整式的乘法和除法

合集下载

17.整式的乘法与除法(含答案)-

17.整式的乘法与除法(含答案)-

17.整式的乘法与除法知识纵横指数运算律是整式乘除的基础,有以下4个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n,学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,•方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题求解【例1】(1)如果x2+x-1=0,则x3+2x2+3=________. (第14届“希望杯”邀请赛试题)(2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6展开后得a12x12+a11x11+……+a2x2+a1x+a0,则a12+a10+a8+a6+a4+a2+a0=_______.思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解.解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4.(2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ①令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ②①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365【例2】已知25x=2000,80y=2000,则11x y+等于( ).A.2B.1C. 12D.32(第11届“希望杯”邀请赛试题)思路点拨因x、y为指数,我们目前无法求x、y的值,11x y+=x yxy+,其实只需求出x+y、•xy的值或它们的关系,自然想到指数运算律.解:选B 提示:25xy=2000y①,80xy=2000x②,①×②得(25×80)xy=2000x+y,得xy=x+y.【例3】设a、b、c、d都是自然数,且a5=b4,c3=d2,a-c=17,求d-b的值.(上海市普陀区竞赛题) 思路点拨设a5=b4=m20,c3=d2=n6,这样a,b可用m的式子表示,c、d可用n的式子表示,减少字母的个数,降低问题的难度.解:提示:设a5=b4=m20,c3=d2=n6(m,n为自然数),则a=m4,b=m5,c=n2,d=n3,由已知得m4-n2=17,即(m2+n)(m2-n)=17因17是质数m2+n、m2-n是自然数,且m2+n>m2-n故22171m nm n⎧+=⎪⎨-=⎪⎩解得m=3,n=8,所以,d-b=n3-m5=83-35=269【例4】已知x2-xy-2y2-x-7y-6=(x-2y+A)(x+y+B),求A、B的值.思路点拨等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2 提示:展开比较对应项的系数,得到关于A、B的等式.【例5】是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q•的值,否则请说明理由.思路点拨由条件可推知商式是一个二次三项式(含待定系数),•根据“被除式=除式×商式”,运用待定系数法求出p、q的值,所谓p、q是否存在,其实就是关于待定系数的方程组是否有解.解:提示:假设存在满足题设条件的p、q值,设(x4+px2+q)=(x2+2x+5)(x2+mx+n),•即x 4+px 2+q=x 4+(m+2)x 3+(5+n+2m)x 2+(2n+5m)x+5n,得20522505m n m p n m n q +=⎧⎪++=⎪⎨+=⎪⎪=⎩ 解得25625m n p q =-⎧⎪=⎪⎨=⎪⎪=⎩ 故存在常数p,q 且p=6,q=25,使x 4+px 2+q 能被x 2+2x+5整除.学力训练一、基础夯实1. (2003年河北省中考题)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房的主人计划把卧室以外的地面都铺上地砖,•如果他选用地砖的价格是a 元/米2,则买砖至少需要_______元(用含a 、x 、y 的代数式表示).4x2y4yy2xx 卫生间厨房客厅卧室2.若2x+5y -3=0,则4x ·32y =_______. (2002年绍兴市竞赛题)3.满足(x -1)200>3300的x 的最小正整数为_______. (2003年武汉市选拨赛试题)4.a 、b 、c 、d 都是正数,且a 2=2,b 3=3,c 4=4,d 5=5,则a 、b 、c 、d•中,•最大的一个是__________. (“英才杯”竞赛题)5. (2001年TI 杯全国初中数学竞赛题)化简4322(2)2(2)n n n ++-得( ).A.2n+1-18 B.-2n+1 C. 78 D. 746.已知a=255,b=344,c=533,d=622,那么a 、b 、c 、d 从小到大的顺序是( ). A.a<b<c<d B.a<b<d<cC.b<a<c<dD.a<d<b<c (北京市“迎春杯”竞赛题)7.已知a 是不为0的整数,并且关系x 的方程ax=2a 3-3a 2-5a+4有整数根,则a•的值共有( ). A.1个 B.3个 C.6个 D.9个 8.计算(0.04)2003×[(-5)2003]2得( ). A.1 B.-1 C.200315 D.-200315 (2003年杭州市中考题)9.已知6x 2-7xy -3y 2+14x+y+a=(2x -3y+b)(3x+y+c),试确定a 、b 、c 的值.10.设a 、b 、c 、d 都是正整数,并且a 5=b 4,c 3=d 2,c-a=19,求a-b 的值. (江苏省竞赛题)11.已知四位数29x y =2x ·9y ,试确定29x y -x(x 2y-1-x y-1-1)的值. (北京市竞赛题)二、能力拓展12.多项式2x3-5x2+7x-8与多项式ax+bx+11的乘积中,没有含x4的项,也没有含x3•的项,则a2+b=________.13.若多项式3x2-4x+7能表示成a(x+1)2+b(x+1)+c的形式,则a=____,b=_____,•c=______.14.若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4=________. (2003年北京市竞赛题)15.如果多项式(x-a)(x+2)-1能够写成两个多项式(x-3)和(x+b)的乘积,那么a=___,b=_____.16.若a=2255,b=3344,c=5533,d=6622,则a、b、c、d的大小关系是( ).A.a>b>c>dB.a>b>d>cC.b>a>c>dD.a>d>b>c17.已知a1,a2,a3,……,a1996,a1997均为正数,又M=(a1+a2+……+a1996)·(a2+a3+……+a1997),N=(a1+a2+•……+a1997)(a2+a3+……+a1996),则M与N的大小关系是( ).A.M=NB.M<NC.M>ND.关系不确定18.若3x3-x=1,则9x4+12x3-3x2-7x+1999的值等于( ).A.1997B.1999C.2001D.2003 (北京市竞赛题)19.已知关于x的整系数二次三项式ax2+bx+c,当x取1,3,6,8时,•某同学算得这个二次三项式的值分别为1,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A.当x=1时,ax2+bx+c=1B.当x=3时,ax2+bx+c=5C.当x=6时,ax2+bx+c=25D.当x=8时,ax2+bx+c=5020.已知3x2-x-1=0,求6x3+7x2-5x+1999的值.21.已知a是方程2x2+3x-1=0的一个根,试求代数式543223395131a a a a aa+++-+-的值.22.已知2a·5b=2c·5d=10,求证:(a-1)(d-1)=(b-1)(c-1).三、综合创新23.是否存在整数a、b、c,满足(98)a·(109)b·(1615)c =2?若存在,求出a、b、c的值;若不存在,•说明理由.24.当自然数n的个位数分别为0,1,2,……,9时,n2,n3,n4,n5的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n为自然数,和数1981n+1982n+1983n+1984n不能被10整除,那么n必须满足什么条件?答案1.11axy2.83.7 提示:(x-1)2>334.b5.C6.D 提示:a=(25)11,b=(34)11,c=(53)11,d=(62)11,只需比较25,34,53,62的大小7.C 提示:x=2a2-3a-5+4a,a│4 8.A 9.a=4,b=4,c=1提示:•参见例5•10.75711.提示:由条件得2│29x y且9│29x y,则y的值可能为0,2,4,6,8,9│(x+y)+•11,又0≤x+y≤18,x+y=7,或x+y=16,逐一验证可得x=5,y=2,故原式=2592-5(53-5-1)=•1997.12.26 提示:x4、x3的系数分别为2b-5a,7a-5b+22,由2b-5a=0及7a-5b+22=0•得a=4,b=1013.3,-10,14 14.-120 令x=±1代入 15.-2,1 16.A 提示:作商比较17.C 提示:设a2+a3+…+a1996=x,则M=(a1+x)(x+a1997)=a1x+x2+a1a1997+a1997x.,N=(a1+x+a1997)x=a1x+x2+•a1997x, M-N=a1a1997>018.D提示:原式=(3x3-x-1)(3x+4)+200319.C 提示:由整除性质知:(n-m)[(an2+bn+c)-(am2+bm+c)],但(6-1)(25-1),(•8-6)(50-25),(8-1)│(50-1).20.2002 提示:原式=(2x+3)(3x2-x-1)+200221.提示:2a2+3a-1=0,3a-1=-2a2原式=23322 (231)(21)5553122 a a a a a aa a+-+-+==---22.提示:由已知有2a·5b=10=2×5,得2a-1·5b-1=1,故(2a-1·5b-1)d-1=1d-1. 同理可得(2c-1·5d-1)b-1=1b-1,从而2(a-1)×(d-1)·5(b-1)(d-1)=2(c-1)(b-1)·5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),故(a-1)(d-1)=(c-1)(b-1)23.原式可化为32a·2-3a·2b·5b·3-2b·24c·3-c·5-c=2, 即2-3a+b+4c·32a-2b-c·5b-c=21×30×50故341220a b ca b cb c-++=⎧⎪--=⎨⎪-=⎩,解得a=3,b=2,c=224.(1)以下解答仅供参考:①n5的个位数与n的个位数相等;②个位数是0,1,5,6的自然数的任何次幂,其个位数不变;③个位数是4,9的自然数的乘方,其个位数字交替变化;④任何自然数,乘方后的奇偶性不变等.(2)分n=4k,4k+1,4k+2,4k+3为讨论(k为自然数)当n=4k时,1981n、1982n、1983n、1984n的个位数字分别为1,6,1,6,则1981n+•1982n+1983n+1984n的个位数字为4,故10(1981n+1982n+1983n+1984n);当n=4k+1时,1981n、1982n、1983n、1984n的个位数字分别为1,•2,•3,•4,•则1981n+1982n+1983n+1984n的个位数字为0,故10│(1981n+1982n+1983n+1984n),同理,当n=4k+2、4k+3时,10│(1981n+1982n+1983n+1984n)故当且仅当n=4k,即n是4的倍数时,和数1981n+1982n+1983n+1984n不能被10整除.。

整式的乘除法

整式的乘除法

整式的乘除法整式是指由数字、字母和运算符号(加减乘除和括号)组成的代数式。

在数学中,整式的乘除法是学习代数运算的重要一环。

本文将介绍整式的乘法和除法,并提供相应的解题方法和技巧。

一、整式的乘法整式的乘法是指将两个或多个整式相乘得到一个新的整式。

在进行整式的乘法时,需要注意以下几点:1. 符号相乘:当两个整式相乘时,需要根据乘法法则对各项进行符号相乘。

同号相乘得正,异号相乘得负。

2. 同类项合并:在得到乘积后,需要对乘积中的同类项进行合并。

即将相同指数的字母项合并,并将系数相加。

下面通过一个示例来展示整式的乘法:例题:计算乘积 $(3x-4y)(2x+5)$。

解答:按照乘法法则,我们将每一项进行符号相乘,得到乘积:$$6x^2+15x-8xy-20y$$然后,我们将乘积中的同类项进行合并:$$6x^2+15x-8xy-20y$$至此,我们得到了乘积的最简形式。

二、整式的除法整式的除法是将一个整式除以另一个整式,得到商和余数的过程。

在进行整式的除法时,需要遵循以下几个步骤:1. 确定除数和被除数:将要除以的整式称为除数,被除的整式称为被除数。

2. 用除法定律进行整式的除法:将整式的除法转化为有理数的除法。

3. 化简商式:对除法得到的商式进行化简,即将商式中的同类项合并。

4. 找到余式:将化简后的商式与被除数相乘,得到乘积后减去除数,得到余式。

下面通过一个示例来展示整式的除法:例题:计算商和余数 $\frac{4x^3-7x^2+10}{x-2}$。

解答:按照除法的步骤,我们首先确定除数为 $x-2$,被除数为$4x^3-7x^2+10$。

然后,我们用除法定律进行整式的除法:```4x^2 -5x___________________x-2 | 4x^3 -7x^2 +10- (4x^3 -8x^2)_______________x^2 +10- (x^2 -2x)____________12x +10- (12x -24)__________34```化简商式得到商 $4x^2-5x+1$,余数为 $34$。

整式的乘除知识点

整式的乘除知识点

整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。

整式的除法运算是指对一个整式除以另一个整式的运算。

整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。

一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。

例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。

例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。

例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。

例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。

例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。

例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。

这个性质可以简化计算,使得整式的乘法更加灵活。

2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。

这个性质可以改变运算次序,简化计算过程。

3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。

整式乘除知识点

整式乘除知识点

整式乘除知识点整式是由常数和变量按照代数运算的规则经过加、减、乘、除等基本运算得到的式子。

整式乘除是代数学中的重要内容,掌握整式乘除的知识点对于解决代数问题和化简式子非常有帮助。

下面将介绍整式乘法和整式除法的要点和方法。

一、整式乘法整式乘法是指将两个整式相乘得到一个新的整式。

整式乘法的基本思想是利用分配律和合并同类项的原则进行运算。

1. 分配律分配律是整式乘法的基本运算定律,即对于任意的整式a、b、c来说,有:a × (b + c) = a × b + a × c这个定律表示乘法可以分别作用于加减运算中的每一项。

2. 合并同类项在整式乘法中,对于相同的字母次幂,只需要将系数相乘即可。

例如:3x × 4x = 12x²,3a² × 2a² = 6a^4。

二、整式除法整式除法是指将一个整式除以另一个整式,得到商和余数的运算过程。

整式除法的基本思想是通过长除法的方式进行计算。

整式除法的步骤如下:1. 对除数和被除数的次数进行降幂排列,确保被除数和除数的次数次幂之间存在对应关系。

2. 从被除数中选择一个项作为被除数,与除数的首项进行除法运算,得到一个商和余数。

3. 将商乘以除数,并减去这个乘积。

4. 重复步骤2和步骤3,直到被除数的次数次幂小于除数的次数次幂为止。

5. 将所有的商相加,并将余数放在最后。

例如,计算整式 (3x³ - 2x² + 5x - 1) ÷ (x - 2) 的步骤如下:(3x³ - 2x² + 5x - 1) ÷ (x - 2) = 3x² + 4x + 13 + 25/(x - 2)通过以上步骤,我们可以得到商和余数。

三、整式乘除综合运算在实际应用中,整式的乘法和除法常常需要综合运算。

在进行整式乘除综合运算时,需要根据分配律以及合并同类项的原则,进行逐步计算。

中考重点整式的加减乘除

中考重点整式的加减乘除

中考重点整式的加减乘除整式是代数中常见的一种形式,由一些代数式通过加减乘除运算符连接而成。

整式的加减乘除是中考数学中的重点内容之一,本文将重点探讨整式的加减乘除运算。

一、整式的加法整式的加法指的是同类项的加法。

所谓同类项,是指指数相同的项。

例如,3x和2x就是同类项,而3x和2y就不是同类项。

整式的加法运算步骤如下:1. 将相同类型的项按照相同变量的幂次从高到低排列。

2. 对相同类型的项,将它们的系数相加,并保持变量的幂次不变。

例如,将3x² + 5x + 2 和 6x² + 3x - 1相加,步骤如下:排列:6x² + 3x - 1 + 3x² + 5x + 2合并同类项:(6x² + 3x²) + (3x + 5x) + (-1 + 2)计算:9x² + 8x + 1二、整式的减法整式的减法也是同类项的减法。

整式的减法可以通过将减数中的每一项取相反数,然后与被减数相加的方式实现。

例如,将3x² + 5x + 2 减去 6x² + 3x - 1,步骤如下:将减数的每一项取相反数:-6x² - 3x + 1相加:(3x² + 5x + 2) + (-6x² - 3x + 1)合并同类项:(3x² - 6x²) + (5x - 3x) + (2 + 1)计算:-3x² + 2x + 3三、整式的乘法整式的乘法指的是多项式之间的乘法,乘法的结果是一个新的整式。

整式的乘法可以通过分配律和同类项相加的方式实现。

例如,将(2x + 3)乘以(4x - 5),步骤如下:分配律:2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)计算:8x² - 10x + 12x - 15合并同类项:8x² + 2x - 15四、整式的除法整式的除法是指将一个整式除以另一个整式,得到商式和余式的过程。

整式乘除知识点

整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。

下面就让我们一起来深入了解整式乘除的相关知识点。

一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。

例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。

整式的加减乘除详解

整式的加减乘除详解

整式的加减乘除详解整式是指由数字、字母和它们的乘积或常数项的和构成的代数式,它是我们学习代数的基础。

为了更好地理解整式的加减乘除运算,我们需要逐个进行详细的解释与说明。

一、整式的加法整式的加法是指将两个或多个整式相加的运算。

在进行整式的加法时,我们只需将系数相同或不同的同类项合并在一起即可。

举个例子,假设有两个整式:5x + 4y + 7 和 2x + 3y + 5我们可以将其中相同的同类项合并,得到的结果是:(5x + 2x) + (4y + 3y) + (7 + 5) = 7x + 7y + 12因此,两个整式的加法运算结果为7x + 7y + 12。

二、整式的减法整式的减法是指将一个整式减去另一个整式的运算。

在进行整式的减法时,我们可以先将被减数取相反数,然后再进行整式的加法运算。

以前面的例子为基础,如果我们要计算(5x + 4y + 7) - (2x + 3y + 5),可以将被减数中的每一项取相反数,再进行整式的加法运算,得到的结果是:(5x + 4y + 7) + (-2x - 3y - 5) = 3x + y + 2所以,两个整式的减法运算结果为3x + y + 2。

三、整式的乘法整式的乘法是指将两个或多个整式相乘的运算。

在进行整式的乘法时,我们需要将每个整式中的项按照乘法运算的法则进行合并和计算。

例如,我们要计算(2x + 3)(4x + 5)的结果,可以按照分配律展开运算,得到:(2x × 4x) + (2x × 5) + (3 × 4x) + (3 × 5) = 8x^2 + 10x + 12x + 15 =8x^2 + 22x + 15因此,两个整式的乘法运算结果为8x^2 + 22x + 15。

四、整式的除法整式的除法是指将一个整式除以另一个整式的运算。

在进行整式的除法时,我们可以按照多项式长除法的原则进行计算。

举个例子,假设我们要计算(8x^2 + 22x + 15) ÷ (2x + 3)的结果。

整式的运算法则

整式的运算法则

整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m n m +=•),(都是正整数)(n m a a m n n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 5D .54x n ·25x m =12x m+n2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 3.下列运算正确的是( ).A .a 2·a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 6-a 2=a 4 4.下列运算中正确的是( ).A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。

整式的乘法与除法

整式的乘法与除法

整式的乘法与除法整式是指由常数、变量及它们的乘积和积的和差组成的代数式。

整式的乘法与除法是代数学中重要的运算,本文将从定义、性质及计算方法等方面进行探讨。

一、整式的定义整式是由常数、变量及它们的乘积和积的和差组成的代数式。

常数称为零次整式,单个变量称为一次整式,以此类推。

整式可以表示为:f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀其中,a₀、a₁、...、aₙ为系数,n为自然数,x为变量。

二、整式的乘法整式的乘法是将两个或多个整式相乘得到一个新的整式。

要进行整式的乘法,需要遵循以下规则:1. 同类项相乘:将相同指数的项的系数相乘,并将指数保持不变。

例如:(3x²)(4x³) = 12x⁵。

2. 多项式相乘:将一个整式中的每一项都与另一个整式的每一项相乘,然后将结果相加。

例如:(3x + 2)(4x + 5) = 12x² + 22x + 10。

3. 分配律:整式的乘法满足分配律。

例如:a(b + c) = ab + ac。

三、整式的除法整式的除法是将一个整式除以另一个整式,得到商式和余式。

要进行整式的除法,需要注意以下几点:1. 除数不为零:除数不为零,否则除法无意义。

2. 长除法:使用长除法的步骤进行计算,以下以一个例子作说明:例如:(2x³ + 3x² - 4x + 1) ÷ (x - 1)首先将被除式按降幂排列:2x³ + 3x² - 4x + 1然后进行第一步的除法,将2x³ ÷ x进行计算,得到2x²,并将结果写在商式上。

然后将2x²与(x - 1)相乘,并进行减法得到2x³ + 2x²。

依次进行下一步的除法计算,直到无法再继续进行为止。

四、整式乘法与除法的性质1. 乘法的交换律与结合律:整式的乘法满足交换律与结合律,即a ·b = b · a,(a · b) ·c = a · (b · c)。

初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。

下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。

将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。

例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。

2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。

将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。

然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。

例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。

然后将乘积减去被除式,得到0。

所以结果为2x + 3。

3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。

例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。

这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。

17.整式的乘法与除法(含答案)-(可编辑修改word版)

17.整式的乘法与除法(含答案)-(可编辑修改word版)

17.整式的乘法与除法知识纵横指数运算律是整式乘除的基础,有以下4 个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n, 学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展, 方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题求解【例1】(1)如果x2+x-1=0,则x3+2x2+3= . (第14 届“希望杯”邀请赛试题)(2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6 展开后得a12x12+a11x11+……+a2x2+a1x+a0,则a12+a10+a8+a6+a4+a2+a0= .思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6 的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x 的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解.解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4.(2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ①令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ②①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365⎩【例 2】已知 25x =2000,80y =2000,则 1 + 1等于().x y1 3 A.2 B.1 C.D.(第 11 届“希望杯”邀请赛试题)221 1 x + y思路点拨 因 x 、y 为指数,我们目前无法求 x 、y 的值, + =,其实只需求 x y xy出 x+y 、•xy 的值或它们的关系,自然想到指数运算律.解:选 B 提示:25xy =2000y ①,80xy =2000x ②,①×②得(25×80)xy =2000x+y ,得 xy=x+y. 【例 3】设 a 、b 、c 、d 都是自然数,且 a 5=b 4,c 3=d 2,a-c=17,求 d -b 的值.(上海市普陀区竞赛题)思路点拨 设 a 5=b 4=m 20,c 3=d 2=n 6,这样 a,b 可用 m 的式子表示,c 、d 可用 n 的式子表示, 减少字母的个数,降低问题的难度.解:提示:设 a 5=b 4=m 20,c 3=d 2=n 6(m,n 为自然数),则 a=m 4,b=m 5,c=n 2,d=n 3,由已知得 m 4- n 2=17,即(m 2+n)(m 2-n)=17因 17 是质数 m 2+n 、m 2-n 是自然数,且 m 2+n>m 2-n⎧⎪m 2+ n = 17 故⎨⎪m 2- n = 1 解得 m=3,n=8,所以,d -b=n 3-m 5=83-35=269【例 4】已知 x 2-xy -2y 2-x -7y-6=(x -2y+A)(x+y+B),求 A 、B 的值.思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2 提示:展开比较对应项的系数,得到关于 A 、B 的等式.【例 5】是否存在常数 p 、q 使得 x 4+px 2+q 能被 x 2+2x+5 整除?如果存在,求出 p 、q•的值,否则请说明理由.思路点拨 由条件可推知商式是一个二次三项式(含待定系数),•根据“被除式=除式× 商式”,运用待定系数法求出 p 、q 的值,所谓 p 、q 是否存在,其实就是关于待定系数的 方程组是否有解.解:提示:假设存在满足题设条件的 p 、q 值,设(x 4+px 2+q)=(x 2+2x+5)(x 2+mx+n),•⎪ ⎪⎪⎪y 2yx4x 2x4y客厅厨房卧室卫生间即x4+px2+q=x4+(m+2)x3+(5+n+2m)x2+(2n+5m)x+5n,得⎧m + 2 = 0⎪5 +n + 2m =p⎨2n + 5m = 0 ⎪⎩5n =q⎧m =-2⎪n = 5解得⎨p = 6⎪⎩q=25故存在常数p,q 且p=6,q=25,使x4+px2+q 能被x2+2x+5 整除.学力训练一、基础夯实1.(2003年河北省中考题)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房的主人计划把卧室以外的地面都铺上地砖, 如果他选用地砖的价格是a 元/米2,则买砖至少需要元(用含a、x、y 的代数式表示).2.若2x+5y-3=0,则4x·32y= . (2002 年绍兴市竞赛题)3.满足(x-1)200>3300 的x 的最小正整数为. (2003 年武汉市选拨赛试题)4.a、b、c、d 都是正数,且a2=2,b3=3,c4=4,d5=5,则a、b、c、d•中,•最大的一个是. (“英才杯”竞赛题)5.(2001 年TI 杯全国初中数学竞赛题)化简2n+4-2(2n)2(2n+3 )得( ).A.2n+1-18 B.-2n+1 C.7D.78 46.已知a=255,b=344,c=533,d=622,那么a、b、c、d 从小到大的顺序是( ).A.a<b<c<dB.a<b<d<cC.b<a<c<dD.a<d<b<c (北京市“迎春杯”竞赛题)7.已知a 是不为0 的整数,并且关系x 的方程ax=2a3-3a2-5a+4 有整数根,则a•的值共有( ).A.1个B.3 个C.6 个D.9 个8.计算(0.04)2003×[(-5)2003]2 得( ).1 1A.1B.-1C.52003 D.-52003(2003 年杭州市中考题)9.已知6x2-7xy-3y2+14x+y+a=(2x-3y+b)(3x+y+c),试确定a、b、c 的值.10.设a、b、c、d 都是正整数,并且a5=b4,c3=d2,c-a=19,求a-b 的值. (江苏省竞赛题)11.已知四位数2x9 y =2x·9y ,试确定2x9 y -x(x2y-1-x y-1-1)的值. (北京市竞赛题)二、能力拓展12.多项式2x3-5x2+7x-8 与多项式ax+bx+11 的乘积中,没有含x4 的项,也没有含x3•的项则,a2+b= .13.若多项式3x2-4x+7 能表示成a(x+1)2+b(x+1)+c 的形式,则a= ,b= ,•c= .14.若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4= . (2003 年北京市竞赛题)15.如果多项式(x-a)(x+2)-1 能够写成两个多项式(x-3)和(x+b)的乘积,那么a= ,b= .16.若a=2255,b=3344,c=5533,d=6622,则a、b、c、d 的大小关系是( ).A.a>b>c>dB.a>b>d>cC.b>a>c>dD.a>d>b>c17.已知a1,a2,a3,……,a1996,a1997均为正数,又M=(a1+a2+……+a1996)·(a2+a3+……+a1997),N=(a1+a2+•……+a1997)(a2+a3+……+a1996),则M 与N 的大小关系是( ).A.M=NB.M<NC.M>ND.关系不确定18.若3x3-x=1,则9x4+12x3-3x2-7x+1999 的值等于( ).A.1997B.1999C.2001D.2003 (北京市竞赛题)19.已知关于x 的整系数二次三项式ax2+bx+c,当x 取1,3,6,8 时,•某同学算得这个二次三项式的值分别为1,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A.当x=1 时,ax2+bx+c=1B.当x=3 时,ax2+bx+c=5C.当x=6 时,ax2+bx+c=25D.当x=8 时,ax2+bx+c=5020.已知3x2-x-1=0,求6x3+7x2-5x+1999 的值.2a 5 + 3a 4 + 3a 3 + 9a 2 - 5a +121.已知 a 是方程 2x 2+3x -1=0 的一个根,试求代数式的值.3a -122.已知 2a ·5b =2c ·5d =10,求证:(a -1)(d -1)=(b -1)(c -1).三、综合创新9 23. 是否存在整数 a 、b 、c,满足a ·( 10 )b ·( 16 )c =2?若存在,求出 a 、b 、c 的值;若不存在•,说明理由.( )8 9 1524.当自然数n 的个位数分别为0,1,2,……,9 时,n2,n3,n4,n5 的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n 为自然数,和数1981n+1982n+1983n+1984n 不能被10 整除,那么n 必须满足什么条件?答案1.11axy2.83.7 提示:(x-1)2>334.b5.C6.D 提示:a=(25)11,b=(34)11,c=(53)11,d=(62)11,只需比较25,34,53,62 的大小7.C 提示:x=2a2-3a-5+ 4,a│4 8.A 9.a=4,b=4,c=1 a提示:•参见例5•10.75711.提示:由条件得2│2x9 y 且9│2x9 y ,则y 的值可能为0,2,4,6,8,9│(x+y)+•11,又0≤x+y≤18,x+y=7,或x+y=16,逐一验证可得x=5,y=2,故原式=2592-5(53-5-1)=•1997.12.26 提示:x4、x3 的系数分别为 2b-5a,7a-5b+22,由2b-5a=0 及7a-5b+22=0 得 a=4,b=1013.3,-10,14 14.-120 令x=±1 代入15.-2,1 16.A 提示:作商比较17.C 提示:设a2+a3+…+a1996=x,则M=(a1+x)(x+a1997)=a1x+x2+a1a1997+a1997x.,N=(a1+x+a1997)x=a1x+x2+•a1997x, M-N=a1a1997>018.D 提示:原式=(3x3-x-1)(3x+4)+200319.C 提示:由整除性质知:(n-m)[(an2+bn+c)-(am2+bm+c)],但(6-1)(25-1),( 8-6)(50-25),(8-1)│(50-1).20.2002 提示:原式=(2x+3)(3x2-x-1)+2002(2a2+ 3a -1)(a3+ 2a -1) + 5a3 21.提示:2a2+3a-1=0,3a-1=-2a2 原式=3a -1 =5a2=-5 -2a2 222.提示:由已知有2a·5b=10=2×5,得2a-1·5b-1=1,故(2a-1·5b-1)d-1=1d-1. 同理可得(2c-1·5d-1)b-1=1b-1,从而2(a-1)×(d-1)·5(b-1)(d-1)=2(c-1)(b-1)·5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),故(a-1)(d-1)=(c-1)(b-1)⎩23.原式可化为 32a ·2-3a ·2b ·5b ·3-2b ·24c ·3-c ·5-c =2,即 2-3a+b+4c ·32a-2b-c ·5b-c =21×30×50 ⎧-3a + b + 4c = 1 ⎪故⎨2a - 2b - c = 0 ⎪b - c = 0 24.(1)以下解答仅供参考:,解得 a=3,b=2,c=2①n 5 的个位数与 n 的个位数相等;②个位数是 0,1,5,6 的自然数的任何次幂,其个位数不变;③个位数是 4,9 的自然数的乘方,其个位数字交替变化;④任何自然数,乘方后的奇偶性不变等.(2)分 n=4k,4k+1,4k+2,4k+3 为讨论(k 为自然数)当 n=4k 时,1981n 、1982n 、1983n 、1984n 的个位数字分别为 1,6,1,6,则 1981n +•1982n +1983n +1984n 的个位数字为 4,故 10(1981n +1982n +1983n +1984n );当 n=4k+1 时,1981n 、1982n 、1983n 、1984n 的个位数字分别为 1,•2,•3,•4,•则 1981n +1982n +1983n +1984n 的个位数字为 0,故 10│(1981n +1982n +1983n +1984n ),同理,当 n=4k+2、4k+3 时,10│(1981n +1982n +1983n +1984n )故当且仅当 n=4k,即 n 是 4 的倍数时,和数 1981n +1982n +1983n +1984n 不能被 10 整除.。

整式的乘除

整式的乘除

整式的乘除整式是指由常数、变量及它们的乘、除运算符号经有限次组合而成的代数表达式。

整式是代数学中一个重要的概念,掌握整式的乘除运算是解决代数问题的关键。

一、整式的乘法整式的乘法是指将两个或多个整式相乘的运算。

在整式的乘法中,我们需要遵循如下规则:1.同底数的幂相乘,底数不变,指数相加。

例如:am* an = am+n2.乘法满足交换律和结合律。

3.不同底数幂相乘时,可以将其视为两个不同的因数。

例如:am * bn = abn下面是一个整式乘法的示例:假设有整式 a = 2ab2,b = 3a2b,c = 4a2b2。

要求计算整式 d = a * (b + c) 的值。

根据乘法分配律,我们可以将乘法转化为加法运算,即:d = a * b + a * c。

将 a、b、c 的值代入计算,有:d = 2ab2 * 3a2b + 2ab2 * 4a2b2化简上式,将幂相加,并化简系数,得到:d = 6a3b3 + 8a3b4因此,整式 d 的值为 6a3b3 + 8a3b4。

二、整式的除法整式的除法是指将一个整式除以另一个整式的运算。

在整式的除法中,我们需要遵循如下规则:1.除法满足结合律,但不满足交换律。

2.同底数的幂相除,底数不变,指数相减。

例如:am/ an = am-n3.除法中,除数不为零。

下面是一个整式除法的示例:假设有整式 p = 5a3b2c 和 q = 10a2c2。

要求计算整式 r = p / q 的值。

根据整式除法的规则,我们需要将p 和q 化简到最简形式,然后进行除法运算。

首先,我们将 p 和 q 化简,并将指数按照从大到小的顺序排列:p = 5a3b2c,q = 10a2c2进行除法运算,将 p 中每一项除以 q 中的对应项,并将指数进行相减:r = (5a3b2c) / (10a2c2)再化简这个分式,我们可以将分子和分母都除以其最大公因式 5ac,得到最简形式:r = (a2b2) / (2c)因此,整式 r 的值为 (a2b2) / (2c)。

初中数学整式的乘除与因式分解知识点归纳

初中数学整式的乘除与因式分解知识点归纳

初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。

2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。

3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。

4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。

二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。

2.用辗转相除法进行整式的除法计算。

三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。

2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。

3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。

4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。

5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。

根据这一定理可以找到多项式的因式。

四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。

2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。

3. 符号"相反"公式:a²-2ab+b²=(b-a)²。

4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。

5. 公因式公式:a²+ab=a(a+b)。

数学知识点整式的乘法和除法

数学知识点整式的乘法和除法

数学知识点整式的乘法和除法整式是数学中的一个概念,是指由常数和变量及它们的乘积通过加法和减法运算而得到的代数表达式。

整式的乘法和除法是数学中的重要内容,本文将详细介绍整式的乘法和除法。

一、整式的乘法:整式的乘法是指将两个整式相乘并化简的过程。

下面以一个具体的例子来说明整式的乘法运算。

例子:将整式(2x + 3)(4x + 5)用乘法方式展开并化简。

解答:首先,我们可以利用分配律将两个整式相乘:(2x + 3)(4x + 5) = 2x * 4x + 2x * 5 + 3 * 4x + 3 * 5接下来,根据乘法的法则,我们可以将每一项相乘并合并同类项:= 8x^2 + 10x + 12x + 15最后,将结果进行合并化简,得到最简整式:= 8x^2 + 22x + 15这样,我们就完成了整式的乘法运算。

二、整式的除法:整式的除法是指将一个整式除以另一个整式,并求得商式和余式的过程。

下面以一个具体的例子来说明整式的除法运算。

例子:计算整式5x^3 + 4x^2 - 3x + 7除以整式x + 2的商式和余式。

解答:首先,我们需要按照除法的步骤进行演算。

Step 1: 将被除式和除式按照降幂排列。

被除式:5x^3 + 4x^2 - 3x + 7除式:x + 2Step 2: 将除式的首项与被除式的首项进行除法运算,并将结果作为商式的首项。

首项相除:(5x^3) / x = 5x^2Step 3: 将商式的首项乘以除式,并将结果与被除式相减,得到一个新的多项式。

计算:(5x^2)(x + 2) = 5x^3 + 10x^2被除式减去:(5x^3 + 4x^2 - 3x + 7) - (5x^3 + 10x^2) = -6x^2 - 3x + 7 Step 4: 重复以上步骤,直到被除式的次数小于除式的次数为止。

继续进行除法运算:次项相除:(-6x^2) / x = -6x计算:(-6x)(x + 2) = -6x^2 - 12x被除式减去:(-6x^2 - 3x + 7) - (-6x^2 - 12x) = 9x + 7再次进行除法运算:次项相除:(9x) / x = 9计算:(9)(x + 2) = 9x + 18被除式减去:(9x + 7) - (9x + 18) = -11由于被除式的次数小于除式的次数,停止除法运算。

第10讲 整式的乘法与除法

第10讲 整式的乘法与除法

第十讲整式的乘法与除法中学代数中的整式是从数的概念基础上发展起来的,因而保留着许多数的特征,研究的内容与方法也很类似.例如,整式的四则运算就可以在许多方面与数的四则运算相类比;也像数的运算在算术中占有重要的地位一样,整式的运算也是代数中最基础的部分,它在化简、求值、恒等变形、解方程等问题中有着广泛的应用.通过整式的运算,同学们还可以在准确地理解整式的有关概念和法则的基础上,进一步提高自己的运算能力.为此,本讲着重介绍整式运算中的乘法和除法.整式是多项式和单项式的总称.整式的乘除主要是多项式的乘除.下面先复习一下整式计算的常用公式,然后进行例题分析.正整数指数幂的运算法则:(1)a M· a n=a M+n; (2)(ab)n=a n b n;(3)(a M)n=a Mn; (4)a M÷a n=a M-n(a≠0,m>n);常用的乘法公式:(1)(a+b)(a+b)=a2-b2;(2)(a±b)2=a2±2ab+b2;(4)(d±b)3=a3±3a2b+3ab2±b3;(5)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.例1 求[x3-(x-1)2](x-1)展开后,x2项的系数.解 [x3-(x-1)2](x-1)=x3(x-1)-(x-1)3.因为x2项只在-(x-1)3中出现,所以只要看-(x-1)3=(1-x)3中x2项的系数即可.根据乘法公式有(1-x)3=1-3x+3x2-x3,所以x2项的系数为3.说明应用乘法公式的关键,是要理解公式中字母的广泛含义,对公式中的项数、次数、符号、系数,不要混淆,要达到正确、熟练、灵活运用的程度,这样会给解题带来极大便利.(x-2)(x2-2x+4)-x(x+3)(x-3)+(2x-1)2.解原式=(x3-2x2+4x-2x2+4x-8)-x(x2-9)+(4x2-4x+1)=(x3-4x2+8x-8)-(x3-9x)+(4x2-4x+1)=13x-7=9-7=2.说明注意本例中(x-2)(x2-2x+4)≠x3-8.例3化简(1+x)[1-x+x2-x3+…+(-x)n-1],其中n为大于1的整数.解原式=1-x+x2-x3+…+(-x)n-1+x-x2+x3+…-(-x)n-1+(-x)n=1+(-x)n.说明本例可推广为一个一般的形式:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=a n-b n.例4 计算(1)(a-b+c-d)(c-a-d-b);(2)(x+2y)(x-2y)(x4-8x2y2+16y4).分析与解 (1)这两个多项式对应项或者相同或者互为相反数,所以可考虑应用平方差公式,分别把相同项结合,相反项结合.原式=[(c-b-d)+a][(c-b-d)-a]=(c-b-d)2-a2=c2+b2+d2+2bd-2bc-2cd-a2.(2)(x+2y)(x-2y)的结果是x2-4y2,这个结果与多项式x4-8x2y2+16y4相乘时,不能直接应用公式,但x4-8x2y2+16y4=(x2-4y2)2与前两个因式相乘的结果x2-4y2相乘时就可以利用立方差公式了.原式=(x2-4y2)(x2-4y2)2=(x2-4y2)3=(x2)3-3(x2)2(4y2)+3x2·(4y2)2-(4y2)3=x6-12x4y2+48x2y4-64y6.例5 设x,y,z为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(x+z-2y)2+(x+y-2z)2,解先将已知条件化简:左边=2x2+2y2+2z2-2xy-2yz-2xz,右边=6x2+6y2+6z2-6xy-6yz-6xz.所以已知条件变形为2x2+2y2+2z2-2xy-2yz-2xz=0,即(x-y)2+(x-z)2+(y-z)2=0.因为x,y,z均为实数,所以x=y=z.所以说明本例中多次使用完全平方公式,但使用技巧上有所区别,请仔细琢磨,灵活运用公式,会给解题带来益处.我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,常用f(x),g(x),…表示一元多项式.多项式的除法比较复杂,为简单起见,我们只研究一元多项式的除法.像整数除法一样,一元多项式的除法,也有整除、商式、余式的概念.一般地,一个一元多项式f(x)除以另一个一元多项式g(x)时,总存在一个商式q(x)与一个余式r(x),使得f(x)=g(x)q(x)+r(x)成立,其中r(x)的次数小于g(x)的次数.特别地,当r(x)=0时,称f(x)能被g(x)整除.例6 设g(x)=3x2-2x+1,f(x)=x3-3x2-x-1,求用g(x)去除f(x)所得的商q(x)及余式r(x).解法1 用普通的竖式除法解法2 用待定系数法.由于f(x)为3次多项式,首项系数为1,而g(x)为2次,首r(x)= bx+ c.根据f(x)=q(x)g(x)+r(x),得x3-3x2-x-1比较两端系数,得例7 试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.解由于x2+3x+2=(x+1)(x+2),因此,若设f(x)=x4+ax2-bx+2,假如f(x)能被x2+3x+2整除,则x+1和x+2必是f(x)的因式,因此,当x=-1时,f(-1)=0,即1+a+b+2=0,①当x=-2时,f(-2)=0,即16+4a+2b+2=0,②由①,②联立,则有练习十1.计算:(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2;(2)(x+y)4(x-y)4;(3)(a+b+c)(a2+b2+c2-ab-ac-bc).2.化简:(1)(2x-y+z-2c+m)(m+y-2x-2c-z);(2)(a+3b)(a2-3ab+9b2)-(a-3b)(a2+3ab+9b2);(3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)×(x+y-z).3.已知z2=x2+y2,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z).4.设f(x)=2x3+3x2-x+2,求f(x)除以x2-2x+3所得的商式和余式.。

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。

乘法的结果称为“积”。

-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。

除法的结果称为“商”和“余数”。

-除法的除数不能为0,即被除式不能为0。

-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。

次数为0的项称为常数项,次数最高的项称为最高次项。

4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。

-除法规则:除法运算时,可以通过因式分解的方法进行计算。

5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。

-两个正整数相乘,结果为正数。

-两个负整数相乘,结果为正数。

-一个正整数与一个负整数相乘,结果为负数。

二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。

可以通过提取公因式、配方法等方式进行因式分解。

2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。

3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。

4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。

例如:a^2-b^2=(a+b)(a-b)。

5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。

例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。

7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。

整式与分式的乘除运算

整式与分式的乘除运算

整式与分式的乘除运算在代数中,整式与分式是常见的表达式形式。

整式是由整数、变量和代数运算符组成的表达式,例如2x+3y-4,3a^2+2b-5c等。

而分式是由分子和分母分别由整式组成的表达式,例如(2x+1)/(3y-2),(3a^2+2b)/(4c+1)等。

在数学中,整式与分式的乘除运算是非常重要的基础知识,本文将详细介绍整式与分式的乘除运算规则和步骤。

整式的乘法运算规则如下:1. 两个整式相乘时,先计算系数之间的乘积,然后合并相同变量的指数,得到新的整式。

例如:将3x^2和4x相乘,先计算系数3和4的乘积得到12,再合并x^2和x得到12x^3。

2. 一元多项式相乘时,按照指数从高到低的顺序将两个整式逐项相乘后合并,得到新的整式。

例如:将2x^2+3x-4和x+2相乘,按照指数从高到低的顺序逐项相乘后合并,得到2x^3+7x^2-5x-8。

3. 多元多项式相乘时,双重分配率和合并同类项的规则同样适用。

例如:将(2x+3y)(4x-5y)展开,按照双重分配率展开后再合并同类项,得到8x^2-7xy-15y^2。

整式的除法运算规则如下:1. 两个整式相除时,先将其转化为分式形式,再进行相除运算。

例如:将2x^2+3x-4除以x+2,先转化为分式(2x^2+3x-4)/(x+2),再进行相除的运算。

2. 整式除以整式的结果可能是整式,也可能是分式。

例如:(2x^2+3x-4)/(x+2)的结果是2x-1。

分式的乘法运算规则如下:1. 两个分式相乘时,先将分子与分母分别相乘,再将结果化简为最简形式。

例如:将(2x+1)/(3y-2)和(3a^2+2b)/(4c+1)相乘,先将分子相乘得到(2x+1)(3a^2+2b),再将分母相乘得到(3y-2)(4c+1),最后将结果化简为最简形式。

2. 当分子和分母有公因式时,要先约分再进行相乘运算。

例如:将(2x+4)/(3y-6)和(4x+8)/(6y-12)相乘,先约分得到(x+2)/(y-2),再将结果化简为最简形式。

整式的乘法与除法

整式的乘法与除法

整式的乘法与除法在初中数学中,整式的乘法与除法是一个重要的知识点。

它不仅涉及到数学运算的基本技巧,还能帮助我们解决实际问题。

本文将以实际问题为背景,通过举例、分析和说明来介绍整式的乘法与除法的应用。

一、整式的乘法整式的乘法是指两个或多个整式相乘的运算。

它的应用非常广泛,例如在代数表达式的化简、方程的解法、图形的面积计算等方面都有应用。

举例一:化简代数表达式假设有一个代数表达式:(3x + 2)(x - 5)。

我们可以使用整式的乘法运算将其展开化简。

首先,将括号中的每一项与另一个括号中的每一项相乘,得到以下结果:3x * x + 3x * (-5) + 2 * x + 2 * (-5)。

然后,将同类项相加合并,得到最简形式的代数表达式:3x^2 - 15x + 2x - 10。

最后,将同类项合并得到最终结果:3x^2 - 13x - 10。

通过整式的乘法运算,我们成功地将代数表达式化简为最简形式,从而更方便地进行后续计算或分析。

二、整式的除法整式的除法是指将一个整式除以另一个整式的运算。

它的应用也非常广泛,例如在多项式的因式分解、方程的解法、函数的图像绘制等方面都有应用。

举例二:因式分解假设有一个整式:x^3 - 8。

我们希望将其进行因式分解,以便更好地理解和分析。

首先,我们可以观察到这个整式是一个立方差式,即一个立方数减去另一个立方数。

根据立方差公式,我们可以将其因式分解为(x - 2)(x^2 + 2x + 4)。

通过整式的除法运算,我们成功地将整式进行了因式分解,得到了更简洁的表达形式。

这样,我们可以更方便地研究整式的性质和特点。

三、实际问题的应用整式的乘法与除法不仅仅是数学中的一种运算,它还能帮助我们解决实际问题。

例如,在几何中,我们可以使用整式的乘法来计算图形的面积或体积;在经济学中,我们可以使用整式的乘法来计算成本、利润等。

举例三:计算图形的面积假设有一个矩形,长为2x + 3,宽为3x - 4。

《整式的乘法》整式的乘除

《整式的乘法》整式的乘除
《整式的乘法》整式 的乘除
汇报人: 2023-11-28
contents
目录
• 整式乘除法的定义与规则 • 整式乘法的运算方法 • 整式除法的运算方法 • 整式乘除法的实际应用 • 整式乘除法在数学中的重要性 • 整式乘法的技巧和注意事项
01
整式乘除法的定义与规则
整式的乘法定义
整式乘法的定义
整式乘法是将几个整式相乘,所得的 积叫做整式的乘积。
整式乘法的运算顺序
在进行整式乘法时,应先进行单项式 的乘法运算,再合并同类项。
整式的乘法规则
同底数幂相乘
同底数幂相乘,底数不变,指 数相加。
幂的乘方
幂的乘方,底数不变,指数相 乘。
积的乘方
积的乘方,等于把积的每一个 因式分别乘方,再把所得的幂 相乘。
单项式与多项式相乘
单项式与多项式相乘,就是根 据分配律用单项式去乘多项式 的每一项,再把所得的积相加
单项式与多项式的乘法运算
要点一
总结词
要点二
详细描述
逐项处理,将单项式与多项式的每一项分别相乘,再合并 同类项。
单项式与多项式的乘法运算,需要把单项式与多项式的每 一项分别相乘,并且把所得的积相加。具体地,对于多项 式的每一项,将其系数和字母部分分别与单项式的系数和 字母部分相乘,然后合并同类项得到结果多项式的每一项 。特别地,当多项式中有一项与单项式完全相同时,则结 果多项式中该项的系数为单项式的系数乘以多项式中该项 的系数。
03
整式除法的运算方法
单项式与单项式的除法运算
总结词
简单、易于操作
详细描述
单项式与单项式的除法运算相对简单,只需将被除数除以除数,得到商即可。例 如,$10/3 = 3.33\ldots$。

整式的乘法与除法

整式的乘法与除法

整式的乘法与除法整式是由数字、变量和运算符(+、-、*、/)组成的代数表达式,而整式的乘法与除法是整式运算的两种基本操作。

了解整式的乘法与除法的规则和方法,可以帮助我们更好地理解和解决代数问题。

本文将介绍整式的乘法与除法的规则及其应用。

一、整式的乘法整式的乘法是指将两个或多个整式相乘得到的结果。

在整式的乘法中,我们需要掌握以下几个规则:1. 相同项的乘法:将同类项的系数相乘,对应变量的指数相加,并保持未知量的字母不变。

例如,(2x^2y)(3xy^2) = 6x^3y^3。

2. 不同项的乘法:将一个整式的每一项与另一个整式的每一项相乘,并将结果整理成一个整式。

例如,(2x + 3)(4x - 5) = 8x^2 - 10x + 12x -15 = 8x^2 + 2x - 15。

3. 乘法分配律:若a、b和c为任意的整数或整式,则a(b + c) = ab+ ac。

即将一个整式与另一个整式的和相乘,相当于将该整式与另一个整式的每一项分别相乘,然后将结果相加。

例如,3(2x + 5) = 6x + 15。

二、整式的除法整式的除法是指将一个整式除以另一个整式,得到商式和余式。

整式的除法通常使用长除法的方法进行计算,具体步骤如下:1. 将被除式与除式按照变量的指数从高到低排列。

2. 将被除数的第一个项除以除数的第一个项,得到商式的第一项。

将商式的第一项乘以除数,得到一个临时的乘积。

3. 将临时乘积与被除式进行相减,得到新的多项式。

4. 将新的多项式的第一个项除以除数的第一个项,得到商式的第二项。

将商式的第二项乘以除数,得到另一个临时的乘积。

5. 重复以上步骤,直到无法继续相减为止。

此时得到的商式为最终的商式,余式为未相减的多项式。

例如,我们将(3x^2 - 2x + 5)除以(x - 1):3x - 1_________x - 1 | 3x^2 - 2x + 5- (3x^2 - 3x)________x + 5所以,商式为3x - 1,余式为x + 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3:(1) (2)
(3) (4)
四、乘法公式:
例1:判断下列各式的计算是否正确,如果错误,指出错在什么地方,并把它改正过来。5)
(6)
例2:(1) (2) (3)
(4) (5) (6)
二、整式的除法
1、同底数幂的除法
同底数幂的除法法则:一般地,设m、n为正整数,m>n,a≠0,有 .
注意:① 同号相乘得正,异号相乘得负 ② 结果应化简即合并同类项 ③ 不能漏项(多项式中常数)
例2:(1) (2) (3)
(3) (4)
三、多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
注意:① 防止漏乘 ② 注意确定各项的符号 ③ 结果若有同类项则合并,没有则保留在结果里。
即:同底数幂相除,底数不变,指数相减.
典例1计算下列各式.
(1) ; ; .
典例2:已知 ,则 =.
2 单项式除以单项式
1.单项式除以单项式的法则:单项式除以单项式,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
[归纳·整理]1.单项式除以单项式的一般步骤:
整式的乘法和除法.教案
教学目标
掌握整式的乘法和除法
重点难点
掌握整式的乘法和除法
一、整式的乘法
1.同底数幂的乘法法则
同底数幂相乘,底数不变,指数相加。即: (m,n都是正整数)。
例1:计算
(1) ;(2) ;(3)
例2:计算
(1) ;(2)
2.幂的乘方(重点)
幂的乘方是指几个相同的幂相乘,如 是三个 相乘,读作a的五次幂的三次方。
⑴符号问题,多项式是几个单项式的和,其中每一个单项式都是多项式的一项,所以多项式的每一项都包括它前面的符号.
⑵计算时不要漏项,多项式除以单项式的结果是一个多项式,其项数与被除式的项数相同.
⑶多项式除以单项式实质是把多项式除以单项式转化为单项式除以单项式.
典例5计算: .
典例6计算: .
例3:已知 ,求 的值。
例4:计算
(0.5)99×2100
4.单项式与单项式相乘(重点)
法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式例含有的字母,则连同它的指数作为积的一个因式。
例1:计算
2x3•5x23x2y •(-2xy3) (-5a2b3) •(-4b2c)
3a2•(a3)22x2-3x •2x (2x3n) •(-2xn)3+2x6n
积的乘方的意义:指底数是乘积形式的乘方。如:
积的乘方法则:积的乘方,等于把积得每一个因式分别乘方,再把所得的幂相乘。如:
例1计算
(1) ; ;
例2:计算
(2a3)2-(-3ab2)3(-x3)6•(-x6)3
(3×102)3×(-103)4(-2a2b)2•(-2a2b2)3(x2y3)2+x3•x •(y2)3
⑴被除式的系数除以除式的系数,结果作为商的系数.
⑵被除式和除式里的同底数幂分别相除,结果作为商的因式.
⑶只在被除式里含有的字母,连同它的指数一起作为商的一个因式.
2.单项式除以单项式应注意:
⑴运算过程中应注意单项式的系数包含它前面的符号.
⑵被除式单独有的字母及其指数作为商的一个因式,不要遗漏.
⑶对于混合运算,要注意运算顺序,有乘方要先算乘方,有括号先算括号里的,同级运算按从左到右的顺序进行.如: ,而不是 .
典例3下列各题中,计算正确的是 ( )
① ;② ;
③ ;④ .
A.①②B.②③C.①③D.③④
典例4
(1) ;(2) .
研习点3 多项式除以单项式
多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.即:(a+b+c)÷m=a÷m+b÷m+c÷m.
[领悟整合]多项式除以单项式应注意:
5.单项式与多项式相乘(重点)
一、单项式与单项式相乘:把系数、相同字母的幂分别相乘。对只在一个单项式中含有字母,连同指数作为积的因式。
注意:① 运算顺序 ② 运算符号 ③ 只在一个因式中出现的字母应保留在乘积的结果中。
例1:(1) (2)
二、单项式与多项式相乘:根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加。
幂的乘方法则:幂的乘方,底数不变,指数相乘。即 (m,n都是正整数)。
例1计算
(1) ; (2) ; (3)
例2计算
(x3)4•(x2)5
(x3)4•x5(a2•a3)5a •(a2)3•(-a2)
例3、(x2)n•x5=x15求n的值
例4已知am=2,an=3,求a2m+3n的值
3.积的乘方(重点)
相关文档
最新文档