用MATLAB求解数学建模问题基础

合集下载

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。

MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。

在数学建模中,常用的方法有数值求解、优化求解和符号计算。

下面将介绍MATLAB在数学建模中常用的方法和求解示例。

1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。

MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。

以方程求根为例,可以使用fsolve函数来求解非线性方程。

示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。

MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。

以线性规划为例,可以使用linprog函数来求解线性规划问题。

示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。

MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。

以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。

示例:求解二次方程ax^2+bx+c=0的根。

```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。

2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。

3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。

4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。

二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。

6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。

三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。

10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。

11.试找出100以内的所有素数。

12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。

14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。

15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。

如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析第一章 MATLAB简介与安装MATLAB是一款强大的数值计算软件,广泛应用于科学计算、工程建模、数据处理和可视化等领域。

本章将介绍MATLAB的基本特点、主要功能以及安装方法。

首先,MATLAB具有灵活的编程语言,可以进行复杂的数学运算和算法实现。

其次,MATLAB集成了丰富的数学函数库,包括线性代数、优化、常微分方程等方面的函数,方便用户进行数学建模和分析。

最后,MATLAB提供了直观友好的图形界面,使得数据处理和结果展示更加便捷。

为了使用MATLAB进行数学建模与分析,首先需要安装MATLAB软件。

用户可以从MathWorks官网上下载最新版本的MATLAB安装程序,并按照提示进行安装。

安装完成后,用户需要根据自己的需要选择合适的许可证类型,并激活MATLAB软件。

激活成功后,用户将可以使用MATLAB的全部功能。

第二章 MATLAB基本操作与语法在开始进行数学建模与分析之前,用户需要了解MATLAB的基本操作和语法。

本章将介绍MATLAB的变量定义与赋值、矩阵运算、函数调用等基本操作。

首先,MATLAB使用变量来存储数据,并可以根据需要对变量进行重新赋值。

变量名可以包含字母、数字和下划线,但不允许以数字开头。

其次,MATLAB支持矩阵运算,可以方便地进行矩阵的加减乘除、转置和求逆等操作。

用户只需要输入相应的矩阵运算符和矩阵变量即可。

然后,MATLAB提供了丰富的数学函数,用户可以直接调用这些函数进行数学运算。

最后,用户可以根据需要编写自定义函数,实现更复杂的算法和数学模型。

第三章数学建模与优化数学建模是利用数学方法和技巧,对实际问题进行描述、分析和求解的过程。

本章将介绍如何使用MATLAB进行数学建模与优化。

首先,数学建模的第一步是问题描述和模型构建。

用户需要明确问题的目标、约束条件和决策变量,并将其转化为数学模型。

其次,用户可以使用MATLAB提供的优化函数,对数学模型进行求解。

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。

在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。

本文将介绍MATLAB 数学建模中的常用模型及编程方法。

二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。

1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。

矩阵的转置运算符是单撇号(’)。

2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。

3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。

matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。

4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。

5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。

其中,|a|表示矩阵a 的行列式,I 是单位矩阵。

在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。

三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。

基于MATLAB的数学建模竞赛计算

基于MATLAB的数学建模竞赛计算
模型评估与选择
可以进行模型评估与选择,如交叉 验证、网格搜索等。
04
信号处理工具箱
信号滤波器设计
可以设计各种信号滤波器,如低通、高通、 带通等。
信号变换
可以进行信号的傅里叶变换、拉普拉斯变换 等。
信号特征提取
可以提取信号的各种特征,如频率、能量等。
信号处理算法
支持多种信号处理算法,如离散余弦变换、 小波变换等。
用于数值计算。
1990年代
随着计算机技术的快速发展, Matlab逐渐扩展到数据可视化、 算法开发、控制系统设计等领域。
2000年代至今
Matlab不断更新迭代,增加了更多 高级功能和工具箱,广泛应用于科 学计算、数据分析、机器学习等领 域。
Matlab的主要特点
数值计算
Matlab提供了高效的数值计算 功能,支持多种数值算法。
重要性
数学建模是解决实际问题的重要手段 ,能够提高分析问题和解决问题的能 力,促进跨学科合作和创新。
数学建模的基本步骤
问题分析
对实际问题进行深入分析,明确问题的目标、条件和限 制。
求解模型
利用数学方法和计算机技术,求解建立的数学模型,得 出结果。
ABCD
建立模型
根据问题分析的结果,选择适当的数学语言、符号、公 式和图表等工具,建立数学模型。
基于Matlab的数学建模竞赛计算
目录 Contents
• Matlab简介 • 数学建模基础 • 基于Matlab的数学建模工具箱 • 基于Matlab的数学建模竞赛案例分析 • 基于Matlab的数学建模竞赛技巧与策略
01
Matlab简介
Matlab的发展历程
1980年代初
由Cleve Moler教授在 MathWorks公司开发,最初主要

数学实验与数学建模基础(MATLAB实现)6-4-数据拟合之人口拟合

数学实验与数学建模基础(MATLAB实现)6-4-数据拟合之人口拟合
数据拟合之——人口增长问题拟合
目录
1 数据拟合问题简介 2 人口增长问题的数据拟合方法
一、数据拟合问题简介
数据拟合:从一大堆看上去杂乱无章的数 据中找出规律性来,即设法构造一条曲线 (拟合曲线)反映所给数据点总的趋势, 以消除其局部波动。
常用拟合方法:多项式拟合
存在问题:并不是所有问题都可以用多项 式作拟合,比如人口增长问题。
程序运行结果:
p= 0.0074 -12.3390
Z= 2.6864
即 a 12.3390,
b 0.0074
代入拟合函数

当t=2020时,N=14.6787
即到2020年时,全国总人口数将达到14.6787亿。
这一数据虽然不十分准确,但是基本反 映了人口变化趋势。
分析:据人口增长的统计资料和人口理论数 学模型知,当人口总数N不是很大时,在不 太长的时期内,人口增长接近于指数增长。
故采用指数函数对数据进行拟合
N eabt
为了计算方便,将上式两边同时取对数,得
ln N a bt
令 y ln N
变换后的拟合函数为
y(t ) a bt
由人口数据表对人口取对数,计算得
二、人口增长问题的数据拟合方法
问题:已知1996-2004年全国人口总数如 下表,试根据表中数据预测2020年全国人 口总数。(单位:亿)
年 1996 1997
1998
1999
2000
人口 12.2389 12.3626 12.4761 12.5876 12.6743
2001 2002 2003 2004 12.7627 12.8453 12.9227 13.0000
t 1996 1997 1998 1999 y 2.5046 2.5147 2.5238 2.5327 2000 2001 2002 2003 2004 2.5396 2.5465 2.5530 2.5590 2.5649

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。

通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。

本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。

一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。

在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。

2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。

3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。

4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。

二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。

下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。

2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。

3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。

4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。

5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。

三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。

利用Matlab进行数学建模的基本思路与方法

利用Matlab进行数学建模的基本思路与方法

利用Matlab进行数学建模的基本思路与方法一、引言数学建模是应用数学的一种方法,它将实际问题抽象化为数学模型,并利用数学方法对模型进行分析和求解。

在现代科学研究和工程实践中,数学建模起到了不可替代的作用。

而Matlab作为一种功能强大、灵活易用的数值计算软件,成为了数学建模的常用工具。

本文将介绍利用Matlab进行数学建模的基本思路与方法,希望对读者在实际应用中有所帮助。

二、数学建模的基本步骤1. 问题分析在进行数学建模之前,首先要明确问题的目标和限制。

通过对问题的深入分析,确定问题的关键因素和变量,并建立问题的数学模型。

2. 确定假设在建立数学模型时,需要对问题中一些不确定的因素进行假设。

这些假设是为了简化问题,并使问题能够用数学方法求解。

假设应该尽量符合问题的实际情况,并且在后续分析中可以进行验证。

3. 建立数学模型根据问题的特点和假设,选择合适的数学工具和方法,建立数学模型。

数学模型可以是代数方程、微分方程、优化问题等形式。

在建立数学模型时,需要考虑模型的准确性和有效性。

4. 求解数学模型利用Matlab进行数学模型的求解是相对简便和高效的。

Matlab提供了丰富的函数库和工具箱,可以帮助用户快速求解各种数学问题。

根据建立的数学模型,选择适当的数值方法和算法,编写相应的Matlab程序进行求解。

5. 模型验证和分析对求解得到的结果进行验证和分析,比较模型与实际情况的一致性和可行性。

如果模型与实际情况存在较大差异,需要对模型进行修正。

同时,对模型的解释和分析,可以得到更深入的结论和洞察。

三、利用Matlab进行数学建模的方法1. 数据可视化与分析Matlab提供了强大的绘图功能,可以对数据进行可视化分析。

通过绘制曲线、散点图、柱状图等,可以直观地观察数据的分布和变化趋势。

同时,Matlab也提供了统计工具和函数,可以对数据进行统计分析,如求取均值、方差、相关系数等。

2. 参数拟合与优化对于某些复杂的数学模型,往往存在一些未知参数,需要通过实验数据进行求解。

Matlab中的数学建模方法介绍

Matlab中的数学建模方法介绍

Matlab中的数学建模方法介绍Matlab是一种非常常用的科学计算和数学建模软件,它具有强大的数学运算能力和用户友好的界面。

在科学研究和工程技术领域,Matlab被广泛应用于数学建模和数据分析。

本文将介绍一些在Matlab中常用的数学建模方法,帮助读者更好地理解和应用这些方法。

一、线性回归模型线性回归模型是一种经典的数学建模方法,用于分析数据之间的关系。

在Matlab中,我们可以使用regress函数进行线性回归分析。

首先,我们需要将数据导入Matlab,并进行数据预处理,如去除异常值和缺失值。

然后,使用regress函数拟合线性回归模型,并计算相关系数和残差等统计量。

最后,我们可以使用plot 函数绘制回归线和散点图,以观察数据的拟合程度。

二、非线性回归模型非线性回归模型适用于数据呈现非线性关系的情况。

在Matlab中,我们可以使用lsqcurvefit函数进行非线性回归分析。

首先,我们需要定义一个非线性方程,并设定初始参数值。

然后,使用lsqcurvefit函数拟合非线性回归模型,并输出拟合参数和残差信息。

最后,我们可以使用plot函数绘制拟合曲线和散点图,以评估模型的拟合效果。

三、差分方程模型差分方程模型用于描述离散时间系统的动态行为。

在Matlab中,我们可以使用diffeq函数求解差分方程模型的解析解或数值解。

首先,我们需要定义差分方程的形式,并设置初值条件。

然后,使用diffeq函数求解差分方程,并输出解析解或数值解。

最后,我们可以使用plot函数绘制解析解或数值解的图形,以观察系统的动态行为。

四、优化模型优化模型用于求解最优化问题,如寻找函数的最大值或最小值。

在Matlab中,我们可以使用fmincon函数或fminunc函数进行优化求解。

首先,我们需要定义目标函数和约束条件。

然后,使用fmincon函数或fminunc函数求解最优化问题,并输出最优解和最优值。

最后,我们可以使用plot函数可视化最优解的效果。

如何在Matlab中进行数学建模和优化问题求解

如何在Matlab中进行数学建模和优化问题求解

如何在Matlab中进行数学建模和优化问题求解在当今信息时代,数学建模和优化问题求解在各个领域都扮演着重要的角色。

而Matlab作为一种功能强大的数学软件,在数学建模和优化问题求解方面具有广泛的应用和影响力。

本文将介绍如何在Matlab中进行数学建模和优化问题求解的具体步骤以及一些常用的工具和技巧。

一、数学建模数学建模是指将实际问题转化为数学模型,并通过数学方法对问题进行分析和求解的过程。

在Matlab中进行数学建模,首先要明确问题的数学模型。

一般来说,数学模型分为离散模型和连续模型两种类型。

离散模型主要是指离散的数据,比如图论、网络流等问题。

在Matlab中,关于离散模型的建模和求解可以使用图论和最短路径算法等工具函数来实现。

比如可以使用graph函数构建图,再使用相应的算法来求解最短路径等问题。

连续模型主要是指连续的函数或方程,比如微分方程、优化问题等。

在Matlab 中,关于连续模型的建模和求解可以使用符号计算工具箱和优化工具箱来实现。

符号计算工具箱可以用来求解微分方程,而优化工具箱可以用来求解优化问题,比如线性规划、非线性规划等。

在进行数学建模时,还需要考虑问题的目标函数和约束条件。

目标函数表示问题的目标是最大化还是最小化,而约束条件则是限制问题解的条件。

在Matlab中,可以使用符号计算工具箱和优化工具箱提供的函数来定义和处理目标函数和约束条件。

比如可以使用syms函数定义符号变量,再使用fmincon函数来求解带有约束条件的优化问题。

在实际进行数学建模时,通常会遇到数据不完整或不准确的情况。

因此,对于这种情况,可以使用插值和拟合技术来对数据进行处理和修复。

在Matlab中,可以使用interp1函数进行插值和拟合,并使用polyfit函数进行多项式拟合。

二、优化问题求解优化问题求解是指在给定的约束条件下,寻找使目标函数达到最优的解。

在Matlab中,有多种常用的优化算法可以用于求解优化问题,比如线性规划、非线性规划、整数规划等。

数学建模matlab例题参考及练习

数学建模matlab例题参考及练习

数学建模matlab例题参考及练习数学实验与数学建模实验报告学院:专业班级:姓名:学号:完成时间:年⽉⽇承诺书本⼈承诺所呈交的数学实验与数学建模作业都是本⼈通过学习⾃⾏进⾏编程独⽴完成,所有结果都通过上机验证,⽆转载或抄袭他⼈,也未经他⼈转载或抄袭。

若承诺不实,本⼈愿意承担⼀切责任。

承诺⼈:年⽉⽇数学实验学习体会(每个⼈必须要写字数1200字以上,占总成绩的20%)练习1 ⼀元函数的图形 1.画出x y arcsin =的图象.2.画出x y sec =在],0[π之间的图象. 3.在同⼀坐标系中画出x y =,2x y =,3x y =,3x y =,x y =的图象.4.画出3232)1()1()(x x x f ++-=的图象,并根据图象特点指出函数)(x f 的奇偶性.5.画出)2ln(1++=x y 及其反函数的图象.6.画出321+=x y 及其反函数的图象.练习2 函数极限1.计算下列函数的极限.(1)xxx1lim4-+π→.程序:sym x;f=(1+sin(2*x))/(1-cos(4*x)); limit(f,x,pi/4)运⾏结果:lx21ans =1(2).程序:sym x;f=(1+cos(x))^(3*sec(x)); limit(f,x,pi/2)运⾏结果:lx22ans =exp(3)(3)22)2xx-ππ→.程序:sym x;f=log(sin(x))/(pi-2*x)^2; limit(f,x,pi/2)运⾏结果:lx23ans =-1/8(4)212lim xxex→.程序:x xx sec32)sym x ;f=x^2*exp(1/x); limit(f,x,0) limit(f,x,0,'right') limit(f,x,0,'left')运⾏结果:lx24ans = NaNans = Infans = 0%左极限为零,存在,右极限为⽆穷⼤,在x 趋近于零时函数没有极限(5))215(lim 122x x x x +-∞→.程序:sym x ;f=5*x^2/(1-x^2)+2^(1/x); limit(f,x,inf)运⾏结果:>> lx25ans = -4(6)x x x x x -+-→32112lim .程序:sym x ;f=(x^2-2*x+1)/(x^3-x); limit(f,x,1)运⾏结果:>> lx26ans = 0(7)x x x 11lim 20-+→.程序:sym x ;f=(sqrt(1+x^2)-1)/x; limit(f,x,0))3sin(cos 21lim 3π--π→x x x . 程序:sym x ;f=(1-2*cos(x))/sin(x-pi/3); limit(f,x,pi/3)运⾏结果:>> lx28ans = 3^(1/2)(9)tgxx x )1(lim 0+→.程序:sym x ;f=(1/x)^tan(x); limit(f,x,0,'right')运⾏结果:>> lx29ans =(10)xx arctgx )2(lim π+∞→.程序:sym x ;f=(2/pi*atan(x))^x; limit(f,x,inf,'left')运⾏结果:>> lx210ans =Inf2.解⽅程012=-?x x . 程序:sym x ;X=solve(x*2^x-1)运⾏结果:>> lx202 X =lambertw(0, log(2))/log(2)%⽅程有两个解X=solve(3*sin(x)+1-x)运⾏结果:>> lx203 X =-0.53847936154.解⽅程03=++q px x .(p 、q 为实数) 程序:X=solve('x^3+p*x+q=0','x')运⾏结果: X =((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3) - p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) p/(6*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) -((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)/2 - (3^(1/2)*i*(p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) + ((p^3/27 + q^2/4)^(1/2) -q/2)^(1/3)))/2 p/(6*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) - ((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)/2 + (3^(1/2)*i*(p/(3*((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)) + ((p^3/27 + q^2/4)^(1/2) - q/2)^(1/3)))/2练习 3 导数及偏导数计算1.求下列函数的导数.(1))11)(1(-+=x x y程序:sym x ;f=(sqrt(x)+1)*(1/sqrt(x)-1); diff(f)运⾏结果:>> lx31ans =(1/x^(1/2) - 1)/(2*x^(1/2)) - (x^(1/2) + 1)/(2*x^(3/2))(2)x x x y ln sin =程序:sym x ;f=x*sin(x)*log(x); diff(f)运⾏结果:>> lx32ans =sin(x) + log(x)*sin(x) + x*cos(x)*log(x)2.求下列参数⽅程所确定的函数的导数.(1)??==t y t x 44程序:ans =1/t^3(2)??-=+=arctgt t y t x )1ln(2程序:sym t ;f1=log(1+t^2);f2=t-atan(t); diff(f2)/diff(f1)运⾏结果:>> lx322ans =-((t^2 + 1)*(1/(t^2 + 1) - 1))/(2*t) 3.求下列隐函数的导数.(1)22ln y x xyarctg+=程序:syms x y ;f=atan(y/x)-log(sqrt(x^2+y^2));yx=-diff(f,x)/diff(f,y)运⾏结果;>> lx331 yx =(x/(x^2 + y^2) + y/(x^2*(y^2/x^2 + 1)))/(1/(x*(y^2/x^2 + 1)) - y/(x^2 + y^2)) (2)x y y x=程序:syms x y ; f=x^y-y^xyx=-diff(f,x)/diff(f,y)运⾏结果:>> lx332 f =x^y - y^x yx =f=exp(x)*sin(x); diff(f,x,4)运⾏结果:>> lx34 ans =(-4)*exp(x)*sin(x)5.验证x e y xsin =满⾜关系式:022=+'-''y y y程序:sym x ;f=exp(x)*sin(x); y2=diff(f,x,2); y1=diff(f,x,1); y=f;y2-y1*2+2*y=='0' 运⾏结果:>> lx35ans =1%运⾏结果为1表⽰y2-y1*2+2*y=='0'成⽴6.设)ln(y x x u +=,求22x u ??,22y u,y x u 2. 程序:syms x y ; f=x*log(x+y); uxx=diff(f,x,2) uyy=diff(f,y,2) f1=diff(f,x); uxy=diff(f1,y)运⾏结果: >> lx36uxx =2/(x + y) - x/(x + y)^2uyy =-x/(x + y)^2uxy =1/(x + y) - x/(x + y)^27.求下列多元隐函数的偏导数y zx z ,.(1)1cos cos cos 222=++z y x程序:syms x y z ;-(cos(x)*sin(x))/(cos(z)*sin(z)) zy =-(cos(y)*sin(y))/(cos(z)*sin(z))(2)xyz e z= 程序:syms x y z ; f=exp(z)-x*y*zzx=-diff(f,x)/diff(f,z) zy=-diff(f,y)/diff(f,z)运⾏结果:>> lx372 f =exp(z) - x*y*z zx =(y*z)/(exp(z) - x*y) zy =(x*z)/(exp(z) - x*y) 8.证明函数22)()(lnb y a x u -+-=(b a ,为常数)满⾜拉普拉斯⽅程:02222=??+??y u x u (提⽰:对结果⽤simplify 化简)练习4 积分计算1.计算下列不定积分.(1)?+dxx x 12 (2)+x xdx 2sin 12sin2.计算下列定积分.(1)?exdxx 1ln (2)ππ342sin dxxx3.求?+tdx x x x4.求摆线)cos 1(),sin (t a y t t a x -=-=的⼀拱(π≤≤20t )与x 轴所围成的图形的⾯积.5.计算⼆重积分 (1)??≤++122)(y x dxdyy x (2)??≤++xy x dxdyy x 22)(226.计算?+Ldsy x 22 L 为圆周)0(22>=+a ax y x7.计算?++-L dy y x dx y x )()(2222,其中L 为抛物线2x y =上从点(0,0)到点(2,4)的⼀段弧.练习5 matlab ⾃定义函数与导数应⽤1.建⽴函数x x a a x f 3sin 31sin ),(+=,当a 为何值时,该函数在3π=x 处取得极值,它是极⼤值还是极⼩值,并求此极值.2.确定下列函数的单调区间.(1)7186223---=x x x y (2))0(82>+=x xx y3.求下列函数的最⼤值、最⼩值.(1)2332x x y -=41≤≤-x(2)312824≤≤-+-=x x x y练习6 matab 矩阵运算与数组运算1.计算(1)???--521111204321+???21(2)??-01301213?03010*******????? ??-205101(3)52422??- 2.设????? ??-=243121013A ,??-=112111201B ,求满⾜关系B X A =-23的X .练习7 矩阵与线性⽅程组1.求下列矩阵的秩.(1)???-321110021 (2)4820322513454947513253947543173125 2.求下列矩阵的⾏列式,如可逆,试⽤不同的⽅法求其逆矩阵.(1)??--285421122 (2)??---6201111121324321 3.设X ????? ?-111012111==--+=+-+=+-+=+-+6223312433862344224221432143214321x x x x x x x x x x x x x x x x (2)-=+--=+--=-+-212201432143214321x x x x x x x x x x x x练习8 常微分⽅程与级数求1-6题微分⽅程的通解1.1222+='y y y x 2.x y x y dx dy -+= 3.x xx y y +='cos 4.1)2sin cos (='+y y y x 5.x e y y y x2cos 3=-'+'' 6.x x y y sin 14++=+'' 求7、8题初值问题的解7.==-++-+=10)2(212222x y dx dy x xy y y xy x8.===++==0000222,02V dt dx x x x a dt dxn dtx d t t9.给出函数x x e x f xx cos 2sin )(+=在点0=x 的7阶taylor 展开式以及在x=1处的 5阶taylor 展开式.10.判别下列级数的敛散性,若收敛求其和.(1)+++311(2)∑∞=+112n nntgπ11.求幂级数∑∞=--22)1(nnnnnx的和函数.12.求函数项级数∑∞=-1nnnn xπ的和函数.。

MATLAB——数学建模基础教程

MATLAB——数学建模基础教程

MATLAB——数学建模基础教程数学建模是通过数学方法研究和描述实际问题的过程。

它是将数学工具应用于现实世界中的问题,通过数学模型和算法来预测和优化系统的行为和性能。

数学建模是科学研究和工程设计过程中的重要组成部分,它有助于深入理解问题的本质和潜在解决方法。

在MATLAB中进行数学建模,首先需要构建数学模型。

数学模型是一个描述问题的数学表达式或算法,它可以是线性或非线性、离散或连续的。

构建数学模型的关键是理解问题的基本原理和变量之间的关系。

MATLAB提供了一系列的数值计算函数和工具箱,用于求解各种数学问题。

这些函数和工具箱涵盖了各种数学领域,如线性代数、微积分、常微分方程、优化等。

通过调用这些函数,可以在MATLAB中进行数学计算和分析。

例如,在线性代数中,可以使用MATLAB的矩阵运算函数来解决线性方程组、求解矩阵的特征值和特征向量、计算矩阵的行列式等。

MATLAB还提供了丰富的图形函数,可以用来绘制二维和三维图形,以便对数据进行可视化和分析。

此外,MATLAB还具有强大的符号计算功能,可以用来进行符号计算和代数运算。

通过使用符号表达式和符号变量,可以进行符号求导、符号积分、符号化简等操作。

这对于解析解和符号推导的问题非常有用。

在数学建模中,优化是一个重要的问题。

MATLAB提供了多种优化算法和方法,可以用于最小化或最大化函数、寻找函数的全局极值或局部极值。

优化算法的选择和应用是数学建模中的一个关键步骤,MATLAB提供了丰富的文档和示例来帮助用户理解和使用这些算法。

最后,MATLAB还具有强大的数据处理和统计分析功能。

它可以用来处理和分析实验数据、生成随机数、拟合曲线和表面、进行统计假设检验等。

这些功能在实际问题的数据分析和建模中非常有用。

总之,MATLAB是一个强大的数学建模工具,可以帮助用户理解和解决各种数学问题。

通过使用MATLAB的数值计算、符号计算、优化和统计分析等功能,可以在数学建模中提供精确、高效和可靠的解决方案。

利用Matlab解决常见数学问题的案例分析

利用Matlab解决常见数学问题的案例分析

利用Matlab解决常见数学问题的案例分析概述:Matlab是一款流行的科学软件,广泛应用于数学建模、数据分析、图像处理等领域。

本文将通过几个实际案例,介绍如何利用Matlab解决常见的数学问题,并分析其解决方法和效果。

案例一:线性方程组的求解线性方程组是数学中常见的问题之一。

假设有如下线性方程组:3x + 2y = 14x - 3y = 5可以使用Matlab中的线性方程组求解函数`linsolve`来求解。

首先,定义系数矩阵A和常数矩阵b,并调用`linsolve`函数求解方程组:```matlabA = [3 2; 4 -3];b = [1; 5];x = linsolve(A, b);```运行上述代码后,可以得到方程组的解x为:x = 3y = -2案例二:函数曲线绘制Matlab具有强大的绘图功能,可以绘制各种函数曲线。

例如,我们可以绘制正弦函数sin(x)在区间[-2π,2π]上的曲线。

首先,定义x的取值范围,并计算对应的y 值:```matlabx = -2*pi:0.1:2*pi;y = sin(x);```接下来,使用`plot`函数将曲线绘制出来:```matlabplot(x, y);```运行代码后,可以得到正弦函数的曲线图。

案例三:最小二乘拟合最小二乘拟合是一种常见的曲线拟合方法,用于将一组数据拟合成一条曲线。

假设有一组离散的数据点,我们希望找到一个曲线来拟合这些数据。

在Matlab中,可以使用`polyfit`函数进行最小二乘拟合。

例如,假设有一组数据:x = [1 2 3 4 5];y = [0.5 2.5 2 4 3.5];可以使用`polyfit`函数进行线性拟合:```matlabp = polyfit(x, y, 1);```其中,第一个参数x是自变量的取值,第二个参数y是因变量的取值,第三个参数1表示进行一次多项式拟合。

拟合的结果保存在向量p中,p(1)为拟合曲线的斜率,p(2)为截距。

MATLAB中的数学建模方法及应用

MATLAB中的数学建模方法及应用

MATLAB中的数学建模方法及应用引言数学建模作为一门重要的学科,已经成为了现代科学研究和工程实践中不可或缺的一部分。

而在数学建模过程中,数值计算和数据分析是关键步骤之一。

MATLAB作为一种强大的数学计算软件,在数学建模领域得到了广泛应用。

本文将介绍MATLAB中常用的数学建模方法,并探讨一些实际应用案例。

一、线性模型线性模型是数学建模中最基础的一种模型,它假设系统的响应是线性的。

在MATLAB中,我们可以通过矩阵运算和线性代数的知识来构建和求解线性模型。

例如,我们可以使用MATLAB中的线性回归函数来拟合一条直线到一组数据点上,从而得到一个线性模型。

二、非线性模型与线性模型相对应的是非线性模型。

非线性模型具有更强的表达能力,可以描述更为复杂的系统。

在MATLAB中,我们可以利用优化工具箱来拟合非线性模型。

例如,我们可以使用MATLAB中的非线性最小二乘函数来优化模型参数,使得模型与实际数据拟合程度最好。

三、微分方程模型微分方程模型在科学研究和工程实践中广泛应用。

在MATLAB中,我们可以使用ODE工具箱来求解常微分方程(ODE)。

通过定义初始条件和微分方程的表达式,MATLAB可以使用多种数值方法来求解微分方程模型。

例如,我们可以利用MATLAB中的欧拉法或者龙格-库塔法来求解微分方程。

四、偏微分方程模型偏微分方程(PDE)模型是描述空间上的变化的数学模型。

在MATLAB中,我们可以使用PDE工具箱来求解常见的偏微分方程模型。

通过定义边界条件和初始条件,MATLAB可以通过有限差分或有限元等方法来求解偏微分方程模型。

例如,我们可以利用MATLAB中的热传导方程求解器来模拟物体的温度分布。

五、曲线拟合与数据插值曲线拟合和数据插值是数学建模过程中常见的任务。

在MATLAB中,我们可以使用拟合和插值工具箱来实现这些任务。

通过输入一系列数据点,MATLAB可以通过多项式拟合或者样条插值等方法来生成一个模型函数。

2024Matlab数模初级教程

2024Matlab数模初级教程
顺序结构
阐述程序中最基本的顺序执行方 式。
02
03
选择结构
循环结构
详细介绍if-else条件判断语句, 包括其语法、执行流程以及嵌套 使用等。
深入讲解for循环和while循环, 包括循环控制语句(如break和 continue)的使用。
函数定义与调用
函数基本概念
解释函数的概念、作用及分类。
函数定义
数值微分与积分
数值微分
讲解差分法、中心差分法等数值微分方法,利用`diff`函数计算差 分。
数值积分
介绍矩形法、梯形法、辛普森法等数值积分方法,使用`integral` 或`quad`函数进行定积分计算。
常微分方程求解
通过`ode45`等函数求解常微分方程,展示其在数学建模中的应用。
优化问题求解
矩阵的基本运算
包括矩阵的加法、减法、数乘和转置等。
矩阵的乘法
掌握矩阵乘法的定义和计算方法,理解其与 线性变换的关系。
02
01
矩阵的逆与行列式
理解可逆矩阵的概念,掌握求逆矩阵和行列 式的方法。
04
03
数组操作与数据处理
数组的创建与访问
了解数组的创建方式, 掌握数组的索引和访问 方法。
数组的基本操作
包括数组的切片、连接、 重塑和排序等。
04 程序设计基础
M文件编程基础
M文件概述
介绍M文件的概念、作用及基本结构。
变量与数据类型
详细解释Matlab中的变量命名规则、数据类型(如数值型、字符型、 逻辑型等)及其转换。
运算符与表达式
列举并解释Matlab中的算术运算符、关系运算符、逻辑运算符等,以 及表达式的书写规则。
程序控制结构

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程在当今的学术和工程领域,数学建模竞赛越来越受到重视,而MATLAB 作为一款强大的数学计算和编程软件,在其中发挥着至关重要的作用。

如果你正在为数学建模竞赛做准备,那么掌握 MATLAB 的编程技巧将为你在竞赛中取得优异成绩提供有力的支持。

接下来,让我们一起开启 MATLAB 编程的实用教程之旅。

一、MATLAB 基础首先,我们来了解一下 MATLAB 的基本操作界面。

当你打开MATLAB 时,会看到一个命令窗口,这是我们输入命令和查看结果的地方。

变量是编程中的重要概念,在 MATLAB 中,变量无需事先声明类型,直接赋值即可使用。

例如,我们可以输入`x = 5` ,此时`x` 就被赋值为 5 。

MATLAB 支持多种数据类型,如数值型(包括整数和浮点数)、字符型、逻辑型等。

二、矩阵操作矩阵在数学建模中经常用到,MATLAB 对矩阵的操作非常方便。

可以通过直接输入元素来创建矩阵,比如`A = 1 2 3; 4 5 6` 就创建了一个 2 行 3 列的矩阵`A` 。

矩阵的运算也十分简单,加法、减法、乘法等都有相应的运算符。

例如,两个矩阵相加可以直接使用`A + B` 。

三、函数的使用MATLAB 拥有丰富的内置函数,大大提高了编程效率。

比如求矩阵的行列式可以使用`det()`函数,求矩阵的逆可以使用`inv()`函数。

我们还可以自己定义函数,语法如下:```matlabfunction output_args = function_name(input_args)%函数体end```四、绘图功能在分析数据和展示结果时,绘图是必不可少的。

MATLAB 能够绘制各种类型的图形,如折线图、柱状图、饼图等。

以绘制简单的折线图为例,使用`plot()`函数,如`plot(x,y)`,其中`x` 和`y` 是数据向量。

五、数值计算在数学建模中,常常需要进行数值计算,如求解方程、求积分等。

使用Matlab进行数学建模的基本流程

使用Matlab进行数学建模的基本流程

使用Matlab进行数学建模的基本流程引言数学建模作为一门交叉学科,旨在将实际问题转化为数学模型,并通过数学方法求解问题。

而Matlab作为一种常见且强大的数学软件,为数学建模提供了便捷的工具和平台。

本文将介绍使用Matlab进行数学建模的基本流程,包括问题提出、模型建立、求解分析等方面。

一、问题提出在进行数学建模之前,首先需要明确问题的提出。

问题可以来源于实际生活、工程技术、自然科学等领域。

在提出问题时,需要明确问题的背景、目标和约束条件。

以一个实际问题为例,假设我们需要优化某个生产过程的生产能力,而该过程中不同工序的生产速度会受到各种因素的影响。

我们的目标是最大化总产量,同时要满足资源约束和质量要求。

二、模型建立在问题提出的基础上,开始建立数学模型。

数学模型是问题实质的抽象和化简,它可以通过数学语言和符号来描述问题。

在建立模型时,需要关注以下几个方面:1. 变量的选择:根据问题的特点和目标,确定需要考虑的变量。

例如,在我们的生产过程优化问题中,可以考虑生产速度、资源利用率等变量。

2. 建立关系:通过分析问题,确定变量之间的关系。

关系可以是线性的、非线性的,也可以是概率性的。

在我们的例子中,我们可以根据生产速度和资源利用率的关系建立数学表达式。

3. 假设和简化:在建立模型时,为了简化问题,可以进行一些假设和简化。

但是需要保证这些假设和简化对问题求解的结果不会产生重大影响。

基于以上步骤,我们可以建立一个数学模型,例如使用线性规划模型来最大化总产量,并满足资源和质量约束。

三、求解分析模型建立完毕后,需要使用Matlab进行求解分析。

Matlab提供了丰富的函数和工具箱,可以方便地进行数学计算、模拟仿真、优化求解等操作。

在求解分析阶段,我们可以进行以下几个步骤:1. 数据处理:将实际问题中获取的数据导入Matlab,并进行必要的预处理和清洗。

例如,我们可以将生产速度和资源利用率的数据导入Matlab,进行统计分析和数据可视化。

使用MATLAB进行数学建模和仿真的步骤和注意事项

使用MATLAB进行数学建模和仿真的步骤和注意事项

使用MATLAB进行数学建模和仿真的步骤和注意事项随着科技的发展,数学建模和仿真在工程、科学、经济等领域中扮演着至关重要的角色。

MATLAB作为一种强大的数学建模和仿真工具,在各种研究领域都广泛应用。

本文将介绍使用MATLAB进行数学建模和仿真的步骤和注意事项,帮助读者更好地进行数学模型的开发和仿真实验。

一、数学建模的步骤1. 确定问题和目标:首先明确所要解决的问题和需要达到的目标。

这一步是建立数学模型的基础,为后续的步骤提供方向。

2. 收集数据和背景信息:收集与问题相关的数据和背景信息,包括实验数据、文献资料等。

这些信息将作为建模的依据和参考,有助于更好地理解问题和找到解决方案。

3. 建立数学模型:选择合适的数学方法和工具,将问题转化为数学表达式。

根据问题的特点和需求,可以选择不同的数学模型,如代数方程、微分方程、优化模型等。

4. 参数估计和模型验证:根据已有的数据和背景信息,对模型的参数进行估计,并通过实验数据验证模型的准确性和适用性。

如果需要对模型进行修改和改进,可以返回第三步进行调整。

5. 模型求解和分析:使用MATLAB进行模型求解和分析。

根据建立的数学模型,利用数学工具和算法,得到问题的解或结果。

可以使用MATLAB各种内置函数和工具箱,例如符号计算工具箱、优化工具箱等。

6. 结果评估和应用:对模型的结果进行评估和分析,判断模型的有效性和可行性。

根据实际问题的需求,将模型结果应用于实际情况中,提供决策和解决方案。

二、MATLAB数学建模和仿真的注意事项1. 确定合适的数学工具:MATLAB提供了丰富的数学工具和函数,可以满足不同问题的需求。

在建模过程中,需要根据具体的问题特点和要求,选择合适的数学工具和函数。

同时,要善于利用MATLAB的帮助文档和在线资源,充分了解和掌握所使用的函数和工具的功能和使用方法。

2. 数据准备和预处理:良好的数据质量对于建模的准确性和仿真的可靠性至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VA
VB
2、符号
(1) C A ( t ), C B ( t ) 表示 t 时刻薄膜两侧溶液的浓度(单位:mg/cm3) ; (2) a A , a B 表示初始时刻薄膜两侧溶液的浓度; (3)K 表示渗透率; (4)V A ,VB 表示由薄膜组个的容器两侧的体积。
西南交通大学峨眉校区基础课部数学教研室
那么,Taylor是如何对原子弹爆炸的能量进行估计的呢?Taylor知道,爆炸 产生的冲击波以爆炸点为中心呈球面向四周传播,爆炸的能量越大,在一定 时刻冲击波传播得越远,而冲击波又可以通过爆炸形成的“蘑菇云”反映出 来。Taylor研究这次爆炸的录影带,测量出了从爆炸开始,不同时刻爆炸所 产生的“蘑菇云”的半径大小。表3是他测量出的时刻t所对应的“蘑菇云” 半径r(t)。现在的任务就是利用表3和其它知识,估计这次爆炸所释放的能量。
VA
VB
西南交通大学峨眉校区基础课部数学教研室
薄膜渗透率的测定模型
1、假设
(1)薄膜两侧的溶液始终是均匀的,即在任何时
刻薄膜两侧的每一处溶液的浓度都是相同的; (2)当两侧浓度不一致时,物质的分子穿透薄膜 综总是从高浓度向低浓度溶液扩散; (3)通过单位面积薄膜分子扩散的速度与薄膜两 侧的浓度差成正比; (4)薄膜是双向同性的,即物质从薄膜的任何一 侧向另一侧渗透的性能相同。
西南交通大学峨眉校区基础课部数学教研室
地区人口模型
第一步
做出散点图
第二步
根据散点图,选择近似的数学模型
1 可以考虑应用Logistic曲线模型 y a be t
西南交通大学峨眉校区基础课部数学教研室
地区人口模型
第三步
求解数学模型
1 y t a be
年份 人口数量(人) 年份 人口数量(人) 年份 人口数量(人) 1971 33815 1981 34483 1991 34515 1972 33981 1982 34488 1992 34517 1973 34004 1983 34513 1993 34519 1974 34165 1984 34497 1994 34519 1975 34212 1985 34511 1995 34521 1976 34327 1986 34520 1996 34521 1977 34344 1987 34507 1997 34523 1978 34458 1988 34509 1998 34525 1979 34498 1989 34521 1999 34525 1980 34476 1990 34513 2000 34527
由质量守恒定律,两者应该相等,于是有
VAC A ( t t ) VAC A ( t ) SK (C B C A )t
两边同除 t ,令 t
VB
0 ,整理得
dC A SK (C B C A ) dt VA
(1)
西南交通大学峨眉校区基础课部数学教研室
薄膜渗透率的测定模型
VB
西南交渗透率的测定模型
4. 求解参数
设VA
VB 1000cm 3 , S 10cm 2 ,对容器 B 部分溶液浓度的测试结果如下表 2.
表 2 容器 B 部分溶液测试浓度
tj / s
100
200
300
400
500
C j /(mg cm 3 )
直接拟合吗?可以!但面临非线性最优化问题求解!
将模型变更一下会更好!
西南交通大学峨眉校区基础课部数学教研室
地区人口模型
对于模型(1.1) ,只要令
1 y ' , x ' et y
就可以将其转化为线性模型
(1.2)
y ' a bx '
然后利用线性最小二乘法求解即可。
(1.3)
西南交通大学峨眉校区基础课部数学教研室
(3)
由此得到量纲矩阵
A35
1 0 2 3 1 0 0 1 1 1 0 1 2 0 2
(4)
西南交通大学峨眉校区基础课部数学教研室
原子弹爆炸能量的估计模型
A35
1 0 2 3 1 0 0 1 1 1 0 1 2 0 2
案例1:地区人口模型[1]
表 1 是某地区 1971—2000 年的人口数据,试给出该地区人口增长的数学模型。 表 1 某地区人口变化数据 年份 人口数量(人) 年份 人口数量(人) 年份 人口数量(人) 1971 33815 1981 34483 1991 34515 1972 33981 1982 34488 1992 34517 1973 34004 1983 34513 1993 34519 1974 34165 1984 34497 1994 34519 1975 34212 1985 34511 1995 34521 1976 34327 1986 34520 1996 34521 1977 34344 1987 34507 1997 34523 1978 34458 1988 34509 1998 34525 1979 34498 1989 34521 1999 34525 1980 34476 1990 34513 2000 34527
10
2
西南交通大学峨眉校区基础课部数学教研室
案例3:原子弹爆炸能量的估计模型[3]
【背景】:1945年7月16日,美国科学家在新墨西哥州阿拉莫戈多沙漠进行 了“三位一体实验”(Trinity Test),试爆了全球第一颗原子弹。这一事 件令世界为之震惊,并从某种程度上改变了第二次世界大战以及战后世界的 历史。但在当时,有关原子弹爆炸的任何资料都是保密的,一般人无法得到 任何有关的数据或影像资料,因此人们无法比较准确地了解这次爆炸的为例 究竟有多大。两年后,美国政府首次公开了这次爆炸的录影带,但没有发布 任何有关的数据。英国物理学家G.I.Taylor(1886--1975)通过研究这次爆 炸的录影带,建立数学模型对这次爆炸所释放的能力进行了估计,得到的估 计值为19.2千吨(千吨即相当于1千吨TNT的核子能量)。后来正式公布的信 息显示,这次爆炸所释放的实际能量为21千吨,可见二者是相当接近的。
案例2:薄膜渗透率的测定模型[1]
某种医用薄膜有允许一种物质的分子穿透它(从高浓 度的溶液向低浓度的溶液扩散)的功能,在试制时需测定 薄膜被这种分子穿透的能力。测定方法如下:用面积为 S 的薄膜将容器分成体积分别为V A ,VB 的两部分(见图) ,在 两部分中分别注满该物质的两种不同浓度的溶液。此时, 该物质分子就会穿过薄膜从高浓度向低浓度溶液扩散。一 种通过单位面积薄膜分子扩散的速度与薄膜两侧溶液浓度 差成正比,比例系数 K 表征了薄膜被该物质分子穿透的能 力,称为渗透率。定时测量容器中薄膜某一侧的溶液浓度 值,可以确定 K 的数值,试用数学建模的方法解决 K 值的 求解问题。
tj / s
4.54 4.99 5.35 5.65 5.90 600 700 800 900 1000
C j /(mg cm 3 )
此时极小化的函数为
6.10 6.26 6.39 6.50 6.59
0.02 Kt j E ( K , a , b) a be Cj j 1
dC A SK (C B C A ) dt VA
且注意到整个容器的溶液中含有该物质的质量应该不变,即有下式成立:
(1)
VAC A ( t ) VB C B ( t ) V Aa A VB a B
(2) (3)
C A (t ) a A
将(3)代入(1) ,得到
VB V aB B C B ( t ) VA VA
西南交通大学峨眉校区基础课部数学教研室
原子弹爆炸能量的估计模型
表3 时刻t所对应的“蘑菇云”的半径r t/ms 0.10 0.24 0.38 0.52 r(t)/m 11.1 19.9 25.4 28.8 t/ms 0.80 0.94 1.08 1.22 r(t)/m 34.2 36.6 38.9 41.0 t/ms 1.50 1.65 1.79 1.93 r(t)/m 44.4 46.0 46.9 48.7 t/ms 3.53 3.80 4.07 4.34 r(t)/m 61.1 62.9 64.3 65.6 t/ms 15.0 15.0 34.0 53.0 r(t)/m 106.5 130.0 145.0 175.0
p) ,
r (t , E, , p)
记作更一般的形式
(1)
f (r , t , E , , p) 0
其中有 5 个物理量,接下来的任务是用量纲分析法确定这个函数关系。
(2)
取三个基本量纲:长度 L,质量 M 和时间 T,式(2)中各个物理量的量纲分析分别为
[r ] L,[t ] T ,[ E ] L2 MT 2 ,[ ] L3 M ,[ p] L1 MT 2
VB
西南交通大学峨眉校区基础课部数学教研室
薄膜渗透率的测定模型
至此, 问题归结为利用 C B 在时刻 t j 的测量数据 C j ( j 对应的数学模型变为
n
1,2,..., n) 来辨识参数 K 和 a A , a B ,
min E ( K , a A , a B ) (C B ( t j ) C j )2
数学建模基础之
用MATLAB解数学模型问题
西南交通大学峨眉校区基础课部数学教研室
内容提要:
1. 案例1:确定某地区人口增长模型
2. 案例2:薄膜渗透率的测定
3. 案例3:原子弹爆炸的能量估计 4. 案例4:街头骗局揭秘 5. 案例5:生物种群增长的Logistic模型 6. 学习资源
西南交通大学峨眉校区基础课部数学教研室
量纲分析法就是利用量纲齐次性原则来建立物理量之间的数学模
相关文档
最新文档