Eviews软件数据分析例文

合集下载

Eviews软件数据分析例文剖析

Eviews软件数据分析例文剖析

Eviews软件数据分析例文剖析Eviews是一款专业的计量经济学软件。

它主要用于统计分析、时间序列分析、质量控制和预测。

Eviews可以帮助用户在数据分析、建模和评估方面快速轻松地进行操作。

本文将通过一个Eviews软件数据分析例子来剖析其运用及分析过程,从中了解Eviews软件对数据的处理能力。

数据收集及预处理在进行数据收集过程中,一般需要查找数据来源,如数据文献、网站、政府公开数据等。

在分析过程中,需要对数据进行初步的处理和清理。

例如,排除数据中的错误或异常值、进行数据归一化处理等过程。

数据预处理可以通过查看数据摘要、图表及其他可视化方式来实现,如分布统计图、直方图、盒式图和散点图等。

这些过程有助于了解数据的基本情况和不同变量间的相互关系,为进一步的分析和建模做好准备。

数据分析过程在Eviews软件中,数据分析通常从对数据的概括性统计开始。

例如,可以对变量进行描述统计、相关性分析、因子分析、聚类分析和回归分析。

本例中,我们将通过描述统计和回归分析得出结论。

描述统计首先,我们需要将文本文件导入Eviews软件中。

我们需要对数据集进行初步的处理和清理,以确保数据集正确及完整。

接下来,我们可以用描述性统计方法来了解各个变量的基础情况和关系。

我们使用了常用的数据摘要技术,包括平均值、中位数、最大值/最小值、标准差和偏度/峰度等。

这些指标可以帮助我们了解数据的分布情况、集中趋势和散布程度等。

根据对文本数据集进行的描述统计分析,我们可以发现一些有趣的事实。

例如,一个变量的平均值超过了一年中的交易天数。

这可能反映了某种不寻常的分配模式。

通过这些发现,我们可以更好地将我们的分析重点放到市场交易策略中。

回归分析回归分析是Eviews软件中最常用的分析方法之一。

它可以帮助我们了解一个或多个自变量与一个因变量之间的关系。

通常,我们使用回归分析来进行预测和建模,预测未来的趋势和结果。

在本例中,我们使用了线性回归模型,以了解市场策略与现金市场利率之间的关系。

Eviews软件实验报告

Eviews软件实验报告

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊分析国内生产总值与最终消费的关系一、研究的目的要求由于消费是所有经济行为有效实现的最终环节,唯有消费需求的不断上升才有经济增长的持久拉动力有经济增长的持久拉动力..而居民的消费水平在很大程度上又受整体经济状况的影响影响..国内生产总值是用于衡量一国总收入的一种整体经济指标,经济扩张时期经济扩张时期,,居民收入稳定居民收入稳定,GDP ,GDP 也高也高,,居民用于消费的支出较多居民用于消费的支出较多,,消费水平较高消费水平较高;;反之反之,,经济收缩时,收入下降收入下降,GDP ,GDP 也低也低,,用于消费的支出较少用于消费的支出较少,,消费水平随之下降消费水平随之下降..改革开放以来改革开放以来,,我国的GDP 不断增长的同时不断增长的同时,,人民的物质生活也在不断提高人民的物质生活也在不断提高..研究国内生产总值与最终消费的数量关系,对于探寻最终消费增长的规律性,预测最终消费的发展趋势有重大意义。

势有重大意义。

二、模型设定为了分析国内生产总值对消费的推动作用,选择中国国民最终消费为被解释变量(用Y 表示),选择中国国内生产总值为解释变量(用X 表示)。

搜集到以下数据。

数据。

中国国民收入与最终消费(单位:亿元)中国国民收入与最终消费(单位:亿元)年份年份 国内国内生产总值(亿元)元) 最终消费 年份年份国内生产国内生产总值(亿元)最终消费最终消费X Y X Y1978 3624.1 2239.1 1995 58478.1 36748.2 1979 4038.2 2633.7 1996 67884.6 43919.5 1980 4517.8 3007.9 1997 74462.6 48140.6 1981 4862.4 3361.5 1998 78345.2 51588.2 1982 5294.7 3714.8 1999 82067.5 55636.9 1983 5934.5 4126.4 2000 89468.1 61516 1984 7171 4846.3 2001 97314.8 66878.3 1985 8964.4 5986.3 2002 104790.6 71691.2 1986 1986 10202.2 10202.2 6821.8 2003 135822.8 77449.5 1987 1987 11962.5 11962.5 7804.62004 159878.3 87032.9 1988 1988 14928.3 14928.3 9839.52005 183217.4 97822.7┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊1989 1989 16909.2 16909.2 16909.2 11164.2 11164.2 2006 211923.5110595.31990 1990 18547.9 18547.9 18547.9 12090.5 12090.52007 249529.9 128444.6 1991 1991 21617.8 21617.8 21617.8 14091.9 14091.9 2008 316228.8 149000 1992 1992 26638.1 26638.1 26638.1 17203.3 17203.3 2009343464.7 176060.31993 1993 34634.4 34634.4 34634.4 21899.9 21899.9 2010 397983 148447.7 1994 1994 46759.4 46759.4 46759.4 29242.2 29242.2 29242.2为了分析居民最终消费(为了分析居民最终消费(Y Y )和国内生产总值()和国内生产总值(X X )的关系,根据上表做如下散点图:点图:从散点图可以看出最终消费和国内生产总值大体呈现为线性关系,为分析中国居民最终消费水平随国民总收入变动的数量规律性,可建立如下简单回归模型:型:三、估计参数利用EViews 做简单线性回归分析的结果如下图所示:做简单线性回归分析的结果如下图所示:┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊ ┊ ┊ ┊ ┊订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊可用规范的形式将参数估计和检验的结果写为可用规范的形式将参数估计和检验的结果写为ttXY454948.007.17662ˆ+=(2377.4702377.470))(0.017318)t= (3.222798) (26.27036) 33317.1690957012.02===nFR。

EVIEWS面板数据分析操作教程及实例解析

EVIEWS面板数据分析操作教程及实例解析

模型选择对分析结果影响
模型适用性
根据研究目的和数据特征选择合 适的面板数据模型,如固定效应 模型、随机效应模型等。
模型假设
确保所选模型满足基本假设,如 线性关系、误差项独立同分布等 ,否则可能导致结果不准确。
模型比较与选择
通过比较不同模型的拟合优度、 参数显著性等指标,选择最优模 型进行分析。
操作规范性与结果可靠性保障措施
操作步骤规范
结果验证与解读
对分析结果进行验证,确保结果的合理性和准确性 ;同时,正确解读分析结果,避免误导读者。
严格按照EVIEWS软件的操作步骤进行分析 ,避免操作失误或遗漏关键步骤。
数据分析报告
编写详细的数据分析报告,包括数据来源、 处理方法、模型选择、分析结果及解读等, 以便读者全面了解分析过程。
方和来估计模型参数。
广义最小二乘法(GLS)
02
当存在异方差性或自相关性时,采用广义最小二乘法进行参数
估计,以提高估计效率。
最大似然法(ML)
03
适用于随机效应模型等复杂面板数据模型,通过最大化似然函
数来估计模型参数。
模型诊断与检验
残差分析
检查残差是否满足独立同分布等假设条件, 以评估模型的拟合效果。
07 EVIEWS面板数 据分析操作注意 事项
数据质量对分析结果影响
数据来源
确保数据来自可靠、权威的来源,避免使用不准确或存在偏见的数 据。
数据完整性
检查数据是否存在缺失值、异常值或重复值,这些问题可能导致分 析结果失真。
数据处理
对数据进行适当的预处理,如清洗、转换和标准化,以提高数据质量 和一致性。
增强了解决实际问题的能力
通过实例解析和操作演示,学员们学会了如何运用所学知识解决实际问题,提高了分析 问题和解决问题的能力。

eviews案例分析作业

eviews案例分析作业

eviews案例分析作业Eviews案例分析作业。

本次作业将使用Eviews软件进行一个实际案例的分析,以展示Eviews在实际经济数据分析中的应用。

我们选取了美国GDP(国内生产总值)和失业率的数据,来进行相关性分析和趋势预测。

首先,我们导入美国GDP和失业率的时间序列数据,并进行数据的初步观察和描述性统计分析。

通过Eviews的数据视图功能,我们可以直观地看到这两个变量的变化趋势和波动情况,从而为后续的分析提供基础。

接下来,我们将利用Eviews进行相关性分析,探讨美国GDP与失业率之间的关系。

通过Eviews的相关性分析功能,我们可以得到它们之间的相关系数,并利用散点图和回归分析来观察它们之间的线性关系。

通过这些分析,我们可以初步了解到美国GDP和失业率之间的关联程度,为后续的预测分析提供参考。

在完成相关性分析后,我们将利用Eviews进行趋势预测。

通过Eviews的时间序列分析功能,我们可以选择合适的模型对美国GDP和失业率的未来趋势进行预测。

在选择模型的过程中,我们将充分考虑数据的平稳性、季节性等特点,以确保模型的准确性和可靠性。

最终,我们将得到美国GDP和失业率未来的预测值,并进行可视化展示,以便更直观地观察它们的趋势变化。

通过本次Eviews案例分析作业,我们不仅对Eviews软件的使用有了更深入的了解,同时也对实际经济数据的分析方法有了更加清晰的认识。

Eviews作为一款专业的计量经济学软件,具有强大的数据分析和建模功能,可以帮助我们更好地理解和预测经济现象,为经济决策提供科学依据。

总之,Eviews案例分析作业不仅是对所学知识的巩固和实践,更是对实际问题的解决和预测。

通过本次作业,我们不仅提升了对Eviews软件的熟练度,更深入了解了经济数据分析的方法和技巧,为今后的学习和工作打下了坚实的基础。

希望通过这次作业的学习,能够更好地应用Eviews软件进行实际经济数据的分析和预测,为经济决策提供更加科学的支持。

eviews实验报告总结(范本)

eviews实验报告总结(范本)

eviews实验报告‎总结eviews实‎验报告总结‎篇一:‎Evies‎实验报告实验报告‎一、实验数据:‎1994至2‎01X年天津市城镇居‎民人均全年可支配收入‎数据 1994至20‎1X年天津市城镇居民‎人均全年消费性支出数‎据 1994至201‎X年天津市居民消费价‎格总指数二、‎实验内容:对‎搜集的数据进行回归,‎研究天津市城镇居民人‎均消费和人均可支配收‎入的关系。

三‎、实验步骤:‎1、百度进入“中华人‎民共和国国家统计局”‎中的“统计数据”,找‎到相关数据并输入Ex‎c el,统计结果如下‎表1:表1‎1994年--20‎1X年天津市城镇居民‎消费支出与人均可支配‎收入数据2、‎先定义不变价格(19‎94=1)的人均消费‎性支出(Yt)和人均‎可支配收入(Xt)‎令:Yt=c‎n sum/price‎Xt=ine/pr‎i ce 得出Yt与X‎t的散点图,如图‎1.很明显,Yt和‎X t服从线性相关。

‎图1 Yt和Xt散点‎图3、应用统‎计软件EVies完成‎线性回归解:‎根据经济理论和对实‎际情况的分析也都可以‎知道,城镇居民人均全‎年耐用消费品支出Yt‎依赖于人均全年可支配‎收入Xt的变化,因此‎设定回归模型为 Yt‎=β0+β?Xt﹢μ‎t(1)打开‎E Vies软件,首先‎建立工作文件, Fi‎l e rkfile ‎,然后通过bject‎建立 Y、X系列,并‎得到相应数据。

‎(2)在工作文件窗‎口输入命令:‎l s y c x,按‎E nter键,回归结‎果如表2 :‎表2 回归结果根‎据输出结果,得到如下‎回归方程:‎Y t=977.‎908+0.670X‎t s=(17‎2.3797) (0‎.0122) t=(‎5.673) ‎(54.95‎0) R2=0.99‎5385 Adjus‎t ed R2=0.9‎95055 F-st‎a tistic=30‎19.551 ‎残差平方和Sum s‎q uared res‎i d =125410‎8回归标准差S.E‎.f regress‎i n=299.‎2978(3‎)根据回归方程进行统‎计检验:‎拟合优度检验由上表‎2中的数分别为0.‎995385和0.9‎95055,计算结果‎表明,估计的样本回归‎方程较好地拟合了样本‎观测值。

计量经济学论文(eviews分析)

计量经济学论文(eviews分析)

计量经济学论文(eviews分析)我国限额以上餐饮企业营业额的影响因素分析摘要:本文收集了1999年至2009年共11年的相关数据,选取餐饮企业数量、城镇居民人均年消费性支出、全国城镇人口数以及公路里程数作为解释变量构建模型,对我国限额以上餐饮企业营业额的影响因素进行分析。

利用Eviews软件对模型进行参数估计和检验,并加以修正,最后根据模型的最终结果进行经济意义分析,提出自己的看法。

关键词:餐饮企业营业额、影响因素、计量分析一、研究背景近十年来,投资者进入餐饮企业的数量不断增加。

在他们进入一个行业之前,势必要对该行业的营业额、营业利润等进行估计,当这些因素的估计值能够达到他们的预期时,他们才会对其进行投资。

由于餐饮企业的营业额是影响投资者是否进入餐饮业的一个重要因素,对于我国餐饮企业的营业额问题的深入研究就显得尤为必要,这有助于投资者作出合理的决策。

因此,本文进行了对我国限额以上餐饮企业营业额的计量模型研究。

二、变量的选取影响餐饮企业营业额的因素有很多,包括餐饮企业的数量、营业面积、从业人员、城镇居民人均年消费性支出、全国城镇人口数、餐饮企业的平均价格水平及公路里程数(表示交通状况)。

但综合考虑后,本文选取了其中的一部分变量(企业数、城镇居民人均年消费性支出、全国城镇人口数、公路里程数)进行研究,并对各个变量对餐饮企业营业额的影响进行预测。

1.企业数本文认为餐饮企业营业额与餐饮企业的数量有关,并预测两者之间呈正相关。

2.城镇居民人均年消费性支出本文认为餐饮企业营业额与城镇居民人均年消费性支出有关,并预测两者之间呈正相关。

3.全国城镇人口数本文认为餐饮企业营业额与全国城镇人口数有关,并预测两者之间呈正相关。

4.公路里程数本文认为餐饮企业营业额与公路里程数有关,并预测两者之间呈正相关。

三、相关数据本文收集了1999年至2009年共11年的相关数据,包括营业额(单位:亿元)、企业数(单位:个)、人均年消费性支出(单位:元)、全国城镇人口数(单位:万人)以及公路里程数(单位:万公里)。

eviews面板数据实例分析包会修订版

eviews面板数据实例分析包会修订版

e v i e w s面板数据实例分析包会修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】1.已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)和人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。

年人均消费(consume)和人均收入(income)数据以及消费者价格指数(p)分别见表9.1,9.2和9.3。

表9.1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据199719981999200020012002人均消费1996CONSUMEAH3607.433693.553777.413901.814232.984517.654736.52 CONSUMEBJ5729.526531.816970.837498.488493.498922.7210284.6 CONSUMEFJ4248.474935.955181.455266.695638.746015.116631.68 CONSUMEHB3424.354003.713834.434026.34348.474479.755069.28 CONSUMEHLJ3110.923213.423303.153481.743824.444192.364462.08 CONSUMEJL3037.323408.033449.743661.684020.874337.224973.88CONSUMEJS4057.54533.574889.435010.915323.185532.746042.6 CONSUMEJX2942.113199.613266.813482.333623.563894.514549.32 CONSUMELN3493.023719.913890.743989.934356.064654.425342.64 CONSUMENMG2767.843032.33105.743468.993927.754195.624859.88 CONSUMESD3770.994040.634143.964515.0550225252.415596.32 CONSUMESH6763.126819.946866.418247.698868.199336.110464 CONSUMESX3035.593228.713267.73492.983941.874123.014710.96 CONSUMETJ4679.615204.155471.015851.536121.046987.227191.96 CONSUMEZJ5764.276170.146217.936521.547020.227952.398713.08表9.2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据人均收入1996199719981999200020012002INCOMEAH4512.774599.274770.475064.65293.555668.86032.4 INCOMEBJ7332.017813.168471.989182.7610349.6911577.7812463.92 INCOMEFJ5172.936143.646485.636859.817432.268313.089189.36 INCOMEHB4442.814958.675084.645365.035661.165984.826679.68 INCOMEHLJ3768.314090.724268.54595.144912.885425.876100.56 INCOMEJL3805.534190.584206.644480.0148105340.466260.16 INCOMEJS5185.795765.26017.856538.26800.237375.18177.64 INCOMEJX3780.24071.324251.424720.585103.585506.026335.64 INCOMELN4207.234518.14617.244898.615357.795797.016524.52 INCOMENMG3431.813944.674353.024770.535129.055535.896051 INCOMESD4890.285190.795380.085808.966489.977101.087614.36 INCOMESH8178.488438.898773.110931.6411718.0112883.4613249.8INCOMESX3702.693989.924098.734342.614724.115391.056234.36 INCOMETJ5967.716608.397110.547649.838140.58958.79337.56 INCOMEZJ6955.797358.727836.768427.959279.1610464.6711715.6表9.3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996199719981999200020012002PAH109.9101.310097.8100.7100.599PBJ111.6105.3102.4100.6103.5103.198.2PFJ105.9101.799.799.1102.198.799.5PHB107.1103.598.498.199.7100.599PHLJ107.1104.4100.496.898.3100.899.3PJL107.2103.799.29898.6101.399.5(1)建立面板数据工作文件首先建立工作文件。

eviews面板数据实例分析(包会)-

eviews面板数据实例分析(包会)-

eviews面板数据实例分析(包会)-Eviews是一种流行的面板数据分析软件,广泛用于经济学及财务学领域。

本文将以一个面板数据实例为例,介绍Eviews的一些基本功能及应用。

数据说明本数据集为横截面面板数据,共包含11个国家(美国、加拿大、英国、法国、德国、意大利、荷兰、比利时、奥地利、瑞典、日本)在1970年至1986年间的年度数据。

变量说明如下:- gdpercap:人均GDP- invest:投资/GDP比率- consump:消费/GDP比率- inflation:通货膨胀率- popgrowth:人口增长率- literacy:成年人识字率- female:女性劳动力占比数据导入及面板设置首先,在Eviews中新建一个工作文件,并将数据导入。

打开数据文件后,我们可以看到数据已经被正确读入。

然后,我们需要将数据设为面板数据。

在Eviews中,选择“View”菜单下的“Structure of Workfile”选项,可以进入工作文件结构设置。

在弹出的窗口中,选择“Panel Data”选项,并按照数据的属性设置面板变量。

在本例中,我们选择“Country”作为单位维度,“Year”作为时间维度。

设置完成后,Eviews会自动进行面板数据检测。

检测结果显示,数据格式符合面板数据要求。

面板数据描述及汇总统计接下来,我们可以对数据进行初步的描述性统计和汇总统计。

选择“Quick”菜单下的“Descriptive Stats”选项,Eviews会自动生成数据的描述性统计报告,展示各变量在不同国家和不同年份的均值、标准差、最小值、最大值等基本信息。

我们也可以手动计算其他统计量。

例如,选择“Proc”菜单下的“Panel Data”选项,可以对选定的变量进行面板数据汇总统计。

下面是在Eviews中计算人均GDP和消费/GDP比率两个变量的面板均值统计结果:面板数据变量之间的相关性分析在分析面板数据时,我们通常需要考虑不同变量之间的相关性。

Eviews软件数据分析例文剖析

Eviews软件数据分析例文剖析

小学期作业影响财政收入的主要因素学院:经济学院班级:统计学班姓名:梁语丝学号:2011407036影响财政收入的主要因素摘要:财政收入是一国政府实现政府职能的基本保障,主要有资源配置、收入再分配和宏观经济调控三大职能。

财政收入的增长情况关系着一个国家经济的发展和社会的进步。

我国财政收入主要受国民经济发展、预算外资金收入、税收收入等因素的影响。

本文针对我国财政收入影响因素建立了计量经济模型,并利用Eviews软件对收集到的数据进行相关回归分析,排除简单多元回归模型存在的严重多重共线性等问题,建立财政收入影响因素更精确的模型,分析了影响财政收入主要因素及其影响程度,预测我国财政收入增长趋势。

二、模型设定研究财政收入的影响因素离不开一些基本的经济变量。

大多数相关的研究文献中都把总税收、国内生产总值这两个指标作为影响财政收入的基本因素,还有一些文献中也提出了其他一些变量, 比如其他收入、经济发展水平等。

影响财政收入的因素众多复杂, 但是通过研究经济理论对财政收入的解释以及对实践的观察, 对财政收入影响的因素主要是税收收入。

下面我们就以税收收入、能源消费总量、和预算外资金收入作为影响财政收入的主要研究因素。

从中国统计局网站上可以查询到1993年至2008年的相关数据,对其进行计算整理可得:4.、模型的建立根据1978—2008年每年的财政收入Y( 亿元) , 能源消费总量X1( 亿元),预算外资金收入X2( 亿元) ,税收收入X3( 亿元) 的统计数据,由E-views软件得到y,x1,x2,x3的线性图,如下:由图可知,y,x1, x3都是逐年增长的,但增长速率有所变动,而x2呈现水平波动,说明变量间不一定是线性关系,可探索将模型设定为以下形式:lnY=β0+β1lnX1+β2X2+β3lnX3+U三,模型估计与调整利用Eviews软件对模型进行最小二乘法全回归,结果如下:第一步,进行模型的检验。

(一),进行多重共线性的检验方程的修正后的R平方值很高,说明变量对因变量的拟合程度很好,但是应该注意到c,lnx1,x2三者的t值很低(在此选择置信度为0.05),未通过检验,因此怀疑其中存在变量之间的多重共线问题。

Eviews多元因子分析案例分析

Eviews多元因子分析案例分析

Eviews多元因子分析案例分析
多元因子分析是一种常用的经济数据分析方法,它能够帮助我
们解释变量之间的关系以及其对观察数据的影响程度。

本文将以一
个案例为例,演示如何使用Eviews进行多元因子分析。

案例背景
在这个案例中,我们有一组经济数据,包括GDP增长率、通
货膨胀率、利率、失业率和投资增长率。

我们希望通过多元因子分析,找出这些变量之间的主要关系,并解释它们对经济发展的影响。

数据准备
在进行多元因子分析之前,我们首先需要准备好数据。

将数据
导入Eviews软件,并确保数据格式正确。

模型建立
在Eviews中,我们可以使用多元线性回归模型来进行因子分析。

通过选择适当的解释变量和因变量,我们可以建立一个能够解
释经济数据变动的模型。

数据分析
在模型建立完成后,我们可以进行数据分析。

通过观察回归结果,我们可以得出变量之间的关系以及各自的影响程度。

同时,我
们还可以进行统计检验,以评估模型的拟合程度和变量的显著性。

结论
通过Eviews多元因子分析,我们可以得出经济数据变量之间
的关系和影响程度。

这些结果可以帮助我们更好地理解经济的运行
规律,为决策提供参考。

以上就是Eviews多元因子分析的案例分析。

通过这个案例,
我们可以更好地掌握使用Eviews进行多元因子分析的方法和步骤。

希望本文对您有所帮助!。

eviews面板数据实例分析(包会)

eviews面板数据实例分析(包会)

1.已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp,不变价格)和人均收入(ip,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。

年人均消费(consume)和人均收入(income)数据以及消费者价格指数(p)分别见表9.1,9.2和9.3。

表9.1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据人均消费1996 1997 1998 1999 2000 2001 2002CONSUMEAH 3607.43 3693.55 3777.41 3901.81 4232.98 4517.65 4736.52CONSUMEBJ 5729.52 6531.81 6970.83 7498.48 8493.49 8922.72 10284.6CONSUMEFJ 4248.47 4935.95 5181.45 5266.69 5638.74 6015.11 6631.68CONSUMEHB 3424.35 4003.71 3834.43 4026.3 4348.47 4479.75 5069.28CONSUMEHLJ 3110.92 3213.42 3303.15 3481.74 3824.44 4192.36 4462.08CONSUMEJL 3037.32 3408.03 3449.74 3661.68 4020.87 4337.22 4973.88CONSUMEJS 4057.5 4533.57 4889.43 5010.91 5323.18 5532.74 6042.6CONSUMEJX 2942.11 3199.61 3266.81 3482.33 3623.56 3894.51 4549.32CONSUMELN 3493.02 3719.91 3890.74 3989.93 4356.06 4654.42 5342.64CONSUMENMG 2767.84 3032.3 3105.74 3468.99 3927.75 4195.62 4859.88CONSUMESD 3770.99 4040.63 4143.96 4515.05 5022 5252.41 5596.32CONSUMESH 6763.12 6819.94 6866.41 8247.69 8868.19 9336.1 10464CONSUMESX 3035.59 3228.71 3267.7 3492.98 3941.87 4123.01 4710.96CONSUMETJ 4679.61 5204.15 5471.01 5851.53 6121.04 6987.22 7191.96CONSUMEZJ 5764.27 6170.14 6217.93 6521.54 7020.22 7952.39 8713.08表9.2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据人均收入1996 1997 1998 1999 2000 2001 2002INCOMEAH 4512.77 4599.27 4770.47 5064.6 5293.55 5668.8 6032.4INCOMEBJ 7332.01 7813.16 8471.98 9182.76 10349.69 11577.78 12463.92INCOMEFJ 5172.93 6143.64 6485.63 6859.81 7432.26 8313.08 9189.36INCOMEHB 4442.81 4958.67 5084.64 5365.03 5661.16 5984.82 6679.68INCOMEHLJ 3768.31 4090.72 4268.5 4595.14 4912.88 5425.87 6100.56INCOMEJL 3805.53 4190.58 4206.64 4480.01 4810 5340.46 6260.16INCOMEJS 5185.79 5765.2 6017.85 6538.2 6800.23 7375.1 8177.64INCOMEJX 3780.2 4071.32 4251.42 4720.58 5103.58 5506.02 6335.64INCOMELN 4207.23 4518.1 4617.24 4898.61 5357.79 5797.01 6524.52INCOMENMG 3431.81 3944.67 4353.02 4770.53 5129.05 5535.89 6051INCOMESD 4890.28 5190.79 5380.08 5808.96 6489.97 7101.08 7614.36INCOMESH 8178.48 8438.89 8773.1 10931.64 11718.01 12883.46 13249.8INCOMESX 3702.69 3989.92 4098.73 4342.61 4724.11 5391.05 6234.36INCOMETJ 5967.71 6608.39 7110.54 7649.83 8140.5 8958.7 9337.56INCOMEZJ 6955.79 7358.72 7836.76 8427.95 9279.16 10464.67 11715.6表9.3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数(1)建立面板数据工作文件 首先建立工作文件。

eviews案例分析作业

eviews案例分析作业

eviews案例分析作业Eviews案例分析作业。

本次作业将通过Eviews软件对某公司销售数据进行分析,以便更好地理解和运用Eviews软件进行实际数据分析。

首先,我们需要导入销售数据,并对数据进行初步的描述性统计分析。

在Eviews软件中,我们可以通过导入数据文件,选取所需变量,并进行描述性统计分析,包括均值、标准差、最大最小值等。

通过这些统计指标,我们可以对销售数据的整体情况有一个初步的了解。

接下来,我们可以利用Eviews软件进行时间序列分析。

通过Eviews的时间序列分析功能,我们可以对销售数据的趋势、季节性和周期性进行分析,从而更好地了解销售数据的变化规律。

同时,我们还可以利用Eviews软件进行相关性分析,找出销售数据与其他变量之间的相关关系,帮助我们更好地理解销售数据的影响因素。

除了时间序列分析,Eviews软件还可以进行回归分析。

通过回归分析,我们可以建立销售数据与其他变量之间的数学模型,从而预测销售数据的变化趋势。

在Eviews软件中,我们可以选择合适的回归模型,并进行参数估计和显著性检验,以确定最优的回归模型,从而更准确地预测销售数据的变化。

最后,我们可以利用Eviews软件进行模型诊断和检验。

在建立了销售数据的数学模型之后,我们需要对模型进行诊断和检验,以验证模型的有效性和稳定性。

通过Eviews软件的模型诊断功能,我们可以对模型的残差进行分析,检验模型的拟合优度,并对模型进行修正和改进,以提高模型的预测能力和解释能力。

通过以上对Eviews软件在销售数据分析中的应用,我们可以更好地理解和运用Eviews软件进行实际数据分析。

Eviews软件提供了丰富的数据分析功能,可以帮助我们更好地理解数据的规律和特点,从而更准确地预测和分析数据的变化。

希望本次作业对大家能够有所帮助,更好地掌握Eviews软件的数据分析技能。

eviews多元线性回归案例分析报告报告材料

eviews多元线性回归案例分析报告报告材料

中国税收增长的分析一、研究的目的要求改革开放以来,随着经济体制的改革深化和经济的快速增长,中国的财政收支状况发生了很大的变化,中央和地方的税收收入1978年为519.28亿元到2002年已增长到17636.45亿元25年间增长了33倍。

为了研究中国税收收入增长的主要原因,分析中央和地方税收收入的增长规律,预测中国税收未来的增长趋势,需要建立计量经济学模型。

影响中国税收收入增长的因素很多,但据分析主要的因素可能有:〔1〕从宏观经济看,经济整体增长是税收增长的基根源泉。

〔2〕公共财政的需求,税收收入是财政的主体,社会经济的开展和社会保障的完善等都对公共财政提出要求,因此对预算指出所表现的公共财政的需求对当年的税收收入可能有一定的影响。

〔3〕物价水平。

我国的税制结构以流转税为主,以现行价格计算的DGP等指标和和经营者收入水平都与物价水平有关。

〔4〕税收政策因素。

我国自1978年以来经历了两次大的税制改革,一次是1984—%。

但是第二次税制改革对税收的增长速度的影响不是非常大。

因此可以从以上几个方面,分析各种因素对中国税收增长的具体影响。

二、模型设定为了反映中国税收增长的全貌,选择包括中央和地方税收的‘国家财政收入’中的“各项税收〞〔简称“税收收入〞〕作为被解释变量,以反映国家税收的增长;选择“国内生产总值〔GDP〕〞作为经济整体增长水平的代表;选择中央和地方“财政支出〞作为公共财政需求的代表;选择“商品零售物价指数〞作为物价水平的代表。

由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。

所以解释变量设定为可观测“国内生产总值〔GDP〕〞、“财政支出〞、“商品零售物价指数〞从《中国统计年鉴》收集到以下数据年份财政收入〔亿元〕Y国内生产总值(亿元〕X2财政支出〔亿元〕X3商品零售价格指数〔%)X419781979 102 1980 106 1981198219831984 717119851986 106 1987198819891990199119921993199419951996199719981999 97 200020012002设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三、参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X4的散点图:Dependent Variable: YMethod: Least SquaresDate: 12/01/09 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.CX2X3X4R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 1463163. Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)模型估计的结果为:Y i=+0.022067X2+X3+X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21四、模型检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。

精选EVIEWS面板数据分析操作教程及实例krn

精选EVIEWS面板数据分析操作教程及实例krn
支持协整
格兰杰因果检验(因果检验的前提是变量协整)。Eviews好像没有在POOL窗口中提供Granger causality test,如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试
因果分析
2.099652(0.044)*
Panel rho-Statistic
-3.415758(0.0012)*
Panel PP-Statistic
-5.991403(0.0000)*
Panel ADF-Statistic
-7.835311(0.0000)*
H0: = 1 H1 :(i = )< 1
录入 数据软件操作(EVIEW6.0)方式一 File/New/ Workfile Workfile structure type : Dated-regular frequency Start date 1935 End date 1954 OK Objects/New Object : Type of Object pool OKCross Section Identifiers:_GM _CH _GE _WE _USView/Spreadsheet View:i? m? k? 方式二(方式是否正确,有待考证)File/New/ Workfile Workfile structure type : Balanced Panel Start date 1935 End date 1954 Number of cross 1 OKCross Section Identifiers:_GM _CH _GE _WE _USView/Spreadsheet View:i? m? k?

计量经济学论文(eviews分析)计量经济作业

计量经济学论文(eviews分析)计量经济作业

计量经济学论文(eviews分析)计量经济作业计量经济学论文分析的重要性不言而喁。

在经济学领域中,计量经济学是一门研究经济现象的学科,通过数学模型和统计分析对经济数据进行量化分析,以揭示经济规律和探寻经济发展规律。

eviews是一个专门用于时间序列分析和计量经济学建模的软件工具,广泛应用于经济学研究和金融领域。

在进行计量经济学论文分析时,首先需要明确研究问题和假设,然后收集相关数据。

随后,利用eviews软件对数据进行清洗和整理,进行描述性统计分析,绘制图表,进行回归分析等。

通过计量经济学方法,可以验证假设、识别变量之间的关系、预测未来趋势等。

举例来说,假设我们要研究某国家的经济增长与通货膨胀之间的关系。

首先,我们收集相关数据,包括国内生产总值(GDP)、通货膨胀率等。

然后,利用eviews软件导入数据,进行描述性统计分析,观察数据的分布特征。

接下来,可以进行回归分析,建立经济增长与通货膨胀之间的模型,分析它们之间的关系及影响因素。

在计量经济学论文中,需要注重数据的准确性和分析的科学性。

同时,也需要注意论文的结构和组织,合理安排内容,确保表达清晰,逻辑严谨。

最后,对研究结果进行讨论和总结,提出建议和展望,为相关研究和政策制定提供参考。

综上所述,计量经济学论文分析是一项复杂而重要的研究工作,需要研究者具备扎实的理论基础和专业的技能。

利用eviews软件进行数据分析和建模,可以帮助研究者更好地理解经济现象、揭示规律、做出预测,为经济学研究和实践提供理论支持和决策依据。

愿更多的学者和研究人员投身于计量经济学领域,不断推动学科进步和实践应用,为经济发展和社会进步做出贡献。

eviews实验报告

eviews实验报告

eviews实验报告EViews实验报告引言:EViews是一种广泛应用于经济学和金融学领域的计量经济学软件,它提供了一套强大的数据分析和建模工具。

本实验报告将通过一个实际案例,展示EViews 在经济数据分析中的应用。

数据收集与导入:首先,我们需要收集与我们研究主题相关的数据。

在本实验中,我们将以中国GDP和失业率数据为例。

我们可以通过EViews的数据导入功能将这些数据导入到软件中。

这样,我们就可以在EViews中对这些数据进行分析。

数据描述与可视化:在导入数据后,我们可以使用EViews的数据描述和可视化功能来了解数据的基本特征。

我们可以查看数据的统计摘要,包括均值、标准差、最小值和最大值等。

此外,我们还可以通过绘制折线图、散点图和直方图等图表来更好地理解数据的分布和趋势。

时间序列分析:EViews在时间序列分析方面具有强大的功能。

我们可以使用EViews中的自回归移动平均模型(ARMA)来对时间序列数据进行建模和预测。

通过对中国GDP数据进行ARMA建模,我们可以获得一个模型,该模型可以用来预测未来的GDP值。

面板数据分析:除了时间序列分析,EViews还支持面板数据分析。

面板数据是一种同时包含多个个体和多个时间点观测的数据类型。

通过EViews的面板数据分析功能,我们可以对个体和时间的固定效应进行建模和分析。

例如,我们可以使用面板数据分析功能来研究不同城市之间的失业率差异,并探索与失业率相关的因素。

计量经济模型估计:EViews还提供了一系列计量经济模型的估计方法,包括最小二乘法、广义矩估计和极大似然估计等。

我们可以使用这些方法来估计经济模型的参数。

例如,我们可以使用EViews的OLS(Ordinary Least Squares)方法来估计一个简单的线性回归模型,以研究GDP与失业率之间的关系。

假设检验与模型诊断:在进行计量经济分析时,假设检验和模型诊断是非常重要的步骤。

EViews提供了一系列假设检验和模型诊断的工具。

eviews 实验报告

eviews 实验报告

eviews 实验报告Eviews实验报告引言:Eviews是一款功能强大的经济学和金融学数据分析软件,广泛应用于学术研究和商业决策。

本实验报告将介绍我对Eviews软件的使用和实验结果,以及我对其优缺点的评估。

一、数据导入和处理在开始实验之前,我首先需要将所需数据导入到Eviews中。

Eviews支持多种数据格式的导入,包括Excel、CSV和数据库等。

我选择了导入一个包含宏观经济指标的Excel文件。

通过简单的几步操作,我成功将数据导入到Eviews中,并对数据进行了初步的处理和清洗。

二、描述性统计分析在导入和处理完数据后,我进行了描述性统计分析。

Eviews提供了丰富的统计功能,包括均值、标准差、最大值、最小值等。

我通过对数据进行统计分析,得到了各个宏观经济指标的基本特征。

这些统计结果对于我后续的模型建立和分析提供了重要的参考。

三、时间序列分析除了描述性统计分析,我还进行了时间序列分析。

Eviews拥有强大的时间序列分析功能,可以进行趋势分析、季节性分析、周期性分析等。

我通过绘制时间序列图和自相关图,对数据的趋势和周期性进行了分析。

这些分析结果对于我理解数据的演变规律和预测未来走势非常有帮助。

四、回归分析回归分析是经济学和金融学中常用的一种分析方法,可以用来研究变量之间的关系。

在Eviews中,进行回归分析非常方便。

我选择了一个宏观经济指标作为因变量,选取了几个其他指标作为自变量,进行了回归分析。

通过分析回归结果和统计显著性,我得出了一些有意义的结论,并对未来的变量走势进行了预测。

五、模型评估和验证在进行回归分析之后,我对建立的模型进行了评估和验证。

Eviews提供了多种模型评估方法,包括残差分析、模型稳定性检验等。

我通过对模型的残差进行分析,检验了模型的拟合度和稳定性。

根据评估结果,我对模型进行了修正和优化,以提高模型的准确性和可靠性。

六、结论和展望通过本次实验,我对Eviews软件有了更深入的了解,并掌握了一些基本的数据分析和建模技巧。

EVIEWS实验报告 1

EVIEWS实验报告 1

广东金融学院实验报告姓名邵太敏系别经济贸易系专业经济学学号 091584249 指导教师夏芳广东金融学院2011年06月影响粮食产量因素分析09经济学(2)班邵太敏 091584249 摘要:本文采用计量经济分析方法,以1978-2010年中国粮食产量及其重要因素的时间序列数据为样本,对影响中国粮食生产的多种因素进行了分析。

分析结果表明近年来我过粮食生产主要受播种面积、农业基础设施投入不足以及化肥使用量影响。

为提高粮食产量、促进粮食生产,首先应该提供一套促进粮食生产的政策措施提高粮食种植效益,增加粮农收入是根本,提高农民生产的积极性,稳定农业面积,加强基础设施建设等一系列措施来增加我国粮食生产能力和生产稳定。

关键词:粮食产量多因素分析相关政策- 、问题提出:由于我国人口众多,土地资源稀缺,在一定程度上造成日益增长的人口数量和粮食之间的矛盾凸显愈加强烈,因此粮食产量的稳定增长,直接影响着人民生活和社会的稳定与发展。

粮食生产的不稳定性对国民经济的影响是不可忽略的,在当今,世界可耕地面积日益减少的情况下,如何保证粮食的增产增收,关系着国计民生。

因此,分析粮食产量波动的原因,并据此提出相应的对策,对保障粮食生产持续稳定发展具有重要意义。

二、模型设定,数据处理及检验1 数据:年份粮食总产量粮食播种面积化肥使用量农林渔业从业粮食零售价格指数(万吨)Y(千公顷)X1(万吨)X2人数(万人)X3(上年=100)X41978 30476.5 120587.1 884 28455.6 101.3 1979 33211.5 119263.1 1086.3 29071.6 103.7 1980 32055.5 117234.2 1269.4 29808.4 103.5 1981 32502.5 114958.2 1406.9 30677.6 103.9 1982 35450.5 113462.3 1513.4 31152.7 100.21983 38728.5 114047.3 1659.8 31645.1 99.9 1984 40731.5 112884.5 1739.8 31685.1 99.8 1985 37911.5 108845.4 1775.8 30351.5 110.9 1986 39151.5 110933.8 1930.6 30467.9 109.3 1987 40298.2 111268.1 1999.3 30870.1 106.2 1988 39408.3 110123.3 2141.5 31455.7 114.1 1989 40755.1 112205.6 2357.1 32440.5 121.3 1990 44624.2 113465.9 2590.3 33336.4 95.6 1991 43529.3 112313.6 2805.1 34186.3 108.6 1992 44265.8 110559.8 2930.2 34037.1 124.3 1993 45648.8 110508.7 3151.9 33258.2 127.7 1994 44510.1 109543.7 3317.9 32690.3 148.7 1995 46661.8 110060.4 3593.7 32334.5 134.4 1996 50453.5 112547.9 3827.9 32260.4 107.5 1997 49417.1 112912.1 3980.7 32677.9 106.1 1998 51229.5 113787.4 4083.7 32626.4 108.9 1999 50838.6 113161.2 4124.3 32911.8 109.4 2000 46217.5 108462.5 4146.4 32797.5 110.1 2001 45263.7 106080.1 4253.8 32451.1 111.5 2002 45705.8 103890.8 4339.4 31990.6 109.6 2003 43069.5 99410.4 4411.6 31259.6 110.2 2004 46946.9 101606.1 4636.6 30596.1 113.5 2005 48402.2 104278.4 4726.2 29975.5 111.4 2006 49747.9 105489.1 4835.3 29332.2 114.7 2007 50152.3 105530.1 4922.5 28673.4 115.22008 52851.6 107540.2 5103.5 27653.6 119.32009 53082.4 108986.1 5239.2 27982.5 120.22010 54641.3 109872.7 5432.6 26534.2 125.62 模型设定:通过对数据进行整理和分析,我们现在初步假设粮食产量与粮食播种面积、化肥使用量、农林渔业从业人数以及粮食的相对价格4个指标之间存在多元线性关系。

Eviews软件数据分析例文剖析

Eviews软件数据分析例文剖析

小学期作业影响财政收入的主要因素学院:经济学院班级:统计学班**:***学号:**********影响财政收入的主要因素摘要:财政收入是一国政府实现政府职能的基本保障,主要有资源配置、收入再分配和宏观经济调控三大职能。

财政收入的增长情况关系着一个国家经济的发展和社会的进步。

我国财政收入主要受国民经济发展、预算外资金收入、税收收入等因素的影响。

本文针对我国财政收入影响因素建立了计量经济模型,并利用Eviews软件对收集到的数据进行相关回归分析,排除简单多元回归模型存在的严重多重共线性等问题,建立财政收入影响因素更精确的模型,分析了影响财政收入主要因素及其影响程度,预测我国财政收入增长趋势。

二、模型设定研究财政收入的影响因素离不开一些基本的经济变量。

大多数相关的研究文献中都把总税收、国内生产总值这两个指标作为影响财政收入的基本因素,还有一些文献中也提出了其他一些变量, 比如其他收入、经济发展水平等。

影响财政收入的因素众多复杂, 但是通过研究经济理论对财政收入的解释以及对实践的观察, 对财政收入影响的因素主要是税收收入。

下面我们就以税收收入、能源消费总量、和预算外资金收入作为影响财政收入的主要研究因素。

从中国统计局网站上可以查询到1993年至2008年的相关数据,对其进行计算整理可得:4.、模型的建立根据1978—2008年每年的财政收入Y( 亿元) , 能源消费总量X1( 亿元),预算外资金收入X2( 亿元) ,税收收入X3( 亿元) 的统计数据,由E-views软件得到y,x1,x2,x3的线性图,如下:由图可知,y,x1, x3都是逐年增长的,但增长速率有所变动,而x2呈现水平波动,说明变量间不一定是线性关系,可探索将模型设定为以下形式:lnY=β0+β1lnX1+β2X2+β3lnX3+U三,模型估计与调整利用Eviews软件对模型进行最小二乘法全回归,结果如下:第一步,进行模型的检验。

(一),进行多重共线性的检验方程的修正后的R平方值很高,说明变量对因变量的拟合程度很好,但是应该注意到c,lnx1,x2三者的t值很低(在此选择置信度为0.05),未通过检验,因此怀疑其中存在变量之间的多重共线问题。

计量经济学论文eviews分析报告计量经济作业

计量经济学论文eviews分析报告计量经济作业

我国旅游收入的计量分析一、经济理论陈述在研读了大量统计和计量资料的根底上,选择了三个大方面进展研究,既包括旅游人数,人均旅游花费和根本交通建设。

其中,在旅游人数这个解释变量的划分上,我们考虑到随着全球经济一体化的开展,越来越多的外国游客来中国旅游消费。

中国旅游的国际市场是个有开展潜力的新兴市场,尽管外国游客前来旅游的方式包罗万象而且消费能力也不尽一样,但从国际服务贸易的角度出发,我们在做变量选择时,运用国际营销的知识进展市场细分,划分了国际和国内两个市场。

这样,在旅游人数这个解释变量的最终确定上,我们选择了2X国内旅游人数,3X 入境旅游人数。

这点选择除了理论支持外,在现实旅游业开展中我们也看到很多景区包括某某的近郊也有不少外国游客的身影。

所以,我们选取这两个解释变量等待下一步进展模型设计和检验。

另外,对于人均旅游花费,我们在进展市场细分时,没有延续前两个变量的选择模式,有几个原因。

首先,外国游客前来旅游的形式和消费方式各异且很难统计。

我们在花大力气收集数据后,仍然没有比拟权威的统计数据资料。

其次,随着国家对农业的不断重视和扶持,我国农业有了长足开展。

农村居民纯收入增加,用于旅游的花费也有所上升。

而且鉴于农村人口较多,前面的市场细分也不够细化,在这个解释变量确实定上,我们选择农村人均旅游花费,既是从我国根本国情出发,也是对第一步研究分析的补充。

所以我们确定了4X城镇居民人均旅游花费和5X农村居民人均旅游花费。

旅游开展除了对消费者市场的划分研究,还应考虑到该产业的根底硬件设施。

在众多可选择对象中我们经分析研究结合大量文献资料决定从交通建设着手。

在我国,交通一般分布为公路,铁路,航班,航船等。

由于考虑到我国一般大众的旅游交通方式集中在公路和铁路上,为了防止解释变量的过多过繁以与可能带来的多重共线形等问题,我们只选取了前二者。

即确定了6X公路长度和7X铁路长度这两个解释变量。

其中,考虑到我国旅游业不断开展过程中,高速公路的修建也不断增多,在6X 确实定过程中,我们已经将其拟合,尽量保证解释变量的完整和真实。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学期作业
影响财政收入的主要因素
学院:经济学院
班级:统计学班
**:***
学号:**********
影响财政收入的主要因素
摘要:
财政收入是一国政府实现政府职能的基本保障,主要有资源配置、收入再分配和宏观经济调控三大职能。

财政收入的增长情况关系着一个国家经济的发展和社会的进步。

我国财政收入主要受国民经济发展、预算外资金收入、税收收入等因素的影响。

本文针对我国财政收入影响因素建立了计量经济模型,并利用Eviews软件对收集到的数据进行相关回归分析,排除简单多元回归模型存在的严重多重共线性等问题,建立财政收入影响因素更精确的模型,分析了影响财政收入主要因素及其影响程度,预测我国财政收入增长趋势。

二、模型设定
研究财政收入的影响因素离不开一些基本的经济变量。

大多数相关的研究文献中都把总税收、国内生产总值这两个指标作为影响财政收入的基本因素,还有一些文献中也提出了其他一些变量, 比如其他收入、经济发展水平等。

影响财政收入的因素众多复杂, 但是通过研究经济理论对财政收入的解释以及对实践的观察, 对财政收入影响的因素主要是税收收入。

下面我们就以税收收入、能源消费总量、和预算外资金收入作为影响财政收入的主要研究因素。

从中国统计局网站上可以查询到1993年至2008年的相关数据,对其进行计算整理可得:
4.、模型的建立
根据1978—2008年每年的财政收入Y( 亿元) , 能源消费总量X1( 亿元),预算外资金收入X2( 亿元) ,税收收入X3( 亿元) 的统计数据,由E-views软件得到y,x1,x2,x3的线性图,如下:
由图可知,y,x1, x3都是逐年增长的,但增长速率有所变动,而x2呈现水平波动,说明变量间不一定是线性关系,可探索将模型设定为以下形式:
lnY=β
0+β
1
lnX1+β
2
X2+β
3
lnX3+U
三,模型估计与调整
利用Eviews软件对模型进行最小二乘法全回归,结果如下:
第一步,进行模型的检验。

(一),进行多重共线性的检验
方程的修正后的R平方值很高,说明变量对因变量的拟合程度很好,但是应该注意到c,lnx1,x2三者的t值很低(在此选择置信度为0.05),未通过检
验,因此怀疑其中存在变量之间的多重共线问题。

检测自变量lny,lnx1,x2,lnx3之间的相关系数,判断多重共线性的可能如下图:
观察得知:各个解释变量之间的相关系数比较高,进一步怀疑其存在多重共线,需进行进一步修正。

(二),进行异方差的检验
1,图形法检验
通过生成残差平方序列绘制散点图如下:
由图可以看出,残差平方对解释变量的散点图主要集中分布在图形的下方,判断模型可能存在异方差。

但是否确实存在异方差还需进行进一步的检验。

2,White检验:
根据估计结果,得到White检验的结果如下:
由图可知,nR2=17.7399,由White检验知,在置信度为0.05下,得临界值
为18.3070> nR2=17.7399,表明模型不存在异方差。

(三),进行自相关检验
由原模型的回归结果得,修正后的R2= 0.9765,F = 416.1494,df=31,DW =0.1915,该回归方程可决系数较高,回归系数均显著。

对样本量为31,、三个解释变量的模型、5%显著水平,查DW 统计表可知,dL=1.229,dU=1.650,模型中DW<dL,显然模型中有自相关。

这一点也可从残差图中看出,点击EViews方程输出窗口的按钮Resids可得到残差图,如图所示。

由图可发现残差波动比较大,连续为正和连续为负,并且由回归结果可知残差项存在一阶自相关问题,需采取补救措施。

第二步,通过以上分析,对该模型进行修正,如下:
1,进行多重共线性的修正,
通过对相关系数观察得知,利用逐步回归法对原模型进行修正,以lnx3为因变量对其他解释变量进行逐步回归,可得如下分析结果,
经分析可知,当加入lnx1时,可决系数有所改善,但t检验不显著,且参数为负值不合理,从相关系数也可以看出,lnx1与其他变量高度相关。

而加入x2时,t检验显著,且可决系数改善也较大。

这说明主要是lnx1引起了多重共线性,予以剔除。

2,对修正后的模型再次进行自相关检验
由修正后模型的回归结果得,修正后的R2= 0.9765,F = 623.8471,df=31,DW =0.2599,该回归方程可决系数较高,回归系数均显著。

对样本量为31,、二个解释变量的模型、5%显著水平,查DW 统计表可知,dL=1.297,dU=1.570,模型中DW<dL,显然模型中有自相关。

这一点也可从残差图中看出,点击EViews 方程输出窗口的按钮Resids可得到残差图,如图所示。

由图可发现残差波动比较大,连续为正和连续为负,并且由回归结果可知残差项存在一阶自相关问题,需采取补救措施。

3,进行自相关的修正
为解决自相关问题,选用广义差分法。

对残差进行回归分析,得到e的残差序
列,对其进行滞后一期的自回归,可得回归方程如下:e
t=0.8290e
t-1
对该模型进行广义差分,得到下图:
由于使用了广义差分数据,样本容量减少了1个,为30个。

由图得,DW=1.4672,查1%显著水平的DW 统计表可知dL= 1.070,dU = 1.339,模型中DW=1.4672>dU,说明广义差分模型中已无自相关。

同时,修正后的可决系数R2、t、F 统计量均达到理想水平。

由此可见,财政收入与税收收入和预算外收入成正相关,这与理论分析和经验判断相一致,通过了经济学意义的检验。

由此,我们得到最终的财政收入模型为:
lnY=3.1655+(9.22E-06)X2+ 0.6197lnX3
经上述论证,财政收入(Y)主要与税收(x3)成正相关关系。

而且,从经济意义上面分析,虽然财政收入一般与预算外收入的关系也不是很大,但还是有一定关系的,且经过计量经济分析通过了检验,所以同样予以保留。

相关文档
最新文档