基于matlab的语音识别技术

合集下载

利用Matlab进行语音增强与语音识别的技术解析

利用Matlab进行语音增强与语音识别的技术解析

利用Matlab进行语音增强与语音识别的技术解析语音是人类最基本的交流工具之一,准确的语音信号处理可提升语音信号的质量,从而提高语音识别的准确率。

本文将结合Matlab的语音增强与语音识别技术,详细探讨语音增强与语音识别的原理和实现方法。

一、语音增强技术的原理与实现1.1 语音增强的意义与目标语音增强是指通过信号处理技术对语音信号进行去噪、增强,提升语音信号的清晰度和可听性,以改善语音通信质量。

在实际应用中,语音增强技术有助于提高语音识别的准确率,并且在语音通信、语音录音等领域也得到了广泛的应用。

1.2 语音增强的处理流程语音增强的处理流程通常包括预处理、特征提取和信号恢复三个步骤。

预处理阶段主要是对语音信号进行降噪和去除混响等操作,以减少背景噪音对语音分析的干扰。

特征提取阶段是将处理后的语音信号转换为特征向量,常用的特征提取方法包括短时能量、过零率和MFCC等。

最后一步是信号恢复,将特征向量转换回语音信号。

1.3 MatLab在语音增强中的应用MatLab是一种强大的数据处理和可视化工具,它提供了丰富的信号处理函数和工具箱,非常适合语音增强的实现。

例如,MatLab的Noise Reduction Toolbox提供了多种降噪算法,如噪声门限、频域滤波等,可以有效地降低语音背景噪音。

此外,MatLab还提供了多种滤波算法,如自适应滤波、非线性滤波等,可用于去除混响和残余噪声。

二、语音识别技术的原理与实现2.1 语音识别的意义与应用语音识别是将语音信号转化为文本或命令的过程,可以广泛应用于语音助手、语音导航、智能家居等领域。

准确的语音识别可以提高人机交互的效率和便利性。

2.2 语音识别的基本原理语音识别的基本原理是将语音信号转化为特征向量,并通过分类器将特征向量映射到对应的文本或命令。

常用的特征提取方法包括MFCC、倒谱系数、线性预测编码等。

分类器可以采用隐马尔可夫模型(HMM)、神经网络(NN)等算法,以实现对不同语音的分类和识别。

利用Matlab进行语音合成和语音识别技术实现

利用Matlab进行语音合成和语音识别技术实现

利用Matlab进行语音合成和语音识别技术实现人类的语音交流是一种非常重要的沟通方式。

然而,由于各种原因,有些人可能会失去语音能力,这给他们的生活带来了极大的困扰。

幸运的是,现代技术的快速发展为这些人提供了帮助的可能性。

利用Matlab进行语音合成和语音识别技术的实现,为失去语音能力的人提供了一种有效的解决方案。

语音合成技术是指根据既定的文本或输入内容,生成人工合成语音的过程。

Matlab是一个功能强大的工具,可以用于语音合成的实现。

它具有丰富的信号处理和声音处理函数,可以通过调用这些函数来进行语音合成。

首先,我们需要选择一种合适的语音合成算法。

一个常用的算法是基于傅里叶变换的加法合成算法。

这个算法将输入文本转化为一个频谱图,然后将频谱图转换为时域信号,最后通过声音设备输出。

在Matlab中,我们可以使用fft函数进行频谱分析,并使用ifft函数进行逆傅里叶变换以转换为时域信号。

在进行语音合成之前,我们还需要合适的语音库。

语音库通常包含一系列基本音素以及它们的语音特征。

通过指定一个特定的文本,我们可以根据语音库中的音素选择相应的语音特征,然后使用合成算法生成相应的语音。

除了语音合成,Matlab还可以用于语音识别技术的实现。

语音识别是指将语音信号转化为文本或其他形式的过程。

这在现代通信和人机交互中非常常见,例如,语音助手和电话自动接听系统。

语音识别的实现通常依赖于声学模型和语言模型。

声学模型主要用于建模和识别不同语音特征,在Matlab中可以利用模式识别算法来实现声学模型。

语言模型则主要用于识别和解析语音信号的上下文信息。

在进行语音识别之前,我们需要收集一些训练数据用于模型的训练。

这些训练数据包括多个语音样本以及相应的文本转录。

通过这些数据,我们可以使用Matlab中的机器学习算法进行模型的训练和优化。

常用的机器学习算法包括HMM (隐马尔可夫模型)和DNN(深度神经网络)等。

一旦完成了语音识别模型的训练和优化,我们就可以使用这个模型进行实际的语音识别。

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。

本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。

二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。

在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。

通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。

三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。

通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。

2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。

预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。

3. 特征提取在语音信号处理中,特征提取是一个关键步骤。

通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。

4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。

通过模型训练,可以实现对不同语音信号的自动识别和分类。

四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。

这些模块相互配合,构成一个完整的系统架构。

2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。

良好的界面设计可以提升系统的易用性和用户体验。

五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。

基于MATLAB的特定人语音识别算法设计毕业设计

基于MATLAB的特定人语音识别算法设计毕业设计

本科毕业设计基于MATLAB的特定人语音识别算法设计摘要语言是人类交换信息最方便、最快捷的一种方式,在高度发达的信息社会中,用数字化的方法进行语音的传送、存储、识别、合成和增强等是整个数字化通信网中最重要、最基本的组成部分之一。

而在随着科技技术的发展的今天,除了人与人之间的自然语言通信之外,人与机或机器与机器之间也开始使用语言。

也就是因为如此,需要涉及到语音识别技术。

为了解决机器能“听懂”人类的语言,在科技如此迅猛发展的今天,语音识别技术一直受到各国科学界的关注,其对计算机发展和社会生活的重要性也日益凸显出来。

在孤立字语音识别中,如语音密码锁,汽车控制等领域,都运用到了特定人语音识别技术,也就是DTW算法,相对于HMM算法,DTW算法具有简单操作。

在相同环境下,两者识别效果相差不大,但是HMM算法要复杂得多,主要体现在HMM算法在训练阶段需要提供大量的语音数据,而DTW算法则不需要额外的计算。

所以在特定人语音识别当中,DTW算法被广泛使用。

在本次设计中,将运用到MATLAB平台来对语音信号进行处理及识别。

相对于C语言而言,MATLAB平台更能给用户提供一个简单易懂的代码分析窗口。

而且在个性化设计中,MATLAB可以为用户提供一个人性化界面--GUI。

所以,此次设计,通过MATLAB 平台建立一个GUI界面,接着对一组语音信号的输入进行预处理及端点检测,提取特征参数(MFCC),形成参考模块。

然后再对一组相同的语音信号输入进行同样的操作作为测试模块,与参考模块进行DTW算法进行匹配,输出匹配后的识别结果。

关键词:MATLAB GUI 端点检测MFCC DTWDesign of Speech Recognition Algorithm Based on Specific MATLABCai Jingzuo(College of Engineering, South China Agricultural University, Guangzhou 510642, China) Abstract:Language is a way of human exchange of information the most convenient, quick, highly developed in the information society, for voice transmission, by using the digital method of storage, recognition, synthesis and enhancement is one of the most important parts of the whole, the most basic digital communication network. While with the development of science and technology today, in addition to natural language communication between people, between people and machine or machine and machine are also starting to use the language. It is because of this, need to involve the speech recognition technology. In order to solve the machine can "hear" the human language, the technology is so rapid development today, the speech recognition technology has been the subject of scientific attention of all countries, the importance of computer development and social life is increasingly prominent.In the isolated word speech recognition, such as voice password lock, auto control field, are applied to the speech recognition technology, which is relative to the DTW algorithm, HMM algorithm, DTW algorithm has the advantages of simple operation. In the same environment, both the recognition effect is similar, but HMM algorithm is much more complex, mainly reflected in the HMM algorithm need to provide a large amount of speech data in the training phase, while the DTW algorithm does not need the extra computation. So in the speaker-independent recognition, DTW algorithm is widely used.In this design, will apply to the MATLAB platform to carry on the processing and recognition of speech signal. Compared with the C language, MATLAB platform can provide users with a simple code analysis window. But in the personalized design, MATLAB can provide a human user interface --GUI. So, the design, the establishment of a GUI interface through the MATLAB platform, and then a set of the input speech signal pretreatment, endpoint detection, feature parameter extraction (MFCC), the formation of the reference module. Then a group of the same speech signal input to the same operation as a test module, matching with reference to DTW algorithm module, output matching recognition results.Key words:DTW GUI Endpoint detection MFCC DTW目录1 前言 (1)1.1语音识别的历史背景 (1)1.1.1国外研究历史及现状 (2)1.1.2 国内研究历史及现状 (3)1.2 语音识别技术的应用及研究方向 (4)1.3语音识别系统的基本构成 (5)2 语音信号的数字模型及采集 (6)2.1概述 (6)2.2 语音的发音原理 (6)2.2.1 人的发声器官 (6)2.2.2 语音生成 (8)2.3 语音的听觉机理 (9)2.3.1 听觉器官 (9)2.3.2 耳蜗的信号处理原理 (10)2.4 MATLAB中的语音信号模型 (12)2.4.1 wavrecord函数 (12)2.4.2 wavplay函数 (13)3 语音信号的端点检测 (13)3.1 概述 (13)3.2 MATLAB的语音端点检测算法 (16)3.2.1 短时能量的计算 (16)3.2.2 过零率的计算 (17)3.2.3 端点检测的流程 (19)4语音信号非线性预测分析 (20)4.1 概述 (20)4.2 MFCC的基本原理 (20)4.3 实验结果 (21)5特定人语音识别算法-DTW算法 (22)5.1 DTW算法原理 (22)5.2 DTW算法流程及实验结果 (24)5.2.1 算法流程 (24)5.2.2实验结果 (25)6GUI设计 (26)6.1概述 (26)6.2 GUI界面的打开 (27)6.3作品演示 (29)7结论 (31)参考文献 (31)附录 (32)附录A语音识别主函数 (32)致谢 (38)本科生毕业设计成绩评定表1前言语言是人类交换信息最方便、最快捷的一种方式,在高度发达的信息社会中,用数字化的方法进行语音的传送、存储、识别、合成和增强等是整个数字化通信网中最重要、最基本的组成部分之一。

基于Matlab的语音识别系统的设计

基于Matlab的语音识别系统的设计

摘要语音识别主要是让机器听懂人说的话,即在各种情况下,准确地识别出语音的内容,从而根据其信息执行人的各种意图。

语音识别技术既是国际竞争的一项重要技术,也是每一个国家经济发展不可缺少的重要技术支撑。

本文基于语音信号产生的数学模型,从时域、频域出发对语音信号进行分析,论述了语音识别的基本理论。

在此基础上讨论了语音识别的五种算法:动态时间伸缩算法(Dynamic Time Warping,DTW)、基于规则的人工智能方法、人工神经网络(Artificial Neural Network,ANN)方法、隐马尔可夫(Hidden Markov Model,HMM)方法、HMM和ANN的混合模型。

重点是从理论上研究隐马尔可夫(HMM)模型算法,对经典的HMM模型算法进行改进。

语音识别算法有多种实现方案,本文采取的方法是利用Matlab强大的数学运算能力,实现孤立语音信号的识别。

Matlab 是一款功能强大的数学软件,它附带大量的信号处理工具箱为信号分析研究,特别是文中主要探讨的声波分析研究带来极大便利。

本文应用隐马尔科夫模型(HMM) 为识别算法,采用MFCC(MEL频率倒谱系数)为主要语音特征参数,建立了一个汉语数字语音识别系统,其中包括语音信号的预处理、特征参数的提取、识别模板的训练、识别匹配算法;同时,提出利用Matlab图形用户界面开发环境设计语音识别系统界面,设计简单,使用方便,系统界面友好。

经过统计,识别效果明显达到了预期目标。

关键词:语音识别算法;HMM模型;Matlab;GUIABSTRACTSpeech Recognition is designed to allow machines to understand what people say,and accurately identify the contents of voice to execute the intent of people.Speech recognition technology is not only an important internationally competed technology,but also an indispensable foundational technology for the national economic development.Based on the mathematical model from the speech signal,this paper analyze audio signal from the time domain,frequency domain proceeding,and discussed the basic theory of speech recognition technology.Five algorithm are discussed:Dynamic Time Warping(DTW)、Rule-based Artificial Intelligence,Artificial Neural Network(ANN),Hidden Markov Model(HMM),HMM combined with ANN.The focus is put in the theoretical studies of Hidden Markov(HMM) model algorithm,and the classical HMM algorithm is improved.Speech recognition algorithm is realized in various programs,this article taking the method is to use Matlab powerful mathematical operation ability to realize the recognition of speech signal isolation. Matlab is a powerful mathematic software with a mass of toolboxes dealing with signal processing. It gives a terrific shortcut to the research of signal processing,especially the wave analysis. We can characterize the sound with key parameters such as intensity, frequency etc. In this paper, hidden Markov model (HMM) recognition algorithm using MFCC (MELfrequency cepstral coefficients) as the main voice characteristic parameters, the establishment of a Chinese digital speech recognition system, including the preprocessing of the speech signal,the extraction of characteristic parameters the training of the recognition template,identifying matching algorithm;the same time,the use of Matlab graphical user interface development environment designed speech recognition system interface,is designed to be simple,easy to use,friendly interface. Besides,to have a simple exploration of the voice recognition is another target.After statistics,recognition result obviously is made out as the expected goal.Key words:Speech recognition algorithm;HMM model;Matlab;GUI目录一、前言 (1)1.1语音识别的发展历史 (1)1.2语音识别研究现状 (1)1.3语音识别系统的分类 (2)1.4语音识别系统的基本构成 (3)1.5语音识别技术难点 (3)1.6语音识别发展前景 (4)二、语音信号分析 (4)2.1语音学知识 (4)2.1.1音素和音节 (5)2.1.2汉语的声调 (5)2.1.3语音信号产生模型 (6)2.2语音信号数字化和预处理 (7)2.2.1数字化 (7)2.2.2预加重处理 (7)2.2.3防混叠滤波 (8)2.2.4加窗处理 (8)2.3语音信号的时域分析 (9)2.3.1短时能量分析 (9)2.3.2短时平均过零率 (11)2.3.3短时自相关函数和短时平均幅度差函数 (12)2.3.4语音端点检测 (13)2.4语音信号的频域分析 (14)2.4.1滤波器组法 (14)2.4.2傅立叶频谱分析 (14)2.5特征参数提取 (15)2.5.1 LPCC倒谱系数 (15)2.5.2 Mel频率倒谱系数 (16)三、语音识别主要算法 (17)3.1动态时间伸缩算法 (17)3.2基于规则的人工智能方法 (18)3.3人工神经网络方法 (19)3.4隐马尔可夫方法 (20)3.5 HMM和ANN的混合模型 (21)四、隐含马尔可夫模型算法 (23)4.1 HMM的基本理论和数学描述 (23)4.2 HMM的三个基本问题及解决算法 (24)4.3 HMM算法的改进 (31)4.4 HMM的结构和类型 (33)4.5 HMM算法实现的问题 (34)五、基于Matlab环境下的语音识别算法实现 (35)5.1识别系统平台介绍 (35)5.2在Matlab中HMM算法的实现 (36)5.2.1端点检测 (36)5.2.2特征参数提取 (36)5.2.3训练和识别 (37)5.3实验结论分析 (38)六、结束语 (39)6.1回顾 (39)6.2展望 (39)七、致谢 (40)参考文献 (40)一、前言1.1语音识别的发展历史作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。

基于MATLAB的信号处理算法在语音识别中的应用研究

基于MATLAB的信号处理算法在语音识别中的应用研究

基于MATLAB的信号处理算法在语音识别中的应用研究一、引言语音识别技术是近年来人工智能领域备受关注的研究方向之一,其在智能语音助手、语音识别系统、智能交互等领域有着广泛的应用。

而信号处理算法作为语音识别技术的核心之一,对于提高语音识别系统的准确性和稳定性起着至关重要的作用。

本文将探讨基于MATLAB的信号处理算法在语音识别中的应用研究。

二、MATLAB在信号处理中的优势MATLAB作为一种强大的科学计算软件,提供了丰富的信号处理工具箱,包括数字信号处理、滤波器设计、频谱分析等功能模块,为研究人员提供了便利的开发环境。

其优势主要体现在以下几个方面:1. 强大的算法库MATLAB拥有丰富的信号处理算法库,包括快速傅里叶变换(FFT)、数字滤波器设计、自相关函数计算等功能,可以满足不同场景下信号处理的需求。

2. 友好的编程环境MATLAB提供了直观、易学的编程接口,支持脚本编程和函数式编程,使得信号处理算法的实现更加高效和便捷。

3. 可视化分析工具MATLAB强大的可视化功能可以帮助研究人员直观地展示信号处理结果,有利于分析和调试算法,提高开发效率。

三、基于MATLAB的信号处理算法在语音识别中的应用语音信号是一种典型的时域信号,在进行语音识别前需要对其进行预处理和特征提取。

基于MATLAB的信号处理算法在语音识别中有着广泛的应用,主要包括以下几个方面:1. 语音信号预处理在语音信号预处理阶段,通常需要进行去噪、降采样、分帧等操作。

MATLAB提供了丰富的滤波器设计和降噪算法,可以有效地去除噪声干扰,提高语音信号的质量。

2. 特征提取特征提取是语音识别中至关重要的一步,常用的特征包括梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。

MATLAB提供了相应的函数库,可以方便地计算这些特征参数。

3. 模式匹配在语音识别系统中,通常采用模式匹配方法对输入语音进行识别。

基于MATLAB的模式匹配算法包括动态时间规整(DTW)、隐马尔可夫模型(HMM)等,在实现上具有较高的灵活性和可扩展性。

Matlab在语音识别中的应用示例

Matlab在语音识别中的应用示例

Matlab在语音识别中的应用示例1. 引言语音识别是一项广泛应用于人机交互中的技术,其应用范围从智能助理到语音控制等众多领域。

而Matlab作为一种强大的数学建模与仿真工具,也在语音识别领域扮演着重要的角色。

本文将通过几个具体的应用示例,探讨Matlab在语音识别中的应用。

2. 语音信号的预处理语音信号的预处理对于后续的语音识别至关重要。

在Matlab中,我们可以使用数字滤波器对语音信号进行去噪和增强。

通过使用滤波器设计工具箱,我们可以根据语音信号的频谱特性,设计合适的数字滤波器。

另外,还可以利用Matlab中的时频分析工具对语音信号进行频谱分析,以了解信号的时域和频域特性。

3. 基于模板匹配的语音识别模板匹配是一种常见的语音识别方法,其基本思想是通过比较未知语音信号与预先录制的模板信号的相似度来进行识别。

在Matlab中,我们可以使用相关性分析函数corrcoef来计算两个语音信号的相关系数。

首先,我们需要将语音信号转化为MFCC(Mel频率倒谱系数),然后将其与预先录制的模板信号进行相关性分析。

通过设置阈值,我们可以判断未知语音信号是否匹配某个模板信号,从而进行语音识别。

4. 基于隐马尔可夫模型的语音识别隐马尔可夫模型(Hidden Markov Model, HMM)是一种常用的语音识别技术。

在Matlab中,我们可以使用HMM工具箱对语音信号进行建模和识别。

首先,我们需要根据不同的语音类别,建立对应的HMM模型。

然后,通过计算待识别语音信号与不同HMM模型的概率,选取概率最大的模型进行识别。

通过调整模型参数和训练样本,我们可以提高语音识别的准确率。

5. 基于深度学习的语音识别近年来,深度学习在语音识别领域取得了重大突破。

在Matlab中,我们可以使用深度学习工具箱进行语音信号的处理和特征提取。

深度学习网络(如卷积神经网络和循环神经网络)可以有效地学习语音信号的特征表示,提高语音识别的准确性。

Matlab在语音识别中的应用技巧

Matlab在语音识别中的应用技巧

Matlab在语音识别中的应用技巧一、引言语音识别是人工智能领域中的重要研究方向之一。

它的目标是使计算机能够听懂人类的语音并进行相应的处理。

如今,语音识别已广泛应用于语音助手、智能客服、语音翻译等领域,给人们的生活带来了很大的便利。

在语音识别的研究中,Matlab作为一种强大的计算工具,发挥着重要的作用。

本文将介绍一些Matlab在语音识别中的应用技巧。

二、语音信号的预处理在进行语音识别之前,首先需要对语音信号进行预处理。

预处理的目标是提取语音特征,并减少噪声的干扰。

Matlab提供了许多函数和工具箱来实现这些功能。

以下是一些常用的预处理技巧:1. 语音信号的分帧和加窗语音信号通常是一个连续的信号,在进行处理之前需要将其分成若干个帧,并对每个帧应用一个窗函数。

这样可以使语音信号在时间上局部化,并减少频谱泄漏。

2. 预加重预加重是对分帧后的每个帧进行加权处理,目的是强调高频部分,减少低频部分的能量。

这样可以提高语音信号的辨识度。

3. 噪声抑制在语音信号中常常存在各种噪声,如环境噪声、机器噪声等。

为提高语音识别的准确性,需要对噪声进行抑制处理。

Matlab提供了一些强大的降噪算法,如Spectral Subtraction、Wiener Filtering等。

三、语音特征提取语音特征提取是语音识别的核心步骤之一。

它的目标是从语音信号中提取能够区分不同语音的特征。

以下是一些常用的语音特征提取技巧:1. 短时能量短时能量是指语音信号每个帧的能量大小。

它可以用来检测语音的起止位置,并判断是否为有声音的帧。

2. 短时过零率短时过零率是指语音信号每个帧中过零点的个数。

它可以用来检测语音的浊音与清音,以及语音的发音速度。

3. 倒谱系数(MFCC)MFCC是一种非常常用的语音特征提取方法。

它通过对语音信号的梅尔频谱进行离散余弦变换得到,具有较好的鲁棒性和可区分性。

四、语音识别算法语音识别算法是进行语音识别的核心部分。

基于MATLAB的特定人语音识别软件开发与设计

基于MATLAB的特定人语音识别软件开发与设计

基于MATLAB的特定人语音识别软件开发与设计本文将详细介绍基于MATLAB的特定人语音识别软件的开发与设计,从数据采集、数据预处理、特征提取、训练模型以及测试评估等方面进行介绍。

同时,本文还会对该软件的实时性、准确性、稳定性进行分析并进行改进优化。

一、数据采集数据采集是语音识别系统开发的第一步,也是最为关键的一步。

采集到的数据质量将直接影响后续的预处理、特征提取以及模型训练。

在采集数据时,应该尽可能保证采集设备的统一性,以便后续的数据处理与模型训练。

同时,采集的语音数据应具有较高的覆盖率和多样性,以便让模型具有更好的泛化能力。

二、数据预处理在数据预处理阶段,需要对采集到的语音数据进行一系列的预处理操作,例如去除背景噪音、去除重复数据、平衡数据分布等。

这些操作有助于提高预处理的效果,从而提高后续的特征提取以及模型训练的准确度。

三、特征提取特征提取是语音识别系统中最为复杂的一步,其目的是将原始的语音信号转化为易于处理的数学特征。

在特征提取中,需要使用一些特征提取算法,例如短时傅里叶变换、梅尔倒谱系数、线性预测系数等。

这些算法可以大大减少语音信号的冗余信息,提取出信号的主要特征,从而提高模型的分类准确度。

四、训练模型在模型训练中,需要选择适当的模型算法以及调整算法的超参数。

在语音识别中,常用的模型算法有隐马尔可夫模型、深度神经网络、循环神经网络等。

训练模型的过程中,需要使用一些评估指标,例如准确率、召回率、F1值等,以评估模型的优劣。

同时,在训练过程中,需要使用一些技巧,例如交叉验证、正则化、学习率衰减等,以优化模型的泛化能力。

五、测试评估在模型训练完成后,需要使用测试数据对模型进行评估。

在测试评估中,需要使用一些评估指标,例如准确率、召回率、误判率等,以评估模型的性能。

同时,还需要针对测试结果进行分析,从而找出模型存在的问题并进行改进优化。

六、实时性、准确性、稳定性改进优化在实际应用中,需要保证语音识别系统的实时性、准确性以及稳定性,否则无法满足用户需求。

基于MATLAB的语音识别DTW算法设计

基于MATLAB的语音识别DTW算法设计

目录1概述 (2)1.1研究的目的和意义 (2)1.2国内外发展状况 (2)1.2.1国外研究历史及现状 (3)1.2.3国内研究历史及现状 (4)2语音识别系统的概述 (4)3 MA TLAB中的语音信号的采集 (4)3.1 wavrecord函数 (4)3.2 wavplay函数 (6)4语音信号的端点检测 (6)4.1语音信号端点检测的流程 (6)4.1.1短时能量 (8)4.1.2过零率的计算 (9)4.1.3双门限端点检测 (11)5语音识别参数提取 (12)5.1 MFCC的基本原理 (12)6特定人语音识别算法-DTW算法 (13)6.1DTW算法原理 (13)6.2DTW算法流程及实验结果 (15)7 GUI界面的设计 (16)7.1图形用户界面设计工具的启动 (16)7.3测试与分析 (18)总结 (20)致谢 (21)参考文献 (22)附件 (23)基于MATLAB的特定人语音识别算法设计摘要在高度发达的社会,语言是一种人类交流最方便的,最速度的信息,在高度发达的社会中,用数字化的方式举行语音的保存、传递、判别、加强和合成等是全部数字化通信过程中最基础、最重要的组成的一部分。

由于人类进入信息社会节奏加快, 语音信号处理方面的知识被越来越多的地方需要。

本设计主要在MATLAB平台下先语音信号的端点检测、预处理,然后提取特征参数,建立两个模块,一个为参考模块,一个为测试模块,然后通过动态时间归整技术(DTW)算法进行匹配,算出匹配结果。

最后在用户开发界面(GUI界面)直观地呈现出来。

本次设计录制0~10的数字做为参考库(model),测试库(test)中为需要测试及识别的语音,0的序号为11,1~9的数字以相应数字做为文件名的命名。

关键词:端点检测; MFCC特征提取;语音识别;DTW算法1概述1.1研究的目的和意义随着计算机技术和科技成果的的飞速发展,人们早已不再满足于让计算机做一些简单的科学计算和运算,而是向它提出了更高的要求,即要求我们的计算机向智能化方向发展,于是人们便开始了第五代计算机(即智能计算机)的研究。

Matlab中的语音识别技术简介

Matlab中的语音识别技术简介

Matlab中的语音识别技术简介语音识别是一门应用广泛的领域,它涉及到将人类语音信号转化为机器可以理解和处理的形式。

随着人工智能技术的发展,语音识别技术在日常生活中的应用越来越普遍,比如智能语音助手、车载语音导航等。

本文将介绍在Matlab中实现语音识别的基本原理和技术方法。

1. 语音信号的数字化在计算机中处理语音信号之前,首先需要将模拟语音信号转化为数字形式。

这一步骤称为模拟到数字转换(A/D Conversion)。

Matlab提供了丰富的信号处理工具箱,可以实现将语音信号进行采样和量化,生成数字化的语音信号。

2. 预处理在进行语音识别之前,通常需要对语音信号进行预处理,以提高后续处理的准确性和效果。

预处理包括去噪、降噪、语音信号增强等步骤。

Matlab中提供了多种预处理算法和函数,例如经典的Wiener滤波器、语音增强算法等,可以有效地提高语音识别的结果。

3. 特征提取语音信号是一种时间序列信号,而机器学习算法通常要求输入的特征是固定长度的向量。

因此,在进行语音识别之前,需要将语音信号转化为特征向量。

常用的特征提取方法包括短时能量、倒谱系数、梅尔频率倒谱系数(MFCC)等。

在Matlab中,我们可以使用信号处理工具箱提供的函数来提取这些特征。

4. 建立模型在特征提取之后,通常需要建立一个模型来对语音信号进行分类。

常见的模型包括高斯混合模型(GMM)、隐马尔可夫模型(HMM)等。

这些模型通常需要通过训练数据来学习模型的参数。

Matlab中提供了强大的统计建模和机器学习工具箱,可以方便地建立和训练这些模型。

5. 识别与解码在模型建立和训练完成之后,可以使用已经训练好的模型对新的语音信号进行识别和解码。

基于模型的语音识别通常包括前向算法、后向算法、维特比算法等。

这些算法可以在Matlab中进行实现,进行语音信号的解码。

6. 性能评估在进行语音识别任务时,通常需要对算法的性能进行评估。

常见的性能评估指标包括准确率、召回率、F值等。

基于matlab的语音识别系统

基于matlab的语音识别系统

基于matlab的语音识别系统专业综合课程设计系: 信息与通信工程专业: 通信工程班级: 081班设计题目: 基于matlab的语音识别系统学生姓名:指导教师:完成日期:2011年12月27日一(设计任务及要求1.1设计任务作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技术一直受到各国科学界的广泛关注。

以语音识别开发出的产品应用领域非常广泛,有声控电话交换、语音拨号系统、信息网络查询、家庭服务、宾馆服务、旅行社服务系统、订票系统、声控智能玩具、医疗服务、银行服务、股票查询服务、计算机控制、工业控制、语音通信系统、军事监听、信息检索、应急服务、翻译系统等,几乎深入到社会的每个行业、每个方面,其应用和经济社会效益前景非常广泛。

本次任务设计一个简单的语音识别系。

1.2设计要求要求:使用matlab软件编写语音识别程序二(算法方案选择2.1设计方案语音识别属于模式识别范畴,它与人的认知过程一样,其过程分为训练和识别两个阶段。

在训练阶段,语音识别系统对输入的语音信号进行学习。

学习结束后,把学习内容组成语音模型库存储起来;在识别阶段,根据当前输入的待识别语音信号,在语音模型库中查找出相应的词义或语义。

语音识别系统与常规模式识别系统一样包括特征提取、模式匹配、模型库等3个基本单元,它的基本结构如图1所示。

图1 语音识别系统基本结构图本次设计主要是基于HMM模型(隐马尔可夫模型)。

这是在20世纪80年代引入语音识别领域的一种语音识别算法。

该算法通过对大量语音数据进行数据统计,建立识别词条的统计模型,然后从待识别语音信号中提取特征,与这些模型进行匹配,通过比较匹配分数以获得识别结果。

通过大量的语音,就能够获得一个稳健的统计模型,能够适应实际语音中的各种突发情况。

并且,HMM算法具有良好的识别性能和抗噪性能。

2.2方案框图图2 HMM语音识别系统2.3隐马尔可夫模型HMM过程是一个双重随机过程:一重用于描述非平稳信号的短时平稳段的统计特征(信号的瞬态特征);另一重随机过程描述了每个短时平稳段如何转变到下一个短时平稳段,即短时统计特征的动态特性(隐含在观察序列中)。

使用Matlab进行语音识别的方法

使用Matlab进行语音识别的方法

使用Matlab进行语音识别的方法引言语音识别是人工智能领域的一个重要研究方向,它在现代社会中应用广泛,包括语音助手、语音指令、语音识别系统等。

而Matlab作为一款强大的数据处理和分析软件,也提供了丰富的工具和算法用于语音识别。

本文将介绍如何使用Matlab进行语音识别,包括特征提取、模型训练与识别等方面的方法和步骤。

一、波形预处理在进行语音识别之前,首先需要对语音波形进行预处理。

常见的预处理方法包括端点检测、语音分段、降噪等。

其中,端点检测是指识别语音信号开始和结束的时间点,语音分段是指将语音信号切分成较小的语音片段,而降噪则是为了去除环境噪声对语音信号的干扰。

在Matlab中,可以使用信号处理工具箱提供的函数来实现这些预处理步骤。

比如,使用`detectSpeech`函数进行端点检测,使用`vad`函数进行语音分段,使用`wiener`函数进行降噪。

同时,也可以结合其他信号处理算法进行更复杂的处理,比如基于频谱的方法和小波变换方法等。

二、特征提取特征提取是语音识别中的关键步骤,目的是从语音信号中提取出具有鉴别能力的特征。

常用的特征包括MFCC(Mel频率倒谱系数)、PLP(Perceptual Linear Predictive)系数和LPCC(Linear Prediction Cepstral Coefficients)等。

在Matlab中,可以使用音频处理工具箱提供的函数来提取这些特征。

比如,使用`mfcc`函数来计算MFCC系数,使用`lpc`函数来计算LPCC系数等。

同时,也可以根据具体任务的需求选择合适的特征提取算法和参数设置,以提高语音识别的准确性和鲁棒性。

三、建立模型建立模型是语音识别的核心步骤,它是为了将特征与语音类别建立映射关系。

常见的模型包括隐马尔可夫模型(Hidden Markov Model,HMM)、高斯混合模型(Gaussian Mixture Model,GMM)和深度神经网络(Deep Neural Network,DNN)等。

在Matlab中进行声音处理和语音识别的技术

在Matlab中进行声音处理和语音识别的技术

在Matlab中进行声音处理和语音识别的技术Matlab在声音处理和语音识别技术方面是一款强大的工具。

它提供了丰富的函数和工具箱,可以帮助我们实现各种音频处理任务,包括音频滤波、语音分割、音频特征提取和语音识别等。

首先,我们需要加载音频文件并对其进行预处理。

在Matlab中,我们可以使用audioread函数来读取音频文件,并可以使用audiowrite函数将处理后的音频保存到文件中。

除此之外,Matlab还提供了一系列音频滤波器函数,如lowpass、highpass和bandpass等,可以帮助我们滤除不需要的频率成分。

接下来,我们可以使用Matlab的信号处理工具箱来实现语音分割任务。

语音分割是将语音信号分成不同的有意义的部分,通常是以语音的边界为准。

在Matlab中,我们可以使用端点检测算法来实现语音分割。

常用的端点检测算法包括能量门限法、短时能量熵法和短时过零率法等。

这些算法可以帮助我们找到语音信号的起始点和结束点。

一旦我们完成了语音分割,我们可以开始进行音频特征提取。

音频特征是从语音信号中提取的一组数字表示,用于描述语音的特征。

常用的音频特征包括短时能量、短时过零率、梅尔频率倒谱系数(MFCC)等。

Matlab提供了一系列函数来计算这些特征,如energy、zerocross和mfcc等。

这些特征可以帮助我们理解语音信号的内容和特点。

在得到音频的特征表示后,我们可以使用这些特征来进行语音识别任务。

语音识别是将语音信号转化为文本或命令的过程。

在Matlab中,我们可以使用隐马尔可夫模型(HMM)和高斯混合模型(GMM)来实现语音识别。

Matlab提供了一系列函数来训练和使用这些模型,如hmmtrain、gmmtrain和hmmviterbi等。

这些模型可以根据训练数据学习语音信号的概率分布,并将输入的语音信号与训练数据进行匹配,识别出最有可能的文本或命令。

此外,Matlab还支持其他高级语音处理和语音识别算法,如深度学习神经网络(DNN)和长短时记忆网络(LSTM)等。

基于matlab的语音识别技术

基于matlab的语音识别技术

项目题目:基于Matlab的语音识别一、引言语音识别技术是让计算机识别一些语音信号,并把语音信号转换成相应的文本或者命令的一种高科技技术.语音识别技术所涉及的领域非常广泛,包括信号处理、模式识别、人工智能等技术。

近年来已经从实验室开始走向市场,渗透到家电、通信、医疗、消费电子产品等各个领域,让人们的生活更加方便。

语音识别系统的分类有三种依据:词汇量大小,对说话人说话方式的要求和对说话人的依赖程度。

(1)根据词汇量大小,可以分为小词汇量、中等词汇量、大词汇量及无限词汇量识别系统.(2)根据对说话人说话方式的要求,可以分为孤立字(词)语音识别系统、连接字语音识别系统及连续语音识别系统。

(3)根据对说话人的依赖程度可以分为特定人和非特定人语音识别系统。

二、语音识别系统框架设计2。

1语音识别系统的基本结构语音识别系统本质上是一种模式识别系统,其基本结构原理框图如图l所示,主要包括语音信号预处理、特征提取、特征建模(建立参考模式库)、相似性度量(模式匹配)和后处理等几个功能模块,其中后处理模块为可选部分。

三、语音识别设计步骤3。

1语音信号的特征及其端点检测图2 数字‘7’开始部分波形图2是数字”7”的波形进行局部放大后的情况,可以看到,在6800之前的部分信号幅度很低,明显属于静音。

而在6800以后,信号幅度开始增强,并呈现明显的周期性。

在波形的上半部分可以观察到有规律的尖峰,两个尖峰之间的距离就是所谓的基音周期,实际上也就是说话人的声带振动的周期。

这样可以很直观的用信号的幅度作为特征,区分静音和语音。

只要设定一个门限,当信号的幅度超过该门限的时候,就认为语音开始,当幅度降低到门限以下就认为语音结束。

3.2 语音识别系统3.2。

1语音识别系统的分类语音识别按说话人的讲话方式可分为3类:(1)即孤立词识别(isolated word recognition),孤立词识别的任务是识别事先已知的孤立的词,如“开机”、“关机"等。

在Matlab中进行语音合成和语音识别

在Matlab中进行语音合成和语音识别

在Matlab中进行语音合成和语音识别一、引言语音合成和语音识别是人工智能领域的重要研究方向之一。

语音合成是指通过计算机生成人工合成的语音,使其听起来像自然语音一样。

语音识别则是指计算机分析和理解输入的语音信号,将其转化为文本或其他可用形式的信息。

在本文中,我们将介绍在Matlab中进行语音合成和语音识别的方法和技术。

二、语音合成语音合成是一种将文字转化为语音的技术。

在Matlab中,我们可以使用Speech Synthesis Toolbox(SPTK)来实现语音合成任务。

SPTK是一个功能强大且易于使用的工具包,提供了一系列函数和算法,可用于合成高质量的合成语音。

首先,我们需要准备一个文本输入文件,其中包含要合成的文本内容。

然后,我们可以使用SPTK中的函数来读取文本文件,并将其转化为音素序列。

音素是语音的最小可区分的单位,可以通过SPTK提供的工具来进行音素分析和转换。

接下来,我们需要使用语音合成算法来生成语音波形。

在Matlab中,我们可以使用PSOLA(Pitch-Synchronous Overlap and Add)算法来实现。

该算法基于声道模型和喉音模型,通过调整合成参数,如基频、谐波加权和共振峰频率等,来合成自然语音。

最后,我们可以通过Matlab的音频播放器来播放合成的语音波形。

这样,我们就可以听到由计算机合成的语音,以及所输入的文本内容对应的语音输出。

三、语音识别语音识别是从语音信号中提取和识别语音内容的过程。

在Matlab中,我们可以使用Speech Recognition Toolbox(SRTK)来实现语音识别任务。

SRTK提供了一系列函数和算法,用于语音特征提取、模型训练和语音识别。

首先,我们需要准备一组已知语音信号和对应的文本标注。

这些标注可以是音素序列、拼音序列或文字序列。

然后,我们可以使用SRTK中的函数来提取语音特征,如MFCC(Mel-Frequency Cepstral Coefficients)和PLP(Perceptual Linear Prediction)系数等。

基于Matlab语音识别系统的设计与实现

基于Matlab语音识别系统的设计与实现
多语言支持
随着全球化的发展,多语言支持成为语音识别系统的一个重要需求, 如何实现多语言的语音识别是一个研究方向。
深度学习与神经网络的应用
深度学习和神经网络在语音识别领域的应用是一个研究热点,如何将 深度学习技术应用于现有的语音识别系统也是一个挑战。
THANKS FOR WATCHING
感谢您的观看
实时性能
评估模型的实时性能,确保系统能够满足实 际应用的需求。
结果分析
结果展示
将测试结果以图表的形式展示出来,便于分 析和比较。
误差分析
分析模型在测试数据集上的误差来源,找出 可能存在的问题和改进方向。
性能对比
将本系统的性能与其他同类系统进行对比, 评估本系统的优劣。
应用前景
探讨本系统在实际应用中的前景和潜在价值, 为后续的研究和应用提供参考。
基于Matlab的语音识别系统界面友好,操作简单,方便用户使 用。
未来研究方向与挑战
提高识别精度
随着语音技术的不断发展,需要不断优化现有的语音识别算法,提高 系统的识别精度。
处理复杂环境下的语音
在实际应用中,复杂环境下的语音识别是一个重要的研究方向,如何 提高系统在噪声、口音、语速等方面的鲁棒性是一个挑战。
特征提取模块设计
预加重
分帧
通过一个一阶差分滤波器对语音信号进行 预加重,增强高频部分。
将语音信号分成若干短时帧,每帧长度通 常为20-40ms。
加窗
快速傅里叶变换(FFT)
对每帧信号加窗,常用的窗函数有汉明窗 、汉宁窗等。
将每帧信号从时域转换到频域,得到频谱 。
分类器设计
基于规则的分类器
根据语音特性制定规则进行分类,如基于DTW(动态时间 规整)的分类器。

基于MATLAB的音频信号处理与语音识别系统设计

基于MATLAB的音频信号处理与语音识别系统设计

基于MATLAB的音频信号处理与语音识别系统设计一、引言音频信号处理与语音识别是数字信号处理领域的重要研究方向,随着人工智能技术的不断发展,语音识别系统在日常生活中得到了广泛应用。

本文将介绍如何利用MATLAB软件进行音频信号处理与语音识别系统的设计,包括信号预处理、特征提取、模式识别等关键步骤。

二、音频信号处理在进行语音识别之前,首先需要对音频信号进行处理。

MATLAB提供了丰富的信号处理工具,可以对音频信号进行滤波、降噪、增益等操作,以提高后续语音识别的准确性和稳定性。

三、特征提取特征提取是语音识别中至关重要的一步,它能够从复杂的音频信号中提取出最具代表性的信息。

常用的特征包括梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。

MATLAB提供了丰富的工具箱,可以方便地实现这些特征提取算法。

四、模式识别模式识别是语音识别系统的核心部分,它通过对提取出的特征进行分类和识别,从而实现对不同语音信号的区分。

在MATLAB中,可以利用支持向量机(SVM)、人工神经网络(ANN)等算法来构建模式识别模型,并对语音信号进行分类。

五、系统集成将音频信号处理、特征提取和模式识别整合到一个系统中是设计语音识别系统的关键。

MATLAB提供了强大的工具和函数,可以帮助我们将各个部分有机地结合起来,构建一个完整的语音识别系统。

六、实验与结果分析通过实际案例和数据集,我们可以验证所设计的基于MATLAB的音频信号处理与语音识别系统的性能和准确性。

通过对实验结果的分析,可以进一步优化系统设计,并提高语音识别系统的性能。

七、结论基于MATLAB的音频信号处理与语音识别系统设计是一个复杂而又具有挑战性的任务,但是借助MATLAB强大的功能和工具,我们可以更加高效地完成这一任务。

未来随着人工智能技术的不断发展,基于MATLAB的语音识别系统将会得到更广泛的应用和进一步的优化。

通过本文对基于MATLAB的音频信号处理与语音识别系统设计进行介绍和讨论,相信读者对该领域会有更深入的了解,并能够在实际应用中灵活运用所学知识。

Matlab中的语音合成与语音识别技术

Matlab中的语音合成与语音识别技术

Matlab中的语音合成与语音识别技术语音合成和语音识别是语音处理领域中两个重要的子领域,它们在多个应用领域都发挥着重要的作用,例如自然语言处理、人机交互和智能助手等。

在Matlab 中,我们可以利用其丰富的工具和函数库来进行语音合成和语音识别的研究和开发。

本文将深入探讨Matlab中的语音合成和语音识别技术,以及它们在实际应用中的潜力和挑战。

一、语音合成技术语音合成是指通过计算机生成人类可听到的语音信号的过程。

它可以根据给定的文本、音素或其他特定的输入内容,合成出逼真的人工语音。

在Matlab中,语音合成技术主要依赖信号处理、声学模型和语音合成算法等核心技术。

在进行语音合成之前,通常需要对文本进行分词、音素标注和韵律分析等预处理步骤。

1.1 音素标注与韵律分析音素标注是将文本转化为音素序列的过程,它是语音合成的基础。

Matlab中有多种方法和工具可用于音素标注,例如MFCC(Mel频率倒谱系数)、HTK (Hidden Markov Model Toolkit)和SPTK(Speech Signal Processing Toolkit)等。

韵律分析是对文本进行节奏和声调等韵律特征的分析,它对于生成自然流畅的语音合成结果至关重要。

1.2 声学模型声学模型是语音合成的核心部分,它用于建模语音产生的声学特性。

在Matlab 中,常用的声学模型包括基于规则的合成方法和统计建模方法。

基于规则的合成方法主要基于声音的物理特性和人类声音产生的生理机制,通过一系列规则和模型来生成语音。

统计建模方法则利用大量的语音数据进行训练,建立统计模型,进而对输入文本进行语音合成。

1.3 语音合成算法Matlab中提供了多种语音合成算法,例如基于规则的合成方法、隐马尔可夫模型(HMM)和深度学习方法等。

基于规则的合成方法常用于生成简单且特定类型的语音,但在生成自然流畅的语音方面存在一定的局限性。

HMM是一种常用的统计建模方法,它利用标注好的音素序列以及与语音相关的特征作为输入,通过各种状态之间的转移概率来建模语音合成过程。

如何利用Matlab进行语音识别与语音合成

如何利用Matlab进行语音识别与语音合成

如何利用Matlab进行语音识别与语音合成引言:语音识别与语音合成是现代人工智能技术中的重要应用领域之一。

随着人们对自然语言处理和人机交互的需求越来越高,语音识别与语音合成在智能手机、智能助理和自动驾驶等方面发挥着重要作用。

本文将介绍如何利用Matlab进行语音识别与语音合成,以帮助读者进一步了解和应用该技术。

一、语音信号的数字化语音信号是一种连续的模拟信号,无法直接在计算机上处理。

因此,首先需要将语音信号进行数字化处理,使其能够在计算机上进行分析和处理。

在Matlab中,可以使用“audioread”函数将语音信号从音频文件中读取出来,并得到其数字化表示。

例如,以下代码展示了如何读取一个.wav格式的音频文件:```matlab[sample, fs] = audioread('example.wav');```其中,sample表示读取到的音频信号数据,fs表示音频信号的采样率。

二、语音信号的特征提取为了进行语音识别或语音合成任务,需要从语音信号中提取出特征,以代表语音信号的关键信息。

一种常用的语音特征提取方法是使用短时傅里叶变换(STFT)。

在Matlab中,可以使用“spectrogram”函数对语音信号进行短时傅里叶变换,并得到其频谱表示。

例如,以下代码展示了如何对一个语音信号进行短时傅里叶变换:```matlabspectrogram(sample, hann(256), 128, 1024, fs, 'yaxis');```其中,sample为待处理的语音信号,hann(256)表示窗口函数,128表示帧移长度,1024表示帧长,fs表示采样率。

通过该代码,可以绘制出语音信号的频谱图。

除了频谱图,还可以从语音信号中提取出其他一些特征,如MFCC(Mel频率倒谱系数)、短时能量、短时过零率等。

这些特征可以用于后续的语音识别或语音合成任务。

三、语音识别语音识别是将语音信号转换为相应文本的过程,常用于语音助手、语音搜索和语音控制等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目题目:基于Matlab的语音识别
一、引言
语音识别技术是让计算机识别一些语音信号,并把语音信号转换成相应的文本或者命令的一种高科技技术。

语音识别技术所涉及的领域非常广泛,包括信号处理、模式识别、人工智能等技术。

近年来已经从实验室开始走向市场,渗透到家电、通信、医疗、消费电子产品等各个领域,让人们的生活更加方便。

语音识别系统的分类有三种依据:词汇量大小,对说话人说话方式的要求和对说话人的依赖程度。

(1)根据词汇量大小,可以分为小词汇量、中等词汇量、大词汇量及无限词汇量识别系统。

(2)根据对说话人说话方式的要求,可以分为孤立字(词)语音识别系统、连接字语音识别系统及连续语音识别系统。

(3)根据对说话人的依赖程度可以分为特定人和非特定人语音识别系统。

二、语音识别系统框架设计
2.1语音识别系统的基本结构
语音识别系统本质上是一种模式识别系统,其基本结构原理框图如图l所示,主要包括语音信号预处理、特征提取、特征建模(建立参考模式库)、相似性度量(模式匹配)和后处理等几个功能模块,其中后处理模块为可选部分。

三、语音识别设计步骤
3.1语音信号的特征及其端点检测
图2 数字‘7’开始部分波形
图2是数字”7”的波形进行局部放大后的情况,可以看到,在6800之前的部分信号幅度很低,明显属于静音。

而在6800以后,信号幅度开始增强,并呈现明显的周期性。

在波形的上半部分可以观察到有规律的尖峰,两个尖峰之间的距离就是所谓的基音周期,实际上也就是说话人的声带振动的周期。

这样可以很直观的用信号的幅度作为特征,区分静音和语音。

只要设定一个门限,当信号的幅度超过该门限的时候,就认为语音开始,当幅度降低到门限以下就认为语音结束。

3.2 语音识别系统
3.2.1语音识别系统的分类
语音识别按说话人的讲话方式可分为3类:(1)即孤立词识别(isolated word recognition),孤立词识别的任务是识别事先已知的孤立的词,如“开机”、“关机”等。

(3)连续语音识别,连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话。

从识别对象的类型来看,语音识别可以分为特定人语音识别和非特定人语音识别,特定人是指针对一个用户的语音识别,非特定人则可用于不同的用户。

显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。

3.2.2语音识别系统的基本构成
语音识别系统的实现方案如图3所示。

输入的模拟语音信号首先要进行处理,包括预滤波,采样和量化,加窗,端点检测,预加重等。

语音信号经处理后,接下来很重要的一环就是特征参数提取。

图3 语音识别系统
在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模版库。

在识别阶段,语音信号经过相同的通道得到语音参数,生成测试模版,与参考模板进行匹配,将匹配分数最高的参考模型作为识别结果。

3. 2.3 语音识别系统的特征参数提取
特征提取是对语音信号进行分析处理,去除对语音识别无关紧要的冗余信息,获得影响语音识别的重要信息。

语音信号是一种典型的时变信号,然而如果把观察时间缩短到十毫秒至几十毫秒,则可以得到一系列近似稳定的信号。

人的发音器官可以用若干段前后连接的声管进行模拟,这就是所谓的声管模型。

全极点线性预测参数 (LPC: Liner Prediction Coeffieient)可以对声管模型进行很好的描述,LPC参数是模拟人的发声器官的,是一种基于语音合成的参数模型。

在语音识别中,很少用LPC系数,而是用LPC倒谱参数 (LPCC: Liner Prediction Cepstral Coefficient)。

LPCC参数的优点是计算量小,对元音有较好的描述能力,其缺点在于对辅音的描述能力较差,抗噪声性能较差。

然而,人的听觉系统是一个特殊的非线性系统,它响应不同频率信号的灵敏度是不同的,基本上是一个对数关系。

近年来,一种能够比较充分利用人耳这种特殊的感知特性的参数得到了广泛的应用,这就是Mel倒谱参数(MFCC:Mel一Frequency CePstral Coeffieient)。

MFCC参数能够比LPCC参数更好地提高系统的识别性能。

3.2.4 特定人语音识别算法—DTW算法
在孤立词语音识别中,最为简单有效的方法是采用DTW(Dynamic Time Warping,动态时间归整)算法,该算法基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,是语音识别中出现较早、较为经典的一种算法,用于孤立词识别。

HMM算法在训练阶段需要提供大量的语音数据,通过反复计算
才能得到模型参数,而DTW算法的训练中几乎不需要额外的计算。

所以在孤立词语音识别中,DTW算法仍然得到广泛的应用。

无论在训练和建立模板阶段还是在识别阶段,都先采用端点算法确定语音的起点和终点。

已存入模板库的各个词条称为参考模板,一个参考模板可表示为R={R(1),R(2),……,R(m),……,R(M)},m为训练语音帧的时序标号,m=1为起点语音帧,m=M为终点语音帧,因此M为该模板所包含的语音帧总数,R(m)为第m帧的语音特征矢量。

所要识别的一个输入词条语音称为测试模板,可表示为T={T(1),T(2),……,T(n),……,T(N)},n 为测试语音帧的时序标号,n=1为起点语音帧,n=N为终点语音帧,因此N为该模板所包含的语音帧总数,T(n)为第n帧的语音特征矢量。

参考模板与测试模板一般采用相同类型的特征矢量(如MFCC,LPC系数)、相同的帧长、相同的窗函数和相同的帧移。

四、基于Matlab的语音识别系统仿真
4.1 语音模板的获取
运用系统的采集模块录制一个普通男声声音,录制0~9十个语音为实验对象分别命名为0a.wav,1a.wav,2a.wav,3a.wav,4a.wav,5a.wav,6a.wav,7a.wav,8a.wav,9a.wav分析处理后提取特征参数,经过模板训练,为十个语音分别选取最合适的语音作为模板,存入数据库建立参考模型库。

4.2 语音训练
类似,录制一组普通男声的声音,同样为0~9十个语音,作为十个待测语音信号。

图4 数字‘0’的训练波形及系数
4.3 语音识别
训练结束后,用录音设备录入0~9中的数字,经过波形及系数匹配识别出录入数字,并正确显示识别结果。

图4 数字‘0’的识别结果
五总结
通过这次二级项目,更深入的了解的Matlab软件强大的功能,了解了利用Matlab软件进行界面设计等。

学习到语音识别技术仿真中各函数的运用。

在不断地改进和完善中,这次二级项目终于顺利完成。

参考文献
1.何强、何英. MATLAB扩展编程.北京:清华大学出版社, 2002.6 2.江官星王建英.一种改进的检测语音端点的方法.微计算机信息 2006 3.陈勇屈志毅刘莹等.语音特征参数MFCC的提取及其应用.湖南农业大学学报自然科学版 2009
4. 王炳锡等,实用语音识别基础,北京,国防工业出版社,2005年
5. 韩纪庆张磊郑铁然.语音信号处理.北京:清华大学出版社 2004。

相关文档
最新文档