 2.95 913 3.87 898 4.98 881 5.90 869 7.01 852 7.93 839 8.97 822
10.92 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 // 1082 1050 1021 994 965 941 918 892
王远干主讲
1. 二维图形
1.5其它 还有一些画2维图形的命令,如 fplot(‘fun’,[xmin xmax ymin ymax]) 在[xmin xmax]内画出以字符串fun表示 的函数图形,[ymin ymax]给出了y的限 制 fplot('sin(x)./x',[-20 20 -0.4 1.2]),gtext('sinx/x')
王远干主讲
3. 建模中的应用示例
例:船在该海域会搁浅吗? 在某海域测得一些点(x, y)处的水深z(单 位:英尺)由下表给出,水深数据是在 低潮时测得的。船的吃水深度为5 英尺, 问在矩形(75,200)×(−50,150)里的哪些 地方船要避免进入。
王远干主讲

Matlab在数学建模中的应用3页word

Matlab在数学建模中的应用3页word

Matlab在数学建模中的应用一、前言由实验数据建立数学模型,我们通常采用回归分析,在热油管道运行优化软件的开发中,需要根据不同油品的粘温数据,回归出粘温关系数学模型,以计算出不同温度下的油品粘度。

二、热油管道运行优化软件简介1. 功能需求本软件的功能为已知输油管道系统的运行参数,寻求在特定输油任务的前提下,输油费用最小值时的工况组态,并可选择输出各工况组态的运行参数和相应费用。

2. 编程语言及开发环境本软件的功能侧重于数值计算,在寻优过程中需要进行大量的数据处理,为了能够快速得到寻优结果,需要软件具有较高的执行效率,因此本软件编程语言选择C++语言。

C++语言程序生成代码质量高,一般只比汇编程序生成的目标代码效率低10~20%,且具有指针操作功能,能够象汇编语言一样对位、字节和地址进行操作,使程序的算法更加灵活。

本软件采用Visual C++ 6.0作为软件开发环境,这是一种可视化编程工具,界面友好,逻辑清晰,调试方便,界面编制能力很强,开发的软件可以在Windows系列操作系统上良好运行。

3、软件界面本软件运行后,主界面如下图所示三、在VC++中通过调用Matlab实现回归分析1. 在VC++中调用Matlab方法简介Matlab是一种功能非常强大的数学分析软件,它广泛应用于线性代数、自动控制理论、数理统计、动态系统仿真等领域,具有扩展性好、易学易用、方便快捷等优点,但Matlab语言是一种解释性语言,它实时效率差、不可以脱离其环境独立运行,而在VC++中调用Matlab,既能保留Matlab的优良算法,又能保持VC++的高效率性, 能大大缩短本功能模块的开发周期,在VC++中调用Matlab 主要有以下两种方法:(1) 利用Matlab引擎 Matlab引擎采用客户机和服务器的计算方式,在运行中,VC++开发的程序为前端客户机,它向Matlab引擎传递命令和数据信息,并从Matlab引擎中接收数据信息,这种方法调用Matlab 采用较少的代码即可实现,但不能脱离Matlab 运行环境,且运行速度缓慢。

MATLAB在数学建模方面的应用

MATLAB在数学建模方面的应用

MATLAB在数学建模方面的应用计算机仿真技术与CAD——基于MATLAB的控制系统(第二版)课程结业论文课题:matlab在数学建模方面的应用专业班级: 08自动化学生:学号:设计时间: 2010/12/20论文目录一、MATLAB简介二、Matlab在现在科技及生产上的应用三、利用matlab实现数学建模的一般步骤四、Matlab在数学建模方面的应用示例五、论文结束语一、 MATLAB的简介:MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB和Mathematica、Maple并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

二、软件应用Matlab以其丰富的数据类型和结构、友善的面向对象、快速的图形可视、广博的应用开发工具在控制界得到了广泛地应用,目前已成为控制系统计算机辅助设计领域中最流行和最受欢迎的软件环境。

但是,用Matlab进行控制系统分析,需要学会Matlab的M编程语言和熟悉它的子程序。

因此,如何利用Matlab强大的图形对象属性设置技术及图形用户界面制作技术为自动控制教学服务成为主要课题。

为此,设计了具有良好的人机交互界面并能完成线性控制系统的计算机辅助分析的教学软件。

数学模型是控制系统分析研究的基础,也是综合设计系统的依据。

Matlab在数学建模中的应用

Matlab在数学建模中的应用
• 同样,可以以Y轴为对数重新绘制上述曲线,程序为:
x=[0:0.01:2*pi] y=abs(1000*sin(4*x))+1 semilogy(x,y); 单对数Y轴绘图命令
1.2特殊坐标图形
• 二、 极坐标图
函数polar(theta,rho)用来绘制极坐标图,theta为 极坐标角度,rho为极坐标半径
4.4 三维图形
• 三、surf函数
• surf用于绘制三维曲面图,各线条之间的补面用颜色 填充。surf函数和mesh函数的调用格式一致。
• 函数格式: surf (x,y,z)
• 其中x,y控制X和Y轴坐标,矩阵z是由x,y求得的曲 面上Z轴坐标。
•【例11】 下列程序绘制三维曲面图形 •x=[0:0.15:2*pi];
• y=sin(x);
• z=cos(x); • plot(x,y,'b');
• hold on;
• plot(x,z,'g'); 弦曲线
%绘制正弦曲线 %设置图形保持状态 %保持正弦曲线同时绘制余
• axis ([0 2*pi -1 1]);
• legend('cos','sin');
• hold off
• 【例5】 为正弦、余弦曲线增加图例
1.1 二维图形
二、 subplot函数 • (一)subplot(m,n,p) • 该命令将当前图形窗口分成m×n个绘图
区,即每行n个,共m行,区号按行优先 编号,且选定第p个区为当前活动区。
【例6】 在一个图形窗口中同时绘制正弦、 余弦、正切、余切曲线
1.1 二维图形
• 一、阶梯图形
• 函数stairs(x,y)可以绘制阶梯图形,如下列程序段:

MATLAB软件在数学建模中的应用3

MATLAB软件在数学建模中的应用3
实际应用的需求中产生的, 我们把遇到的实际问题进行分析,发 现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学 问题,建立了数学模型!。但数学模型迫切需要一个方便、快捷且功能强大的工具 去实现并解决,特别是随着科技的进步,人们在解决问题的时候常常要用到许多 比较复杂的数学知识和大量的数据计算, 这无疑加大了人们解决问题的难度也 要耗费更长的时间。而 MATLBA 正是在数学计算和大量数据处理方面具备其它 软件所不具备的优势,且操作简单,运算速度快,所以应用 MATLBA 进行数学建 模也就大大提高了人们的效率。 而且 MATLBA 还有很强的绘图功能,这就可以使得 模型图象化,使得研究人员对建模成果的优劣一目了然,容易进行修正与改进。 二、MATLAB 在数学建模中的应用实例 示例 1 在 0=<X<=2π区间中,绘制图线 . 在 MATLAB
四、在 VC++中通过调用 Matlab 实现回归分析。。。。。。。 4.1 在 VC++中调用 Matlab 方法简介。。。。。。。。。。。。 4.2. 已知原油粘度-温度实验数据,建立粘度-温度的数学模型。。。 4.3 实例分析。。。。。。。。。。。。。。。 4.4 结束语。。。。。。。。。。。。。。。。 五、总结。。。。。。。。。。。。。。。。。。。。。 六、体会。。。。。。。。。。。。。。。。。。。。。
数学建模论文
题目: MATLAB 软件在数学建模中的应用
学生姓名:周加旺 专 学 业:数学与应用数学 号:39241113107
指导教师:聂登国


一、问题的提出。。。。。。。。。。。。。。。。。。。。。。。。 。 。 1.1、软件的应用。。。。。。。。。。。。。。。。 1.2、对数学建模的介绍。。。。。。。。。。。。。。 1.3、数学建模的一般方法。。。。。。。。。。。。。 1.4、MATLAB 在数学建模中的应用。。。。。。。。。。 二、MATLAB 在数学建模中的应用实例。。。。。。。。。 2.1、计划问题。。。。。。。。。。。。。。。。 2.2、二次规划模型。。。。。。。。。。。。。。 2.3、多目标规划模型。。。。。。。。。。。。。。 三、确定变量之间的关系。。。。。。。。。。。。。。 3.2 求数字特征。。。。。。。。。。。。。。。 3.3 绘制误差条图。。。。。。。。。。。。。。。。 3.4、对模型进行模拟。。。。。。。。。。。。。。

数学建模MATLAB及应用

数学建模MATLAB及应用



重庆邮电大学------数学建模
2 .一种演草纸式的科学计算语言 3 .MATLAB 是一高性能的技术计算语言.

强大的数值计算和工程运算功能 符号计算功能 强大的科学数据可视化能力 多种工具箱
重庆邮电大学------数学建模
MATLAB 能干什么?
MATLAB可以进行:

重庆邮电大学------数学建模
重庆邮电大学------数学建模
2)、[L,U]=lu (A) 将矩阵A做对角线分解,使 得A=L*U,L为下三角矩阵(lower triangular matrix),U为上三角矩阵 (upper triangular matrix)。 例如: [L,U]=lu(A) L= 0.1429 1.0000 0 0.5714 0.5000 1.0000 1.0000 0 0 U= 7.0000 8.0000 9.0000 0 0.8571 1.7143 0 0 0.0000
重庆邮电大学------数学建模
v= d= 0.2320 0.7858 0.4082 16.1168 0 0 0.5253 0.0868 -0.8165 0 1.1168 0 0.8187 -0.6123 0.4082 0 0 -0.0000 其中v (:,i) 为d (i,i)所对应的特征向量。 2)、det (A) 计算行列式A的值。例如: det (A) 结果为: ans = 0
重庆邮电大学------数学建模
重庆邮电大学------数学建模
如果要对两个以上的多项式进行相乘,以 重复使用conv指令,例如:(x,y同上) conv(conv(x,y),x) ans = 2 16 68 172 284 280 150

#MATLAB在数学建模中的应用

#MATLAB在数学建模中的应用
以五年为一个年龄段,则某一时刻三个年龄段的动 物数量可以用一个向量X(k)=[x1(k) x2(K) x3(k)]T为第 k个时间段动物数分布向量。
当k=0,1,2,3时, X(k)表示现在、五年后、十年后、 十五年后的动物数分布向量。根据第二年龄段和 第三年龄段的繁殖能力,在第k个时间段,第二 年龄组动物在其年龄段平均繁殖4个后代,第三 年龄组动物在其年龄段平均繁殖3个后代。由此 得第一个年龄组在第k+1个时间段的数量如下: x1(k+1)=4x2(k)+3x3(k)
使用形式: x=linprog(f,A,b) x=linprog(f,A,b,Aeq,beq,lb,ub) x=linprog(f,A,b,Aeq,beq,lb,ub,x0)
x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval]=linprog(…) [x,fval,exitflag]=linprog(…) [x,fval,exitflag,output]=linprog(…) [x,fval,exitflag,output,lambda]=linprog(…)
这说明多年以后,动物数量是大得非常惊人。 如果每年向市场供应动物c=[s s s]T,分析动物数分布 向量变化的规律可知
X(1)=AX(0)-c X(2)=AX(1)-c X(3)=AX(2)-c X(4)=AX(3)-c
X(4)=A4X(0)-(A3+A2+A+I)c
考虑20年后动物不灭绝,应有X(4)>0 即
根据有关生物学研究结果,对于足够大的时间值 k,有
X(k1) 1X(k)
其中 是莱斯利矩阵L的唯一的正特值
请检验这一结果是否正确,如果正确给出适当的k 值

matlab在数学建模中的运用

matlab在数学建模中的运用

matlab在数学建模中的运用
Matlab广泛应用于数学建模中,因为它具有处理数学问题的强大功能和丰富的工具集。

以下是Matlab在数学建模中的一些常见应用:
1.解微分方程:Matlab提供了各种数值求解器和工具,可以解决各种常微分方程和偏微分方程,这对于动力学系统、控制系统和其他物理现象的建模与仿真非常有用。

2.优化问题:Matlab包括了丰富的优化工具箱,可用于解决各种优化问题,例如线性规划、非线性规划、整数规划等。

3.统计分析:Matlab提供了丰富的统计工具箱,可用于数据分析、拟合曲线、确定概率分布、执行假设检验等。

4.数值模拟:Matlab具有强大的数值计算能力,可用于模拟各种数学模型,例如物理系统、金融模型、生态系统等。

5.图形可视化:Matlab提供了丰富的绘图功能,可用于可视化数学模型的结果和解决方案,以及制作各种类型的图表和图形。

MATLAB在数学建模中的应用

MATLAB在数学建模中的应用
MATL AB还可以与仿真软件、控制系统等其他工程软件集成,提高工程应用的效率和精度。
M AT L A B 在 教 育 和 研 究 领 域 的 应 用 前 景
促进数学建模教 育:MATL AB提 供了丰富的工具 和资源,帮助学 生和教师更容易 地学习和教授数 学建模。
支持科研工作: 科学家和研究人 员使用MATL AB 进行数据分析和 可视化,算法开 发,以及模拟和 建模。
案例:使用MATL AB求解非线性最小二乘问题,通过迭代算法找到最优解。
优势:MATL AB提供了高效的优化工具箱,可以进行大规模的优化计算。
应用领域:非线性优化问题在许多领域都有应用,如机器学习、图像处理、控制系统 等。
微分方程的求解
描述了使用MATL AB求解微分方程的基本步骤 提供了使用MATL AB求解微分方程的示例代码 介绍了使用MATL AB求解微分方程的优势和局限性 总结了MATL AB在数学建模中求解微分方程的应用场景和效果
如何使用MATLAB 进行数学建模
M AT L A B 的 基 本 语 法 和 操 作
变量定义:使用变量名和赋值符号(=)定义变量 矩阵运算:使用方括号[]进行矩阵的创建和运算 函数定义:使用function关键字定义函数,输入输出参数用逗号分隔 控制流语句:使用if、else、for、while等控制流语句进行程序流程控制
M AT L A B 的 起 源 : 由 C l e v e M o l e r 于1980年代初开发,旨在为线性 代数课程提供一种更有效的方法。
M AT L A B 的 发 展 : 经 过 多 年 的 不 断 发 展 和 完 善 , M AT L A B 已 经 成 为 一 个功能强大的数学计算软件,广泛 应用于科学、工程和数学领域。

六讲MATLAB在数学建模中的应用

六讲MATLAB在数学建模中的应用
根据有关生物学研究结果,对于足够大的时间值 k,有
X(k1) 1 X(k)
其中 是莱斯利矩阵L的唯一的正特值
请检验这一结果是否正确,如果正确给出适当的k 值
如果每五年平均向市场供应动物数 c=[s s s]T,在20年后农场动物不至 于灭绝的前提下,c为多少为好?
问题分析:由题设,在初始时刻0~5岁、6~10 岁、11~15岁的三个年龄段动物数量分别为 x1(0)=1000,x2(0)=1000,x3(0)=1000
以五年为一个年龄段,则某一时刻三个年龄段的动 物数量可以用一个向量X(k)=[x1(k) x2(K) x3(k)]T为第 k个时间段动物数分布向量。
当k=0,1,2,3时, X(k)表示现在、五年后、十年后、 十五年后的动物数分布向量。根据第二年龄段和 第三年龄段的繁殖能力,在第k个时间段,第二 年龄组动物在其年龄段平均繁殖4个后代,第三 年龄组动物在其年龄段平均繁殖3个后代。由此 得第一个年龄组在第k+1个时间段的数量如下: x1(k+1)=4x2(k)+3x3(k)
b1
aam211xx11aam222xx22 aa2mnnxxnn
b2 bm
x j 0, j 1,2,3n
min z CX
AX b
X 0
线性规划的标准形式要求目标函数最小化, 约束条件取等式,变量非负,不符合这几个 条件的线性规划要首先转化为标准形式。
线性规划的求解方法主要是单纯形法(simple Method),此法由Dantzig于1947年提出,以后经 过多次改进,
ans = 1.5000 -1.3090 -0.1910
2、线性规划的MATLAB求解:linprog函数
数学模型:

MATLAB及在数学建模中的应用

MATLAB及在数学建模中的应用

1讲MATLAB及在数学建模中的应用•MatLab简介及基本运算•常用计算方法•应用实例MatLab简介及基本运算1.1 MatLab简介1.2 MatLab界面1.3 MatLab基本数学运算1.4 MatLab绘图简介•MATLAB名字由MATrix和LABoratory 两词组成。

20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。

从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。

现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。

•20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。

以下为其几个特色:①可靠的数值运算和符号计算。

在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函数可使用。

②强大的绘图功能。

MATLAB可以绘制各种图形,包括二维和三维图形。

③简单易学的语言体系。

④为数众多的应用工具箱。

MatLab界面基本数学运算•MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)还有一种特殊的运算,点运算:.*、./、.\和.^。

•输入方式:在MATLAB命令窗中输入>> (12+2*(7-4))/3^2>> z=2*exp(2)+sin(pi/6)>> B=[1+5i,2+6i;3+8*i,4+9*i]在M文件中输入例1.1 求方程3x4+7x3+9x2-23=0的全部根p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根1.2 求一元二次方程ax2+bx+c=0的根。

matlab在数学建模中的应用

matlab在数学建模中的应用

Matlab在数学建模中的应用数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。

它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。

这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。

在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。

1 Matlab在数学建模中的应用下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。

1.1 模型准备阶段模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。

1.1.1 确定变量间关系例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。

表1 实际投资额、国民生产总值、物价指数的统计表记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。

赋值:z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]'y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.91450.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.63421.7842 1.95142.0688]'先观察x与z之间,y与z之间的散点图plot(x,z,'*')plot(y,z,'*')由散点图可以看出,投资额和国民生产总值与物价指数都近似呈线性关系,因此可以建立多元线性回归模型012z x y βββε=+++直接利用统计工具箱直接计算[b,bint,r,rint,stats]=regress(z,X,alpha)输入z :n 维数据向量X:[ones(20,1) x y],这里的1是个向量,元素全为常数1,即为ones(n,1)Alpha:置信水平,一般为0.05输出b :β的估计值bint:b 的置信区间r :残差向量z-Xbrint: r 的置信区间Stats:检验统计量2R ,F , p代入上述公式[b,bint,r,rint,stats]=regress(z,X,0.05)有b =322.80.4168-859.2322.75630.61850.859.479=+-z x y由stats =0.2672 920.7 0知z的99.085%可由模型确定,F远超过F检验的临界值,p远小于α=0.05 .bint =224. 421.70.0184 0.8151-1121. -597.5b的置信区间不包含零点,x,y对z影响都是显著的。

Matlab在数学建模中的应用(模型求解)

Matlab在数学建模中的应用(模型求解)

qk,t与 Q(k,t)间的绝对误差
e Qt qt
e=Q-q(1:length(Q));
相对误差
E
e
Qt
E=e./Q;
整理一下
停车场问题 (MCM 87B题)
在新英格兰 地区一个镇上,位 于街角处的一个 停车场的场主要 设计停车场的安 排,即设计”在地 上的线应怎样划 法”。这个停车场 是长方形的,长 200英尺,宽100 英尺。
怎样用matlab求解这个模型呢??
分析:对如上面的线形规划问题,可用linprog()函数求解。
模型
Max S 5x 6y s.t. 2x 3y 1400
x 6y 2400 4x 2y 2000 x 0, y 0, x, y z
对应matlab语句
f=[-5,-6]; A=[2 3 b=[1400
n
for d=2:length(Q);
Q1n Qi
Q1=cumQs(udm)=(QQ)(d-1)+Q(d);
i 1
得到
end
1 2
Q12
Q11 ,1
1 2
Q13
Q12 ,1
B ...............................
...............................
甲、乙产品各多少件),使获得利润最大,并求出最大利
润。
品 原材料 能源消耗 劳动力 利润
种 (千克) (百元) (人) (千元)
甲2
1
4
5
乙3
6
2
6
解:设安排生产甲产品x 件,乙产品y 件,相应的利 润为S。则此问题的数学模型为:
Max S 5x 6 y s.t. 2x 3y 1400

MATLAB基础及其在数学建模中的应用

MATLAB基础及其在数学建模中的应用
MATLAB的主要应用领域 (1)数值分析; (2)数值和符号计算; (3)工程与科学绘图; (4)控制系统的设计与仿真; (5)数字图像处理; (6)数字信号处理; (7)通讯系统设计与仿真; (8)财务与金融工程。
1、MATLAB简介
MATLAB优势
➢强大易用的科学计算语言; ➢全面的图形功能; ➢独立开放的平台; ➢实用的程序接口。
➢ 如果你了解含某个关键词的函数,你可以用‘lookfor’命令得 到相关的函数:
➢ >>lookfor keyword
❖ help ❖help help
显示help 主题一览表 显示help 的帮助信息
❖ 虽然help可以随时提供帮助,但必须知道准确的 函数名称。当不能确定函数名称时,help就无能 为力了。
z =-0.3488 + 0.3286i
函数 sin(x) cos(x) tan(x) abs(x) min(x) sqrt(x) log(x) sign(x)
4、数学函数
名称 正弦函数 余弦函数 正切函数 绝对值 最小值 开平方 自然对数 符号函数
函数 名 称
asin(x)
反正弦函数
acos(x)
反余弦函数
atan(x)
反正切函数
max(x)
最大值
sum(x)
元素的总和
exp(x) 以 e 为底的指数
log10 (x) 以 10 为底的对数
fix(x)
取整
获得帮助
➢ 如果你知道一个函数名,想了解它的用法,你可以用 “help”命令得到它的帮助文档:
➢ >>help functionname
设:a=[a1,a2,…,an], b=[b1,b2,…,bn] 则:a+b= [a1+b1,a2+b2,…,an+bn]

Matlab在数学建模中的应用举例(作图)

Matlab在数学建模中的应用举例(作图)

极坐标
polar
>> t=0:0.01:4*pi;
>> s=abs(sin(2*t).*cos(2*t));
>> polar(t,s,'-r+');
杆图(火柴杆图) stem
>> x=0:0.1:2*pi; >> y=sin(x); >> stem(x,y) >> stem(x,y,'r^')
直方图
errorbar
面域图 area(x,y)
>> x=1:7; >> y=[59 15 15 10 8 8 8 ];
>>area(x,y)
>> area(x,y,'facecolor',... [0.9 0.8 0.7])
多子图
subplot(M,N,x)
>>subplot(2,2,1) >>fplot('sin(x)',[-pi,pi]) >>subplot(2,2,2) >>fplot('cos(x)',[-pi,pi]) >>subplot(2,2,3) >>fplot('tan(x)',[-pi,pi]) >>subplot(2,2,4) >>fplot('cot(x)',[-pi,pi])
网格控制
grid on/off grid minor
>>grid on >>grid minor >>grid off
接下来我们介绍一些常用作图函数 fplot('cos(x)',[ -pi,pi])

MATLAB中的数学建模方法及应用

MATLAB中的数学建模方法及应用

MATLAB中的数学建模方法及应用引言数学建模作为一门重要的学科,已经成为了现代科学研究和工程实践中不可或缺的一部分。

而在数学建模过程中,数值计算和数据分析是关键步骤之一。

MATLAB作为一种强大的数学计算软件,在数学建模领域得到了广泛应用。

本文将介绍MATLAB中常用的数学建模方法,并探讨一些实际应用案例。

一、线性模型线性模型是数学建模中最基础的一种模型,它假设系统的响应是线性的。

在MATLAB中,我们可以通过矩阵运算和线性代数的知识来构建和求解线性模型。

例如,我们可以使用MATLAB中的线性回归函数来拟合一条直线到一组数据点上,从而得到一个线性模型。

二、非线性模型与线性模型相对应的是非线性模型。

非线性模型具有更强的表达能力,可以描述更为复杂的系统。

在MATLAB中,我们可以利用优化工具箱来拟合非线性模型。

例如,我们可以使用MATLAB中的非线性最小二乘函数来优化模型参数,使得模型与实际数据拟合程度最好。

三、微分方程模型微分方程模型在科学研究和工程实践中广泛应用。

在MATLAB中,我们可以使用ODE工具箱来求解常微分方程(ODE)。

通过定义初始条件和微分方程的表达式,MATLAB可以使用多种数值方法来求解微分方程模型。

例如,我们可以利用MATLAB中的欧拉法或者龙格-库塔法来求解微分方程。

四、偏微分方程模型偏微分方程(PDE)模型是描述空间上的变化的数学模型。

在MATLAB中,我们可以使用PDE工具箱来求解常见的偏微分方程模型。

通过定义边界条件和初始条件,MATLAB可以通过有限差分或有限元等方法来求解偏微分方程模型。

例如,我们可以利用MATLAB中的热传导方程求解器来模拟物体的温度分布。

五、曲线拟合与数据插值曲线拟合和数据插值是数学建模过程中常见的任务。

在MATLAB中,我们可以使用拟合和插值工具箱来实现这些任务。

通过输入一系列数据点,MATLAB可以通过多项式拟合或者样条插值等方法来生成一个模型函数。

Matlab软件在数学建模中的应用

Matlab软件在数学建模中的应用

Matlab软件在数学建模中的应用摘要随着社会和计算机技术的发展,数学科学与计算机技术相结合,在社会各领域发挥着越来越重要的作用,能够方便、高效的解决各种实际问题。

从实例出发,论述数学软件Matlab在数学建模中的应用,以提高对Matlab软件的认识和数学建模的效率,提高解决实际问题的能力。

关键词Matlab软件;数学建模;最优化数学在其发展的早期主要是作为一种实用技术工具,用于处理人类生活及社会活动中的各种实际问题。

近年来,随着社会的发展以及计算机技术的迅速发展,人们对数学的重要作用有了新的认识。

数学在社会各领域中的应用越来越广泛,不但运用于自然科学的各个领域,而且渗透到经济、军事、管理以至于社会科学和社会活动的各领域,在许多方面发挥着越来越重要的作用。

数学建模就是对我们在科学研究、技术改革、经济管理等现实生活中所遇到的实际问题加以分析、抽象、简化,用数学语言进行描述、用数学方法寻求解决方案、办法,并通过解释、验证,最终应用于实际的过程。

计算机作为一种高科技的工具,大大推进了数学建模的进程,是数学建模中的不可缺少的重要工具。

数学科学与计算机技术相结合,使各领域复杂的实际问题得以快速的解决。

在数学建模中Matlab软件发挥了重要的作用,借助于Matlab的强大数据处理、图形处理能力可以方便、快捷、高效的解决数学建模中各种问题。

本文主要通过具体的实例介绍计算机软件Matlab在数学建模中的应用,以提高数学建模的质量和效率,增强解决实际问题的能力。

1Matlab的功能和特点Matlab的数值计算功能在数学类软件中首屈一指。

它可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

Matlab具有如下特点:1.1友好的工作平台Matlab由一系列工具组成。

这些工具方便用户使用Matlab的函数和文件,其中许多工具采用的是图形用户界面。

matlab在建模仿真中的应用

matlab在建模仿真中的应用
详细描述
利用Matlab的Signal Processing Toolbox,用户可以轻松实现信号的采集、滤波、频谱分析、调制解调 等操作。通过构建信号处理流程图或使用图形化界面,用户可以快速验证算法的有效性和性能。
图像处理建模与仿真
总结词
Matlab提供了丰富的图像处理函数和工 具箱,支是MATLAB的一个核心组件,主要用于系统
建模、仿真和分析。
02
它支持各种线性、非线性、连续、离散和多域物理系
统的建模,并提供丰富的库和工具来支持这些建模。
03
Simulink支持图形化建模,用户可以通过拖拽和连接
不同的模块来构建模型,无需编写大量代码。
Control System Toolbox
Image Processing Toolbox 是用于图像处理和分析的工具
箱。
它提供了各种图像处理算法 和工具,如滤波、边缘检测、 形态学操作、特征提取等。
该工具箱还支持图像的显示、 保存和读取,以及与其他
MATLAB图像处理工具箱的集 成。
Machine Learning Toolbox
1
Machine Learning Toolbox是用于机器学习和 数据挖掘的工具箱。
Matlab在建模仿真中的应用
• Matlab简介 • 建模仿真的基本概念 • Matlab在建模仿真中的应用实例 • Matlab建模仿真工具箱
• Matlab在建模仿真中的优势与限制 • Matlab在建模仿真中的未来发展
01
Matlab简介
Matlab的发展历程
1980年代初
MathWorks公司成立,推出Matlab 的前身。
VS
详细描述
用户可以利用Matlab的Image Processing Toolbox进行图像增强、滤 波、特征提取、分割等操作。通过构建图 像处理流程或使用图形化界面,用户可以 直观地观察处理结果并调整参数以获得最 佳效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲MATLAB及在数学建模中的应用• MatLab简介及基本运算•常用计算方法•应用实例一、 MatLab简介及基本运算1.1 MatLab简介1.2 MatLab界面1.3 MatLab基本数学运算1.4 MatLab绘图1.1 MatLab简介•MATLAB名字由MATrix和 LABoratory 两词组成。

20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。

•经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。

从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。

•1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。

现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。

•20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。

•MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。

以下为其几个特色:①可靠的数值运算和符号计算。

在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函数可使用。

②强大的绘图功能。

MATLAB可以绘制各种图形,包括二维和三维图形。

③简单易学的语言体系。

④为数众多的应用工具箱。

1.2MatLab界面1.3 MatLab基本数学运算•MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方) 还有一种特殊的运算,点运算:.*、./、.\和.^。

•输入方式:在MATLAB命令窗中输入>> (12+2*(7-4))/3^2>> z=2*exp(2)+sin(pi/6)>> B=[1+5i,2+6i;3+8*i,4+9*i]在M文件中输入例1.1 求方程 3x4+7x3 +9x2-23=0的全部根p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根例1.2 求一元二次方程ax2 +bx+c=0的根。

a=input('a=');b=input('b=');c=input('c=');d=b*b-4*a*c;x=[(-b+sqrt(d))/(2*a),(-b-sqrt(d))/(2*a)];disp(['x1=',num2str(x(1)),',x2=',num2str(x(2))]);•变量命名规则:1. 变量名区分大小写。

2. 变量的第一个字符必须为英文字母。

3. 变量名可以包含下连字符、数字,但不能为空格符、标点。

1.4 MatLab绘图二维数据曲线图例1.3 绘制曲线 x=tsin(3t),y=tsin2(t), 0≤t≤2π 。

t=0:0.1:2*pi;x=t.*sin(3*t);y=t.*sin(t).*sin(t);plot(x,y);其他二维图形极坐标图polar(theta,rho,选项)条形图bar(x,y,选项)阶梯图stairs(x,y,选项)杆图stem(x,y,选项)填充图fill(x1,y1,选项1,x2,y2,选项2,…)饼图pie(x)三维图形三维曲线plot3(x1,y1,z1,选项1,…,xn,yn,zn,选项n)三维曲面利用meshgrid函数产生平面区域内的网格坐标矩阵。

其格式为:x=a:d1:b; y=c:d2:d;[X,Y]=meshgrid(x,y);mesh(x,y,z)和surf(x,y,z)是绘制三维曲面的函数。

x,y是网格坐标矩阵,z是网格点上的高度矩阵。

例1.4 绘制三维曲面图z=sin(x+sin(y))-x/10。

[x,y]=meshgrid(0:0.25:4*pi); z=sin(x+sin(y))-x/10;mesh(x,y,z); %surf(x,y,z);5101551015-3-2-115101551015-3-2-101二、常用计算方法•线性方程组Ax=b求解•非线性方程组数值求解•无约束最优化问题求解•有约束最优化问题求解•常微分方程初值问题的数值解法•插值与拟合•数值积分与数值微分㈠、线性方程组Ax =b 求解 (1) x=A\b (2) x=inv(A)*b例2.1 用直接解法求解下列线性方程组:⎪⎪⎩⎪⎪⎨⎧=--+=-+-=+-=+-+04662975135243214324214321x x x x x x x x x x x x x x㈡、非线性方程组数值求解(1) fzero函数求单变量非线性方程的根。

调用格式为:z=fzero('fname',x0,tol,trace)(2) fsolve函数非线性方程组F(X)=0,用fsolve函数求其数值解。

fsolve函数的调用格式为:X=fsolve('fun',X0,option)例2.2 求下列非线性方程组在(0.5,0.5) 附近的数值解。

分两步:1、建立函数文件myfun.m ;2、在给定的初值 x0=0.5,y0=0.5 下,调用fsolve 函数求方程的根。

⎩⎨⎧=+-=--0sin 3.0cos 6.00cos 3.0sin 6.0y x y y x x函数文件myfun.m:function q=myfun(p)x=p(1);y=p(2);q(1)=x-0.6*sin(x)-0.3*cos(y);q(2)=y-0.6*cos(x)+0.3*sin(y);调用:z=fsolve('myfun',[0.5,0.5],optimset('Display',' off'))结果:z =0.63540.3734将求得的解代回原方程,可以检验结果是否正确,命令如下:q=myfun(z)q =1.0e-009 *0.2375 0.2957可见得到了较高精度的结果。

㈢、无约束最优化问题求解MATLAB提供了3个最小值函数,它们的调用格式为:[x,fval]=fminbnd('fname',x1,x2,option)求一元函数在区间(x1,x2)中的最小值点x 和最小值fval. 求多元函数:x=fminsearch('fname',x0,option)x=fminunc('fname',x0,option) 这两个函数的调用格式相似。

其中fminsearch函数是基于单纯形算法,fminunc是基于拟牛顿法求多元函数的最小值点,x0是求解的初始值向量。

㈣、有约束最优化问题求解有约束最优化问题的一般描述为约束条件可进一步细化为:•线性不等式约束:Ax ≤b•线性等式约束: Aeqx =beq•非线性不等式约束:C(x) ≤0•非线性等式约束: Ceq(x) =0•x 的下界和上界: Lbnd ≤x ≤Ubnd)(min 0≤)(..x f x G t xsMATLAB提供了fmincon函数,专门用于求解各种约束下的最优化问题。

它的调用格式为:[x,fval]=fmincon(‘fname’,x0,A,b,Aeq,beq, Lbnd,Ubnd,NonF,option)其中A,b,Aeq,beq,Lbnd,Ubnd为约束条件,参数NonF为非线性约束函数的M文件名。

如果某个约束不存在,则用空矩阵来表示。

例2.3 资金使用问题设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益 万元(效益不能再使用), 当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大. 分析:设变量表示第i 年所使用的资金数,则有x 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i分3步求解:1.先建立M文件 fun44.m,定义目标函数; function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));2. 再建立M文件mycon1.m定义非线性约束; function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0;3. 主程序eg3.m。

x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[]; beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,' mycon1‘,optimset('Display','off','LargeScale','off'));disp(['四年使用的资金数为:',num2str(x')]);disp(['最大效益为:',num2str(fval)]);结果:四年使用的资金数为:84.24441 107.6353 128.9029 148.2387最大效益为:43.0821MATLAB求解优化问题的主要函数:类型模型基本函数名一元函数极小Min F(x)s.t.x1<x<x2 x=fminbnd(‘F’,x1,x2)无约束极小Min F(X)X=fminunc(‘F’,X0) X=fminsearch(‘F’,X0)线性规划Min Xc Ts.t.AX<=bX=linprog(c,A,b)二次规划Min21x T Hx+c T xs.t. Ax<=bX=quadprog(H,c,A,b)约束极小(非线性规划)Min F(X)s.t. G(X)<=0X=fmincon(‘FG’,X0)达到目标问题Min rs.t. F(x)-wr<=goalX=fgoalattain(‘F’,x,goal,w)极小极大问题Min max {F i(x)}X {Fi(x)}s.t. G(x)<=0X=fminimax(‘FG’,x0)㈤、常微分方程初值问题的数值解法基于龙格-库塔法,MATLAB 提供了求常微分方程数值解的函数,一般调用格式为:[t,y]=ode23('fname',tspan,y0)[t,y]=ode45('fname',tspan,y0)000)(,≤≤),,(y t y T t t y t f y ==′例2.4 设有初值问题求其数值解,并与精确解比较。

相关文档
最新文档