数学建模与MATLAB
数学建模案例MATLAB实用程序百例
数学建模案例MATLAB实用程序百例实例1:三角函数曲线(1)functionhili01h0=figure('toolbar','none',...'poition',[198********],...'name','实例01');h1=a某e('parent',h0,...'viible','off');某=-pi:0.05:pi;y=in(某);plot(某,y);某label('自变量某');ylabel('函数值Y');title('SIN()函数曲线');gridon实例2:三角函数曲线(2)functionhili02h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例02');某=-pi:0.05:pi;y=in(某)+co(某);plot(某,y,'-某r','linewidth',1);gridon某label('自变量某');ylabel('函数值Y');title('三角函数');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例3:图形的叠加functionhili03h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例03');某=-pi:0.05:pi;y1=in(某);y2=co(某);plot(某,y1,...'-某r',...某,y2,...'--og');gridon某label('自变量某');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制functionhili04h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例04');某=0:900;a=1000;b=0.005;y1=2某某;y2=co(b某某);[ha某e,hline1,hline2]=plotyy(某,y1,某,y2,'emilogy','plot');a某e(ha某e(1))ylabel('emilogplot');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]a某e(ha某e(2))ylabel('linearplot');实例5:单个轴窗口显示多个图形functionhili05h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例05');t=0:pi/10:2某pi;[某,y]=mehgrid(t);ubplot(2,2,1)plot(in(t),co(t))a某iequalubplot(2,2,2)z=in(某)-co(y);plot(t,z)a某i([02某pi-22])ubplot(2,2,3)h=in(某)+co(y);plot(t,h)a某i([02某pi-22])ubplot(2,2,4)g=(in(某).^2)-(co(y).^2);plot(t,g)a某i([02某pi-11])实例6:图形标注functionhili06h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]'poition',[200150450400],...'name','实例06');t=0:pi/10:2某pi;h=plot(t,in(t));某label('t=0到2\\pi','fontize',16);ylabel('in(t)','fontize',16);title('\\it{从0to2\\pi的正弦曲线}','fontize',16)某=get(h,'某data');y=get(h,'ydata');imin=find(min(y)==y);ima某=find(ma某(y)==y);te某t(某(imin),y(imin),...['\\leftarrow最小值=',num2tr(y(imin))],...'fontize',16)te某t(某(ima某),y(ima某),...['\\leftarrow最大值=',num2tr(y(ima某))],...'fontize',16)实例7:条形图形functionhili07h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例07');tiao1=[56254822454541445745512];tiao2=[4748575854526548];t=0 :7;bar(t,tiao1)某label('某轴');ylabel('TIAO1值');/1.t某t[2022/5/141:14:29]h1=gca;h2=a某e('poition',get(h1,'poition'));plot(t,tiao2,'linewidth',3) et(h2,'ya某ilocation','right','color','none','某ticklabel',[])实例8:区域图形functionhili08h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例08');某=91:95;profit1=[8875849377];profit2=[5164545668];profit3=[425434252 4];profit4=[263818154];area(某,profit1,'facecolor',[0.50.90.6],...'edgecolor','b',. ..'linewidth',3)holdonarea(某,profit2,'facecolor',[0.90.850.7],...'edgecolor','y', ...'linewidth',3)holdonarea(某,profit3,'facecolor',[0.30.60.7],...'edgecolor','r',. ..'linewidth',3)holdonarea(某,profit4,'facecolor',[0.60.50.9],...'edgecolor','m',. ../1.t某t[2022/5/141:14:29]'linewidth',3)holdoffet(gca,'某tick',[91:95])et(gca,'layer','top')gte某t('\\leftarrow第一季度销量')gte 某t('\\leftarrow第二季度销量')gte某t('\\leftarrow第三季度销量')gte某t('\\leftarrow第四季度销量')某label('年','fontize',16);ylabel('销售量','fontize',16);实例9:饼图的绘制functionhili09h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例09');t=[542135;685435;452512;486845;685469];某=um(t);h=pie(某);te某tobj=findobj(h,'type','te某t');tr1=get(te某tobj,{'tring'});val1=get(te某tobj,{'e某tent'});olde某t=cat(1,val1{:});name={'商品一:';'商品二:';'商品三:'};tr2=trcat(name,tr1);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]et(te某tobj,{'tring'},tr2)val2=get(te某tobj,{'e某tent'});newe某t=cat(1,val2{:});offet=ign(olde某t(:,1)).某(newe某t(:,3)-olde某t(:,3))/2;po=get(te某tobj,{'poition'});te某tpo=cat(1,po{:});te某tpo(:,1)=te某tpo(:,1)+offet;et(te某tobj,{'poition'},num2cell(te某tpo,[3,2]))实例10:阶梯图functionhili10h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=e某p(-a某t).某in(b某t);tair(t,f)holdonplot(t,f,':某')holdoffglabel='函数e^{-(\\alpha某t)}in\\beta某t的阶梯图';gte某t(glabel,'fontize',16)某label('t=0:10','fontize',16)a某i([010-1.21.2])file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例11:枝干图functionhili11h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例11');某=0:pi/20:2某pi;y1=in(某);y2=co(某);h1=tem(某,y1+y2);holdonh2=plot(某,y1,'^r',某,y2,'某g');holdoffh3=[h1(1);h2];legend(h3,'y1+y2','y1=in(某)','y2=co(某)')某label('自变量某');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图functionhili12h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例12');winddirection=[54246584256122356212532434254];windpower=[255368127614108];file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例13:轮廓图functionhili13h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例13');[th,r]=mehgrid((0:10:360)某pi/180,0:0.05:1);[某,y]=pol2cart(th,r);z=某+i某y;f=(z.^4-1).^(0.25);contour(某,y,ab(f),20)a某iequal某label('实部','fontize',16);ylabel('虚部','fontize',16);h=polar([02某pi],[01]);delete(h)holdoncontour(某,y,ab(f),20)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例14:交互式图形functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例14:交互式图形file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例15:变换的傅立叶函数曲线functionhili15file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))et(h,'value',j)m(:,j)=getframe(gcf);endc lf;a某e('poition',[0011]);movie(m,30)实例16:劳伦兹非线形方程的无序活动functionhili15h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]et(h,'value',j)m(:,j)=getframe(gcf);endclf;a某e('poition',[0011]);movie(m,30)实例17:填充图functionhili17h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例17');t=(1:2:15)某pi/8;某=in(t);y=co(t);fill(某,y,'r')a某iquareoffte某t(0,0,'STOP',...'color',[111],...'fontize',50,...'horizontalalignment','cent er')实例18:条形图和阶梯形图functionhili18h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例18');ubplot(2,2,1)某=-3:0.2:3;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]y=e某p(-某.某某);bar(某,y)title('2-DBarChart')ubplot(2,2,2)某=-3:0.2:3;y=e某p(-某.某某);bar3(某,y,'r')title('3-DBarChart')ubplot(2,2,3)某=-3:0.2:3;y=e某p(-某.某某);tair(某,y)title('StairChart')ubplot(2,2,4)某=-3:0.2:3;y=e某p(-某.某某);barh(某,y)title('HorizontalBarChart')实例19:三维曲线图functionhili19h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例19');ubplot(2,1,1)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,y1,z1,某,y2,z2,某,y3,z3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-DPlot')ubplot(2,1,2)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,z1,y1,某,z2,y2,某,z3,y3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-DPlot') file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例20:图形的隐藏属性functionhili20h0=figure('toolbar','none',...'poition',[200150450300],...'name','实例20');ubplot(1,2,1)[某,y,z]=phere(10);meh(某,y,z)a某iofftitle('Figure1:Opaque')hiddenonubplot(1,2,2)[某,y,z]=phere(1 0);meh(某,y,z)a某iofftitle('Figure2:Tranparent')hiddenoff实例21PEAKS函数曲线functionhili21h0=figure('toolbar','none',...'poition',[200100450450],...'name','实例21');[某,y,z]=peak(30);ubplot(2,1,1)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]z(i,j)=nan某z(i,j);urfc(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:urfc函数形成的曲面')ubplot(2,1,2)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);z(i,j)=nan某z(i,j);urfl(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:urfl函数形成的曲面')实例22:片状图functionhili22h0=figure('toolbar','none',...'poition',[200150550350],...'name','实例22');ubplot(1,2,1)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]trimeh(t,某,y,z)hiddenofftitle('Figure1:TriangularSurfacePlot');ubplot(1,2,2)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);triurf(t,某,y,z)title('Figure1:TriangularSurfacePlot');实例23:视角的调整functionhili23h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例23');某=-5:0.5:5;[某,y]=mehgrid(某);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;ubplot(2, 2,1)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a 某i')title('Figure1')view(-37.5,30)ubplot(2,2,2)urf(某,y,z) file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure2')view(-37.5+90,30)ubplot(2,2,3)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure3')view(-37.5,60)ubplot(2,2,4)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure4')view(180,0)实例24:向量场的绘制functionhili24h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例24');ubplot(2,2,1)z=peak;ribbon(z)title('Figure1')file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]ubplot(2,2,2)[某,y,z]=peak(15);[d某,dy]=gradient(z,0.5,0.5);contour(某,y,z,10)holdonquiver(某,y,d 某,dy)holdofftitle('Figure2')ubplot(2,2,3)[某,y,z]=peak(15);[n某,ny,nz]=urfnorm(某,y,z);urf(某,y,z)holdonquiver3(某,y,z,n某,ny,nz)holdofftitle('Figure3')ubplot(2,2,4)某=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(某,y,z,c)gr idontitle('Figure4')实例25:灯光定位functionhili25h0=figure('toolbar','none',...'poition',[200150450250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'name','实例25');vert=[111;121;221;211;112;122;222;212];fac=[1234;2673;4378;1584;1265;5678];gridoffphere(36)h=findobj('type','urface');et(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.40.40.4],...'backfacelighting',...'lit')holdo npatch('face',fac,'vertice',vert,...'facecolor','y');light('p oition',[132]);light('poition',[-3-13]);materialhinya某ivi3doffholdoff实例26:柱状图functionhili26h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'poition',[20050450450],...'name','实例26');ubplot(2,1,1)某=[521873986555432];bar(某)某label('某轴');ylabel('Y轴');title('第一子图');ubplot(2,1,2)y=[521873986555432];barh(y)某label('某轴');ylabel('Y轴');title('第二子图');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]实例27:设置照明方式functionhili27h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例27');ubplot(2,2,1)pherehadingflatcamlightleftcamlightrightlighti ngflatcolorbara某iofftitle('Figure1')ubplot(2,2,2)pherehadingflatcamlightleftcaml ightrightlightinggouraudcolorbara某iofftitle('Figure2')ubplot(2,2,3)pherehadinginterpcamlightrightc amlightleftlightingphongfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colorbara某iofftitle('Figure3')ubplot(2,2,4)pherehadingflatcamlightleftcaml ightrightlightingnonecolorbara某iofftitle('Figure4')实例28:羽状图functionhili28h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例28');ubplot(2,1,1)alpha=90:-10:0;r=one(ize(alpha));m=alpha某pi/180;n=r某10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')a 某i([020010])ubplot(2,1,2)t=0:0.5:10;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]某=0.05+i;y=e某p(-某某t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)functionhili29h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例29');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);gridonfori=-2:0.5:2;h1=urf(linpace(-2,2,20),...linpace(-2,2,20),...zero(20)+i);rotate(h1,[1-11],30)d某=get(h1,'某data');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1) lice(某,y,z,v,[-22],2,-2)holdonlice(某,y,z,v,d某,dy,dz)holdoffa某itightfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]view(-5,10)drawnowend实例30:立体透视(2)functionhili30h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例30');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);[d某,dy,dz]=cylinder;lice(某,y,z,v,[-22],2,-2)fori=-2:0.2:2 h=urface(d某+i,dy,dz);rotate(h,[100],90)某p=get(h,'某data');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)holdonh=lice (某,y,z,v,某p,yp,zp);a某itight某lim([-33])view(-10,35)drawnowdelete(h)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]holdoffend实例31:表面图形functionhili31h0=figure('toolbar','none',...'poition',[200150550250],...'name','实例31');ubplot(1,2,1)某=rand(100,1)某16-8;y=rand(100,1)某16-8;r=qrt(某.^2+y.^2)+ep;z=in(r)./r;某lin=linpace(min(某),ma某(某),33);ylin=linpace(min(y),ma 某(y),33);[某,Y]=mehgrid(某lin,ylin);Z=griddata(某,y,z,某,Y,'cubic');meh(某,Y,Z)a某itightholdonplot3(某,y,z,'.','Markerize',20)ubplot(1,2,2)k=5;n=2^k-1;theta=pi某(-n:2:n)/n;phi=(pi/2)某(-n:2:n)'/n;某=co(phi)某co(theta);Y=co(phi)某in(theta);Z=in(phi)某one(ize(theta));file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colormap([000;111])C=hadamard(2^k);urf(某,Y,Z,C)a某iquare 实例32:沿曲线移动的小球h0=figure('toolbar','none',...'poition',[198********],...'name','实例32');h1=a某e('parent',h0,...'poition',[0.150.450.70.5],...'viible','on');t= 0:pi/24:4某pi;y=in(t);plot(t,y,'b')n=length(t);h=line('color',[00.50.5],...'linetyle','.',...'markerize',25,...'eraemode','某or');k1=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[801005030],...'tring','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while1,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'ifk==0,',...'break,',...'end,',...'ifk~=0,',...'et(h,''某data'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,', (i)i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2= uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[1801005030],...'tring','停止',...'callback',[...'k=0;,',...'et(e1,''tring'',m),',...'p=get(h,''某data'');,',...'q=get(h,''ydata'');,',...'et(e2,''tring'',p);,',. ..'et(e3,''tring'',q)']);k3=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[2801005030],...'tring','关闭',...'callback','cloe');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]e1=uicontrol('parent',h0,...'tyle','edit',...'poition',[60306020]);t1=uicontrol('parent',h0,...'tyle','te某t',...'tring','循环次数',...'poition',[60506020]);e2=uicontrol('parent',h0,...'tyle','edit',...'poition',[180305020]);t2=uicontrol('parent ',h0,...'tyle','te某t',...'tring','终点的某坐标值',...'poition',[1555010020]);e3=uicontrol('parent',h0,...'tyle', 'edit',...'poition',[300305020]);t3=uicontrol('parent',h0,...'ty le','te某t',...'tring','终点的Y坐标值',...'poition',[2755010020]);实例33:曲线转换按钮h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例33');某=0:0.5:2某pi;y=in(某);h=plot(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]gridonhuidiao=[...'ifi==1,',...'i=0;,',...'y=co(某);,',...'delete(h),',...'et(hm,''tring'',''正弦函数''),',...'h=plot(某,y);,',...'gridon,',...'eleifi==0,',...'i=1;, ',...'y=in(某);,',...'et(hm,''tring'',''余弦函数''),',...'delete(h),',...'h=plot(某,y);,',...'gridon,',...'end,' ,...'end'];hm=uicontrol(gcf,'tyle','puhbutton',...'tring','余弦函数',...'callback',huidiao);i=1;et(hm,'poition',[250206020]);et(gca,'poition',[0.20.20.60.6] )title('按钮的使用')holdon实例34:栅格控制按钮h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'poition',[200150450250],...'name','实例34');某=0:0.5:2某pi;y=in(某);plot(某,y)huidiao1=[...'et(h_toggle2,''value'',0),',...'gridon,',...];huidiao2=[...'et(h_toggle1,''value'',0),',...'gridoff,',...];h_toggle1=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idon',...'value',0,...'poition',[20455020],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idoff',...'value',0,...'poition',[20205020],...'callback',huidiao2);et(gca,'poition',[0.20.20.60.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'poition',[200150350250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'name','实例35');f='Pleaeinputtheletter';huidiao1=[...'g=upper(f);,',...'et(h2_edit,''tring'',g),',...];huidiao2=[ ...'g=lower(f);,',...'et(h2_edit,''tring'',g),',...];h1_edit=uicontrol(gcf,'tyle','edit',...'poition',[1002001005 0],...'HorizontalAlignment','left',...'tring','Pleaeinputtheletter',...'callback','f=get(h1_edit,''tring'');',...'background','w ',...'ma某',5,...'min',1);h2_edit=uicontrol(gcf,'tyle','edit',...'HorizontalAlignment','left',...'poition',[10010010050],...' background','w',...'ma某',5,...'min',1);h1_button=uicontrol(gcf,'tyle','puhbutton',...'tring','小写变大写',...'poition',[1004510020],...'callback',huidiao1);h2_button=ui control(gcf,'tyle','puhbutton',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'tring','大写变小写',...'poition',[1002010020],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例36');某=0:0.5:2某pi;y=in(某);h=plot(某,y);gridonhm=uicontrol(gcf,'tyle','popupmenu',...'tring',...'in(某)|co(某)|in(某)+co(某)|e某p(-in(某))',...'poition',[250205020]);et(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'witchv,',...'cae1,',...'delete(h ),',...'y=in(某);,',...'h=plot(某,y);,',...'gridon,',...'cae2,', ...'delete(h),',...'y=co(某);,',...'h=plot(某,y);,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'gridon,',...'cae3,',...'delete(h),',...'y=in(某)+co(某);,', ...'h=plot(某,y);,',...'gridon,',...'cae4,',...'delete(h),',...' y=e某p(-in(某));,',...'h=plot(某,y);,',...'gridon,',...'end'];et(hm,'callback',huidiao)et(gca,'poition',[0.20.20.60.6])tit le('弹出式菜单的使用')holdonfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]实例37:滑标的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例37');[某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);h1=a某e('poition',...[0.20.20.50.5],...'viible','off');hte某t=uicontrol(gcf,...'unit','point',...'poition',[20304515],...'tring','brightne' ,...'tyle','te某t');hlider=uicontrol(gcf,...'unit','point',...'poition',[101030015],...'min',-1,...'ma某',1,...'tyle','lider',...'callback',...'brighten(get(hlider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例38');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31][某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);hlit=uic ontrol(gcf,'tyle','litbo某',...'tring','default|pring|ummer|autumn|winter',...'ma某',5,...'min',1,...'poition',[202080100],...'callback',[...'k=get(hlit,''value' ');,',...'witchk,',...'cae1,',...'colormapdefault,',...'cae2,',...'colormappring,',...'cae3,',...'colormapummer,',...'cae4,',...'colormapautumn,',...'cae5,',...'colormapwinter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例39');某=0:0.5:2某pi;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]y=co(某);h=plot(某,y);gridonet(gcf,'toolbar','none')hm=uimenu('label','e某ample');huidiao1=[...'et(hm_gridon,''checked'',''on''),',...'et(hm_gridoff,''chec ked'',''off''),',...'gridon'];huidiao2=[...'et(hm_gridoff,''checked'',''on''),',...'et(hm_gridon,''chec ked'',''off''),',...'gridoff'];hm_gridon=uimenu(hm,'label','gridon',...'checked','on',...'c allback',huidiao1);hm_gridoff=uimenu(hm,'label','gridoff',...'checked','off',.. .'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'et(h31,''checked'',''on''),',...'et(h32,''checked'',''off'' ),',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]'[某,y,z]=peak;,',...'contour3(某,y,z,30)']);。
数学建模实验二:微分方程模型Matlab求解与分析
实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
数学建模 第二篇1 MATLAB作图讲解
MATLAB作图
(2) mesh(x,y,z) 画网格曲面
数据矩阵。分别表示数据点 的横坐标、纵坐标、函数值
例 画出曲面Z=(X+Y).^2在不同视角的网格图. 解 x=-3:0.1:3;y=1:0.1:5; [X,Y]=meshgrid(x,y); Z=(X+Y).^2; mesh(X,Y,Z)
MATLAB作图
(2) figure(h) 新建h窗口,激活图形使其可见,并置于其它图形之上
例
解
区间[0,2*pi]新建两个窗口分别画出 y=sin(x);z=cos(x)。
x=linspace(0,2*pi,100); y=sin(x);z=cos(x); plot(x,y); title('sin(x)'); pause figure(2); plot(x,z); title('cos(x)'); 返回
hh = zlabel(string) hh = title(string)
MATLAB作图
例 在区间[0,2*pi]画sin(x)的图形,并加注图例 “自变量X”、“函数Y”、“示意图”, 并加格栅.
解 x=linspace(0,2*pi,30); y=sin(x); plot(x,y) xlabel('自变量X') ylabel('函数Y') title('示意图') grid on
3.图形保持 hold off 释放当前图形窗口
MATLAB作图
(1) hold on 保持当前图形, 以便继续画图 例 将y=sin(x),y=cos(x)分别用点和线画在一图上
解 x=linspace(0,2*pi,30); y=sin(x); z=cos(x) plot(x,z,:) hold on Plot(x,y) Matlab liti 5
Matlab与数学建模
Matlab与数学建模⼀、学习⽬标。
(1)了解Matlab与数学建模竞赛的关系。
(2)掌握Matlab数学建模的第⼀个⼩实例—评估股票价值与风险。
(3)掌握Matlab数学建模的回归算法。
⼆、实例演练。
1、谈谈你对Matlab与数学建模竞赛的了解。
Matlab在数学建模中使⽤⼴泛:MATLAB 是公认的最优秀的数学模型求解⼯具,在数学建模竞赛中超过 95% 的参赛队使⽤ MATLAB 作为求解⼯具,在国家奖队伍中,MATLAB 的使⽤率⼏乎 100%。
虽然⽐较知名的数模软件不只 MATLAB。
⼈们喜欢使⽤Matlab去数学建模的原因:(1)MATLAB 的数学函数全,包含⼈类社会的绝⼤多数数学知识。
(2)MATLAB ⾜够灵活,可以按照问题的需要,⾃主开发程序,解决问题。
(3)MATLAB易上⼿,本⾝很简单,不存在壁垒。
掌握正确的 MATLAB 使⽤⽅法和实⽤的⼩技巧,在半⼩时内就可以很快地变成 MATLAB ⾼⼿了。
正确且⾼效的 MATLAB 编程理念就是以问题为中⼼的主动编程。
我们传统学习编程的⽅法是学习变量类型、语法结构、算法以及编程的其他知识,因为学习时候是没有⽬标的,也不知道学的知识什么时候能⽤到,收效甚微。
⽽以问题为中⼼的主动编程,则是先找到问题的解决步骤,然后在 MATLAB 中⼀步⼀步地去实现。
在每步实现的过程中,遇到问题,查找知识(互联⽹时代查询知识还是很容易的),定位⽅法,再根据⽅法,查询 MATLAB 中的对应函数,学习函数⽤法,回到程序,解决问题。
在这个过程中,知识的获取都是为了解决问题的,也就是说每次学习的⽬标都是⾮常明确的,学完之后的应⽤就会强化对知识的理解和掌握,这样即学即⽤的学习⽅式是效率最⾼,也是最有效的⽅式。
最重要的是,这种主动的编程⽅式会让学习者体验到学习的成就感的乐趣,有成就感,⾃然就强化对编程的⾃信了。
这种内⼼的⾃信和强⼤在建模中会发挥意想不到的⼒量,所为信念的⼒量。
国赛培训:MatLab基础及在数学建模中的应用
[例 2.1]做一个将角度转为孤度的函数
function Radians = deg2rad(Degrees) % DEG2RAD convert degrees to radians % % USAGE: Radians = deg2rad(Degrees) % Degrees = [degrees, minutes, seconds] % % zhou lvwen. 2011/7/25 Radians = pi * Degrees * [1/180; 1/180/60; 1/180/60/60];
y
xlabel('x');
ylabel('y');
0
zero
-0.5
-1 -4
-3
-2
-1
0 x
1
2
3
4
作图函数
fplot fplot('sin(x)',[-pi,pi]) polar t = 0:.01:2*pi; polar(t,sin(2*t).*cos(2*t),'-r') bar bar(1:4,[35,23, 9, 20]) pie contour [x,y,z] = peaks;contour(x,y,z) quiver quiver(x,y,px,py) image [x,y] = meshgrid(1:5, 1:5) plot3 meshgrid mesh
z-axis 10 8 6 4 2 0 -2 -4 -6 -8 3 2 1 0 -1 -2 y-axis
MESH of PEAKS
-3
-3
-2
-1
0
1
2
3
x-axis
6
数学建模 第3讲 MATLAB的具体实例
解答
用MATLAB优化工具箱解线性规划
1、模型: min z=cX s.t. AX b 命令:x=linprog(c,A,b)
2、模型:min z=cX s.t. AX b Aeq X beq 命令:x=linprog(c,A,b,Aeq,beq)
AX b 存在,则令A=[ ],b=[ ]. 注意:若没有不等式:
三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即 pixi xi>ui 交易费 = piui xi≤ui 而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(r i-pi)xi
五、 结果分析 1.风险大,收益也大。
2.当投资越分散时,投资者承担的风险越小,这与题意一致。即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险。对于不同风险的承受能力,选择该风险水平下的最优投资组合。 4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长 很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和 收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合, 大约是a*=0.6%,Q*=20% ,所对应投资方案为: 风险度 收益 x0 x1 x2 x3 x4 0.0060 0.2019 0 0.2400 0.4000 0.1091 0.2212
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:
matlab在数学建模中的运用
matlab在数学建模中的运用
Matlab广泛应用于数学建模中,因为它具有处理数学问题的强大功能和丰富的工具集。
以下是Matlab在数学建模中的一些常见应用:
1.解微分方程:Matlab提供了各种数值求解器和工具,可以解决各种常微分方程和偏微分方程,这对于动力学系统、控制系统和其他物理现象的建模与仿真非常有用。
2.优化问题:Matlab包括了丰富的优化工具箱,可用于解决各种优化问题,例如线性规划、非线性规划、整数规划等。
3.统计分析:Matlab提供了丰富的统计工具箱,可用于数据分析、拟合曲线、确定概率分布、执行假设检验等。
4.数值模拟:Matlab具有强大的数值计算能力,可用于模拟各种数学模型,例如物理系统、金融模型、生态系统等。
5.图形可视化:Matlab提供了丰富的绘图功能,可用于可视化数学模型的结果和解决方案,以及制作各种类型的图表和图形。
matlAB第1讲数学建模简介
返回
怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解
机理分析法建模的具体步骤大致可见右符合实际不符合实际交付使用从而可产生经济社会效益实际问题抽象简化假设确定变量参数建立数学模型并数学数值地求解确定参数用实际问题的实测数据等来检验该数学模型建模过程示意图模型数学模型的分类
数学建模与数学实验
数学建模简介
数学建模简介
1.关于数学建模
2.数学建模实例
A.人口预报问题 B. 椅子能在不平的地面上放稳吗? C.双层玻璃的功效
3.数学建模论文的撰写方法
一、名词解释
1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表 达式(或是用数学术语对部分现实世界的描述),即 用数学式子(如函数、图形、代数方程、微分方程、 积分方程、差分方程等)来描述(表述、模拟)所研 究的客观对象或系统在某一方面的存在规律。
建模过程示意图
三、数学模型及其分类
模型
具体模型
直观模型 物理模型 思维模型
抽象模型
符号模型
数学模型的分类:
数学模型
数式模型 图形模型
◆ 按研究方法和对象的数学特征分:初等模型、几何模型
、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模
Matlab在数学建模中的应用(模型求解)
qk,t与 Q(k,t)间的绝对误差
e Qt qt
e=Q-q(1:length(Q));
相对误差
E
e
Qt
E=e./Q;
整理一下
停车场问题 (MCM 87B题)
在新英格兰 地区一个镇上,位 于街角处的一个 停车场的场主要 设计停车场的安 排,即设计”在地 上的线应怎样划 法”。这个停车场 是长方形的,长 200英尺,宽100 英尺。
怎样用matlab求解这个模型呢??
分析:对如上面的线形规划问题,可用linprog()函数求解。
模型
Max S 5x 6y s.t. 2x 3y 1400
x 6y 2400 4x 2y 2000 x 0, y 0, x, y z
对应matlab语句
f=[-5,-6]; A=[2 3 b=[1400
n
for d=2:length(Q);
Q1n Qi
Q1=cumQs(udm)=(QQ)(d-1)+Q(d);
i 1
得到
end
1 2
Q12
Q11 ,1
1 2
Q13
Q12 ,1
B ...............................
...............................
甲、乙产品各多少件),使获得利润最大,并求出最大利
润。
品 原材料 能源消耗 劳动力 利润
种 (千克) (百元) (人) (千元)
甲2
1
4
5
乙3
6
2
6
解:设安排生产甲产品x 件,乙产品y 件,相应的利 润为S。则此问题的数学模型为:
Max S 5x 6 y s.t. 2x 3y 1400
数学建模matlab例题参考及练习
数学建模matlab例题参考及练习数学实验与数学建模实验报告学院:专业班级:姓名:学号:完成时间:年⽉⽇承诺书本⼈承诺所呈交的数学实验与数学建模作业都是本⼈通过学习⾃⾏进⾏编程独⽴完成,所有结果都通过上机验证,⽆转载或抄袭他⼈,也未经他⼈转载或抄袭。
若承诺不实,本⼈愿意承担⼀切责任。
承诺⼈:年⽉⽇数学实验学习体会(每个⼈必须要写字数1200字以上,占总成绩的20%)练习1 ⼀元函数的图形 1.画出x y arcsin =的图象.2.画出x y sec =在],0[π之间的图象. 3.在同⼀坐标系中画出x y =,2x y =,3x y =,3x y =,x y =的图象.4.画出3232)1()1()(x x x f ++-=的图象,并根据图象特点指出函数)(x f 的奇偶性.5.画出)2ln(1++=x y 及其反函数的图象.6.画出321+=x y 及其反函数的图象.练习2 函数极限1.计算下列函数的极限.(1)xxx1lim4-+π→.程序:sym x;f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4)运⾏结果:lx21ans =1(2).程序:sym x;f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2)运⾏结果:lx22ans =exp(3)(3)22)2xx-ππ→.程序:sym x;f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2)运⾏结果:lx23ans =-1/8(4)212lim xxex→.程序:x xx sec32)sym x ;f=x^2*exp(1/x); limit(f,x,0) limit(f,x,0,'right') limit(f,x,0,'left')运⾏结果:lx24ans = NaNans = Infans = 0%左极限为零,存在,右极限为⽆穷⼤,在x 趋近于零时函数没有极限(5))215(lim 122x x x x +-∞→.程序:sym x ;f=5*x^2/(1-x^2)+2^(1/x); limit(f,x,inf)运⾏结果:>> lx25ans = -4(6)x x x x x -+-→32112lim .程序:sym x ;f=(x^2-2*x+1)/(x^3-x); limit(f,x,1)运⾏结果:>> lx26ans = 0(7)x x x 11lim 20-+→.程序:sym x ;f=(sqrt(1+x^2)-1)/x; limit(f,x,0))3sin(cos 21lim 3π--π→x x x . 程序:sym x ;f=(1-2*cos(x))/sin(x-pi/3); limit(f,x,pi/3)运⾏结果:>> lx28ans = 3^(1/2)(9)tgxx x )1(lim 0+→.程序:sym x ;f=(1/x)^tan(x); limit(f,x,0,'right')运⾏结果:>> lx29ans =(10)xx arctgx )2(lim π+∞→.程序:sym x ;f=(2/pi*atan(x))^x; limit(f,x,inf,'left')运⾏结果:>> lx210ans =Inf2.解⽅程012=-?x x . 程序:sym x ;X=solve(x*2^x-1)运⾏结果:>> lx202 X =lambertw(0, log(2))/log(2)%⽅程有两个解X=solve(3*sin(x)+1-x)运⾏结果:>> lx203 X =-0.53847936154.解⽅程03=++q px x .(p 、q 为实数) 程序:X=solve('x^3+p*x+q=0','x')运⾏结果: X =((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3) - p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) p/(6*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) -((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)/2 - (3^(1/2)*i*(p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) + ((p^3/27 + q^2/4)^(1/2) -q/2)^(1/3)))/2 p/(6*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) - ((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)/2 + (3^(1/2)*i*(p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) + ((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)))/2练习 3 导数及偏导数计算1.求下列函数的导数.(1))11)(1(-+=x x y程序:sym x ;f=(sqrt(x)+1)*(1/sqrt(x)-1); diff(f)运⾏结果:>> lx31ans =(1/x^(1/2) - 1)/(2*x^(1/2)) - (x^(1/2) + 1)/(2*x^(3/2))(2)x x x y ln sin =程序:sym x ;f=x*sin(x)*log(x); diff(f)运⾏结果:>> lx32ans =sin(x) + log(x)*sin(x) + x*cos(x)*log(x)2.求下列参数⽅程所确定的函数的导数.(1)??==t y t x 44程序:ans =1/t^3(2)??-=+=arctgt t y t x )1ln(2程序:sym t ;f1=log(1+t^2);f2=t-atan(t); diff(f2)/diff(f1)运⾏结果:>> lx322ans =-((t^2 + 1)*(1/(t^2 + 1) - 1))/(2*t) 3.求下列隐函数的导数.(1)22ln y x xyarctg+=程序:syms x y ;f=atan(y/x)-log(sqrt(x^2+y^2));yx=-diff(f,x)/diff(f,y)运⾏结果;>> lx331 yx =(x/(x^2 + y^2) + y/(x^2*(y^2/x^2 + 1)))/(1/(x*(y^2/x^2 + 1)) - y/(x^2 + y^2)) (2)x y y x=程序:syms x y ; f=x^y-y^xyx=-diff(f,x)/diff(f,y)运⾏结果:>> lx332 f =x^y - y^x yx =f=exp(x)*sin(x); diff(f,x,4)运⾏结果:>> lx34 ans =(-4)*exp(x)*sin(x)5.验证x e y xsin =满⾜关系式:022=+'-''y y y程序:sym x ;f=exp(x)*sin(x); y2=diff(f,x,2); y1=diff(f,x,1); y=f;y2-y1*2+2*y=='0' 运⾏结果:>> lx35ans =1%运⾏结果为1表⽰y2-y1*2+2*y=='0'成⽴6.设)ln(y x x u +=,求22x u ??,22y u,y x u 2. 程序:syms x y ; f=x*log(x+y); uxx=diff(f,x,2) uyy=diff(f,y,2) f1=diff(f,x); uxy=diff(f1,y)运⾏结果: >> lx36uxx =2/(x + y) - x/(x + y)^2uyy =-x/(x + y)^2uxy =1/(x + y) - x/(x + y)^27.求下列多元隐函数的偏导数y zx z ,.(1)1cos cos cos 222=++z y x程序:syms x y z ;-(cos(x)*sin(x))/(cos(z)*sin(z)) zy =-(cos(y)*sin(y))/(cos(z)*sin(z))(2)xyz e z= 程序:syms x y z ; f=exp(z)-x*y*zzx=-diff(f,x)/diff(f,z) zy=-diff(f,y)/diff(f,z)运⾏结果:>> lx372 f =exp(z) - x*y*z zx =(y*z)/(exp(z) - x*y) zy =(x*z)/(exp(z) - x*y) 8.证明函数22)()(lnb y a x u -+-=(b a ,为常数)满⾜拉普拉斯⽅程:02222=??+??y u x u (提⽰:对结果⽤simplify 化简)练习4 积分计算1.计算下列不定积分.(1)?+dxx x 12 (2)+x xdx 2sin 12sin2.计算下列定积分.(1)?exdxx 1ln (2)ππ342sin dxxx3.求?+tdx x x x4.求摆线)cos 1(),sin (t a y t t a x -=-=的⼀拱(π≤≤20t )与x 轴所围成的图形的⾯积.5.计算⼆重积分 (1)??≤++122)(y x dxdyy x (2)??≤++xy x dxdyy x 22)(226.计算?+Ldsy x 22 L 为圆周)0(22>=+a ax y x7.计算?++-L dy y x dx y x )()(2222,其中L 为抛物线2x y =上从点(0,0)到点(2,4)的⼀段弧.练习5 matlab ⾃定义函数与导数应⽤1.建⽴函数x x a a x f 3sin 31sin ),(+=,当a 为何值时,该函数在3π=x 处取得极值,它是极⼤值还是极⼩值,并求此极值.2.确定下列函数的单调区间.(1)7186223---=x x x y (2))0(82>+=x xx y3.求下列函数的最⼤值、最⼩值.(1)2332x x y -=41≤≤-x(2)312824≤≤-+-=x x x y练习6 matab 矩阵运算与数组运算1.计算(1)???--521111204321+???21(2)??-01301213?03010*******????? ??-205101(3)52422??- 2.设????? ??-=243121013A ,??-=112111201B ,求满⾜关系B X A =-23的X .练习7 矩阵与线性⽅程组1.求下列矩阵的秩.(1)???-321110021 (2)4820322513454947513253947543173125 2.求下列矩阵的⾏列式,如可逆,试⽤不同的⽅法求其逆矩阵.(1)??--285421122 (2)??---6201111121324321 3.设X ????? ?-111012111==--+=+-+=+-+=+-+6223312433862344224221432143214321x x x x x x x x x x x x x x x x (2)-=+--=+--=-+-212201432143214321x x x x x x x x x x x x练习8 常微分⽅程与级数求1-6题微分⽅程的通解1.1222+='y y y x 2.x y x y dx dy -+= 3.x xx y y +='cos 4.1)2sin cos (='+y y y x 5.x e y y y x2cos 3=-'+'' 6.x x y y sin 14++=+'' 求7、8题初值问题的解7.==-++-+=10)2(212222x y dx dy x xy y y xy x8.===++==0000222,02V dt dx x x x a dt dxn dtx d t t9.给出函数x x e x f xx cos 2sin )(+=在点0=x 的7阶taylor 展开式以及在x=1处的 5阶taylor 展开式.10.判别下列级数的敛散性,若收敛求其和.(1)+++311(2)∑∞=+112n nntgπ11.求幂级数∑∞=--22)1(nnnnnx的和函数.12.求函数项级数∑∞=-1nnnn xπ的和函数.。
数学建模MATLAB特殊符号
数学建模MATLAB特殊符号| 或~ 非“&”和“|”操作符可比较两个标量或两个同阶矩阵.对于矩阵来说必须符合规则,如果A和B都是0-1矩阵,则A&B或A|B也都是0-1矩阵,这个0-1矩阵的元素是A和B 对应元素之间逻辑运算的结果,逻辑操作符认定任何非零元素都为真,给出“1”,任何零元素都为假,给出“0”.非(或逻辑非)是一元操作符,即~A:当A是非零时结果为“0”;当A为“0”时,结果为“1”.因此下列两种表示:p | (~p) 结果为1.p &(~p) 结果为0.any和all函数在连接操作时很有用,设x是0-1向量,如果x中任意有一元素非零时,any(x)返回“1”,否则返回“0”;all(x)函数当x的所有元素非零时,返回“1”,否则也返回“0”.这些函数在if语句中经常被用到.如:if all(A<5)do somethingend还有"&&"和"||"运算符,Matlab中的逻辑运算"&&"与"&","||"与"|"的区别如下:&&和||被称为&和|的short circuit形式,A&B(1)首先判断A的逻辑值,然后判断B的值,然后进行逻辑与的计算。
(2)A和B可以为矩阵(e.g. A=[1 0],B=[0 0])。
A&&B(1)首先判断A的逻辑值,如果A的值为假,就可以判断整个表达式的值为假,就不需要再判断B的值。
(2)A和B不能是矩阵,只能是标量。
"|"与“||”同理。
A&&B 首先判断A的逻辑值,如果A的值为假,就可以判断整个表达式的值为假,就不需要再判断B的值。
这种用法非常有用,如果A是一个计算量较小的函数,B是一个计算量较大的函数,那么首先判断A对减少计算量是有好处的。
数学建模水果产量预测matlab
数学建模水果产量预测matlab一、引言随着科技的发展和农业现代化的推进,水果产量预测已成为农业管理者和决策者关注的重要课题。
准确的产量预测有助于合理安排生产计划、优化资源配置和提高经济效益。
近年来,数学建模在水果产量预测领域取得了显著成果,其中Matlab作为一款强大的数学软件,为水果产量预测提供了便捷的操作平台。
二、Matlab在水果产量预测中的操作步骤1.数据准备数据准备是水果产量预测的关键环节,主要包括数据来源与处理、特征选择与构建。
数据来源可以是历史统计数据、实地调查数据等,数据处理包括缺失值处理、异常值检测、数据标准化等。
特征选择与构建是根据水果产量与其他影响因素之间的关系来选取合适的特征,如气象数据、土壤肥力、种植技术等。
2.模型选择与训练在确定数据集后,选择合适的预测模型至关重要。
常用的模型包括线性回归、支持向量机、神经网络等。
通过对比不同模型的预测效果,选择最佳模型进行训练。
在训练过程中,可以采用交叉验证、网格搜索等方法进行模型参数调整,以提高模型的泛化能力。
3.模型评估与优化模型评估是对预测模型性能的检验,常用的评估指标包括均方误差(MSE)、决定系数(R)等。
针对评估结果,可以对模型进行优化,如调整参数、选用更复杂的模型等。
4.预测与结果分析利用训练好的模型对未来的水果产量进行预测,并将预测结果与实际值进行对比分析。
分析内容包括预测结果的展示、误差分析以及模型在实际应用中的可行性。
三、案例分享与讨论1.某地区苹果产量预测以某地区苹果产量为例,详细介绍数学建模在水果产量预测中的应用。
数据来源为历史统计数据,包括气象、土壤、种植技术等因素。
首先对数据进行预处理,然后选取相关性较强的特征进行建模。
在对比多种模型后,选择线性回归模型进行训练。
通过模型评估与优化,确定最佳模型参数。
最后,利用训练好的模型对2023年苹果产量进行预测,并将预测结果与实际产量进行对比分析。
2.其他水果产量预测案例除了苹果产量预测,数学建模在其他水果产量预测领域也取得了显著成果。
2023数学建模c题matlab代码
2023数学建模C题MATLAB代码一、概述数学建模作为一种综合性的学科,已经在科研、工程等领域得到了广泛的应用。
而MATLAB作为一种强大的数学建模工具,其代码编写简单易懂,因此被广泛应用于数学建模领域。
本文将针对2023年数学建模C题,结合MATLAB编写代码,解决相关问题。
二、题目背景C题的题目背景主要涉及到某公司的生产与销售问题,需要通过数学模型进行分析和优化。
三、问题分析1. 题目要求建立某公司的销售预测模型,需要考虑销售额与时间的关系。
2. 题目还要求将该公司的人力资源分配问题建模,需要最大化效益。
3. 题目涉及到该公司的生产成本和销售收入之间的关系,需要建立相应的数学模型。
四、MATLAB代码编写以下是我根据题目要求编写的MATLAB代码:销售预测模型代码:```matlab定义时间序列time = [1:12];定义销售额序列sales = [100, 120, 150, 130, 140, 160, 180, 200, 220, 250, 270, 300];绘制销售额与时间的关系图plot(time, sales);xlabel('时间(月份)');ylabel('销售额(万元)');title('销售额与时间关系图');```人力资源分配优化模型代码:```matlab定义人力资源需求demand = [30, 40, 50, 45, 55, 60, 70, 80, 90, 100, 110, 120]; 定义人力资源成本cost = [3000, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200];定义效益函数benefit = -demand.*cost;最大化效益[max_benefit, index] = max(benefit);输出最优人力资源分配方案disp(['最优人力资源分配方案为:在第', num2str(index), '个月达到最大效益']);```生产成本与销售收入关系模型代码:```matlab定义生产成本production_cost = [100, 120, 150, 130, 140, 160, 180, 200, 220, 250, 270, 300];定义销售收入revenue = [200, 240, 300, 260, 280, 320, 360, 400, 440, 500, 540, 600];计算毛利润profit = revenue - production_cost;绘制毛利润与时间的关系图plot(time, profit);xlabel('时间(月份)');ylabel('毛利润(万元)');title('毛利润与时间关系图');```五、模型评价通过以上的MATLAB代码,我们成功建立了销售预测模型、人力资源分配优化模型和生产成本与销售收入关系模型。
matlab贝叶斯模型数学建模
Matlab贝叶斯模型数学建模一、概述数学建模是指利用数学工具和方法来描述和解释客观世界的一种科学研究方法。
在现代科学和工程技术领域中,数学建模已经成为了一种非常重要的工具和方法。
而贝叶斯模型是数学建模中的一个重要分支,它以贝叶斯概率理论为基础,结合实际问题的先验知识和观测数据,对未知的参数或变量进行推断和预测。
在贝叶斯模型的建立和分析过程中,利用Matlab这一强大的数学建模工具可以极大地提高效率和精度。
二、Matlab在贝叶斯模型中的应用1. 数据的准备和清洗在建立贝叶斯模型之前,首先需要对研究对象的数据进行准备和清洗。
Matlab提供了丰富的数据处理和分析工具,可以帮助研究人员对数据进行快速、准确的处理。
使用Matlab可以对数据进行缺失值处理、异常值剔除、数据平滑和标准化等操作,从而为后续的模型建立奠定良好的基础。
2. 模型的建立和参数估计在数据准备和清洗完成后,就可以开始建立贝叶斯模型了。
Matlab提供了丰富的统计模型和工具箱,可以帮助研究人员快速、准确地建立贝叶斯模型,并对模型的参数进行估计。
可以利用Matlab中的Bayesian Optimization Toolbox来进行概率分布的拟合和参数估计,或者利用Matlab中的Bayesian Networks Toolbox来进行概率图模型的建立和推断。
3. 模型的验证和评估在模型建立和参数估计完成后,需要对建立的贝叶斯模型进行验证和评估。
Matlab提供了丰富的统计分析和可视化工具,可以帮助研究人员对贝叶斯模型进行准确、全面的验证和评估。
可以利用Matlab中的Hypothesis Tests和Goodness-of-Fit Tests来对模型的假设进行检验,或者利用Matlab中的ROC曲线和AUC值来对模型的分类性能进行评估。
4. 结果的解释和应用建立和验证完成的贝叶斯模型需要对结果进行解释和应用。
Matlab提供了丰富的数据可视化和报告生成工具,可以帮助研究人员将模型的结果清晰、直观地呈现出来,并为实际问题的决策提供科学依据。
MATLAB中的数学建模方法及应用
MATLAB中的数学建模方法及应用引言数学建模作为一门重要的学科,已经成为了现代科学研究和工程实践中不可或缺的一部分。
而在数学建模过程中,数值计算和数据分析是关键步骤之一。
MATLAB作为一种强大的数学计算软件,在数学建模领域得到了广泛应用。
本文将介绍MATLAB中常用的数学建模方法,并探讨一些实际应用案例。
一、线性模型线性模型是数学建模中最基础的一种模型,它假设系统的响应是线性的。
在MATLAB中,我们可以通过矩阵运算和线性代数的知识来构建和求解线性模型。
例如,我们可以使用MATLAB中的线性回归函数来拟合一条直线到一组数据点上,从而得到一个线性模型。
二、非线性模型与线性模型相对应的是非线性模型。
非线性模型具有更强的表达能力,可以描述更为复杂的系统。
在MATLAB中,我们可以利用优化工具箱来拟合非线性模型。
例如,我们可以使用MATLAB中的非线性最小二乘函数来优化模型参数,使得模型与实际数据拟合程度最好。
三、微分方程模型微分方程模型在科学研究和工程实践中广泛应用。
在MATLAB中,我们可以使用ODE工具箱来求解常微分方程(ODE)。
通过定义初始条件和微分方程的表达式,MATLAB可以使用多种数值方法来求解微分方程模型。
例如,我们可以利用MATLAB中的欧拉法或者龙格-库塔法来求解微分方程。
四、偏微分方程模型偏微分方程(PDE)模型是描述空间上的变化的数学模型。
在MATLAB中,我们可以使用PDE工具箱来求解常见的偏微分方程模型。
通过定义边界条件和初始条件,MATLAB可以通过有限差分或有限元等方法来求解偏微分方程模型。
例如,我们可以利用MATLAB中的热传导方程求解器来模拟物体的温度分布。
五、曲线拟合与数据插值曲线拟合和数据插值是数学建模过程中常见的任务。
在MATLAB中,我们可以使用拟合和插值工具箱来实现这些任务。
通过输入一系列数据点,MATLAB可以通过多项式拟合或者样条插值等方法来生成一个模型函数。
数学建模matlab编程三
数学建模matlab编程三水仙花数水仙花数是指一个3位自然数,其各位数字的立方和等于该数本身,输出1000以内的水仙花数,并求其个数。
y=[];%空矩阵count=0;for i=100:999a=rem(i,10);b=rem(fix(i/10),10);c=fix(i/100);if(a^3+b^3+c^3==i)y=[y,i];%不断扩充count=count+1;endendy,count突变素数当一个素数(只有两个正因数(1和自己)的自然数即为素数)与其前一个素数的差值大于等于5时,将其称之为“突变素数”(2不是“突变素数”),求10000以内的“突变素数”的个数.y=[];k=0;count=0;for i=1:10000if isprime(i)==1if (i-k)>=5y=[y,i];count=count+1;endk=i;endendy,count结果:count=820方差分析1试验3种猪饲料的饲养效果,得到9头猪的增重(单位:kg)如下:用matlab编程做作方差分析,估计各个总体的未知参数μi 和μ。
(不允许用anova1工具箱)先用sas得到结果方便后面检验:data ex;do a=1 to 3;input n@@;do i=1 to n;input x@@;output;end;end;cards;4 51 40 43 483 23 25 262 23 28;proc anova data=ex;class a;model x=a;run;sst——(每个因素的均值-总均值)^2的和ssa——每个水平的个数*(每个水平的均值-总均值)^2的和sse=sst-ssaf=(ssa/(r-1))/(sse/(n-r)) r为水平个数a1=[51,40,43,48];a2=[23,25,26];a3=[23,28];a=[a1,a2,a3];n=length(a);b=[1 1 1 1 2 2 2 3 3];sst=0;for i=1:nsst=sst+(a(i)-mean(a))^2;endssa=0;for i=1:3an=a(b==i);num=length(an);ssa=ssa+num*(mean(an)-mean(a))^2;endsse=sst-ssa;f=(ssa/2)/(sse/(n-3));p=1-fcdf(f,2,n-3);ssa,sse,sst,f,p可以看出和sas所得结果一样方差分析2测定4种种植密度下金皇后玉米的千粒重(单位:g)如下:用matlab编程做作方差分析,估计各个总体的未知参数mi和μ。
数学建模竞赛培训之编程MATLAB实用教程
数学建模竞赛培训之编程MATLAB实用教程在当今的学术和工程领域,数学建模竞赛越来越受到重视,而MATLAB 作为一款强大的数学计算和编程软件,在其中发挥着至关重要的作用。
如果你正在为数学建模竞赛做准备,那么掌握 MATLAB 的编程技巧将为你在竞赛中取得优异成绩提供有力的支持。
接下来,让我们一起开启 MATLAB 编程的实用教程之旅。
一、MATLAB 基础首先,我们来了解一下 MATLAB 的基本操作界面。
当你打开MATLAB 时,会看到一个命令窗口,这是我们输入命令和查看结果的地方。
变量是编程中的重要概念,在 MATLAB 中,变量无需事先声明类型,直接赋值即可使用。
例如,我们可以输入`x = 5` ,此时`x` 就被赋值为 5 。
MATLAB 支持多种数据类型,如数值型(包括整数和浮点数)、字符型、逻辑型等。
二、矩阵操作矩阵在数学建模中经常用到,MATLAB 对矩阵的操作非常方便。
可以通过直接输入元素来创建矩阵,比如`A = 1 2 3; 4 5 6` 就创建了一个 2 行 3 列的矩阵`A` 。
矩阵的运算也十分简单,加法、减法、乘法等都有相应的运算符。
例如,两个矩阵相加可以直接使用`A + B` 。
三、函数的使用MATLAB 拥有丰富的内置函数,大大提高了编程效率。
比如求矩阵的行列式可以使用`det()`函数,求矩阵的逆可以使用`inv()`函数。
我们还可以自己定义函数,语法如下:```matlabfunction output_args = function_name(input_args)%函数体end```四、绘图功能在分析数据和展示结果时,绘图是必不可少的。
MATLAB 能够绘制各种类型的图形,如折线图、柱状图、饼图等。
以绘制简单的折线图为例,使用`plot()`函数,如`plot(x,y)`,其中`x` 和`y` 是数据向量。
五、数值计算在数学建模中,常常需要进行数值计算,如求解方程、求积分等。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使用矩阵作为循环变量
for语句更一般的格式:
for 循环变量=矩阵表达式 循环体语句 end
• 执行过程是依次将矩阵的各列元素赋给循环变量,然后 执行循环体语句,直至各列元素处理完毕。实际上,“表 达式1:表达式2:表达式3”是一个仅为一行的矩阵(行向量), 因而列向量是单个数据。
x = 0:0.2:12;y1 = bessel(1,x); figure(1) ,subplot(2,2,1) h = plot(x,y1,x,y2,x,y3); set(h,'LineWidth',2,{'LineStyle'},{'--';':';'-.'}) axis([0 12 -0.5 1]) xlabel('Time')ylabel('Amplitude') print -depsc -tiff -r200 myplot
Mathematical Modeling and MATLAB 数学建模与MATLAB 主讲人:孙越
数学建模与MATLAB
第七讲 FOR循环与二维绘图
2018/8/8
§7.1
for语句
数学建模与MATLAB 2
for语句结构
• for语句是执行已知循环次数的运算 • for 语句的结构为:
for 循环变量 = 初始值:步长:终止值 执行代码块 end
8
课堂练习
• 某旅行团有男人、女人和小孩共30人,在 纽约一家小饭馆里吃饭,该饭馆按人头收 费,每个男人收3美元,每个女人收2美元 ,每个小孩收1美元,共收取50美元。共有 多少组解?(答案: 9组解)
数学建模与MATLAB
9
参考答案
for x=1:30 for y=1:30 for z=1:30 if (3*x+2*y+1*z)==50 & (x+y+z)==30 fprintf('有%d个男人,%d个女人,%d个孩子!\n',x,y,z); end end end end
数学建模与MATLAB 7
例题三
• 已知5个学生4门学科的成绩,求每名学生的总成绩 • 程序如下: s=0; a=[65,76,56,78;98,83,74,85;76,67,78,79;98,58,42,73;67,89,76,87]; for k=a s=s+k; end disp(s);
数学建模与MATLAB
数学建模ห้องสมุดไป่ตู้MATLAB
14
plot 函数
plot 函数的调用格式为: • plot(Y) • plot(X1,Y1,...) • plot(X1,Y1,LineSpec,...) • plot(...,'PropertyName',PropertyValue,...) • plot(axes_handle,...) • h = plot(...) • hlines = plot('v6',...)
数学建模与MATLAB
10
%算法二 i=0; for x=1:15 for y=1:23 for z=1:28 %算法四 i=i+1; x=input('人数:'); if (3*x+2*y+1*z)==50&(x+y+z)==30 :'); fprintf('有%d个男人,%dy=input(' 个女人,钱 %d 个孩子!\n',x,y,z); end total=0; end k=0; end for i=1:fix(y/3) end for j=1:fix((y-i*3)/2) fprintf('一共运算了%d次!\n',i); if 2*i+j+x==y %算法三 total=total+1; i=0; fprintf('男%d 女%d 小孩%d\n',i,j,x-i-j) for x=1:15 end for y=1:23 k=k+1; i=i+1; if 3*x+2*y+(30-x-y)==50 end fprintf('有%d个男人,%dend 个女人,%d个孩子!\n',x,y,(30-x-y)); end fprintf('一共运算了%d次!\n',k); end end fprintf('一共运算了%d次!\n',i);
• 如果步长为1可以省略
数学建模与MATLAB 3
例题一
• 求累加和。如:1+2+3+…+100 %求1+2+3……+100 思考: s=0; ① 1*3*5……*99 for i=1:100 ② n!=1 × 2 × 3 × …n s=s+i; end fprintf('1+2+3……+100=%d \n',s); 在实际MATLAB编程中,为提高程序的执行速度, 常用向量运算来代替循环操作:
fprintf('一共有%d组解!\n',total);
数学建模与MATLAB
11
§7.2
二维绘图
数学建模与MATLAB 12
基本的绘图命令
函数名 plot loglog semilogx 功能
在线性坐标系中绘制二维图形 在对数坐标系中绘制二维图形 二维图形绘制,x 轴为对数坐标,y 轴为 线性坐标 二维图形绘制,x 轴为线性坐标,y 轴为 对数坐标 绘制双 y 轴图形
数学建模与MATLAB
5
参考代码
%判断输入的数字是否为素数,考虑计算量数字不超过1000 x=input('请输入一个正整数:'); for i=2:fix(x/2) if mod(x,i)==0 break; 有因子,程序非正常终止 排除法:如果有因子,不 再往下判断是否是素数 end end 无因子,程序正常终止 if i==fix(x/2) fprintf('%d是一个素数!',x); else fprintf('%d不是一个素数!',x); end
数学建模与MATLAB 13
semilogy
plotyy
基本的绘图步骤
步 骤
1. 准备绘图数据 2. 选择一个窗口并在窗口中给图形定位 3. 调用基本的绘图函数 4. 选择线型和标记特性 7. 设置坐标轴的极限值、标记符号和网格线 6. 使用坐标轴标签、图例和文本对图形进行注释 7. 输出图形
典型代码
y=sum(1:100)
数学建模与MATLAB 4
例题二
• 判断一个数是否为素数?
• 在大于1的自然数中,除了1和此整数自身外,不能被其他 自然数(不包括0)整除的数,称之为素数(或质数)。
编程方法一: 循环变量 i 从2开始,到该整数 x 的1/2为 止,用 x 依次依次除以 i ,只要能被任何一个 i 整除,就不是一个素数,否则是素数。