功能材料期末复习资料

合集下载

Java程序设计期末复习材料(IC12)

Java程序设计期末复习材料(IC12)

Java程序设计期末复习资料(IC12)一、选择题1.编译java程序filename.java后,生成的是()。

A.filename.html C.filename.class2.表达式9.9的类型是什么?(A.int B.filename.javD.filename.jar)。

B.StringD.floatC.double3.有一个类A,以下为其构造函数的声明,其中正确的是()。

A.public A(int x)B.static A(int x)D.void A(int x)C.public a(int x)4.下列说法,哪个是不正确的()。

A.对象的使用原则是先使用后定义B.接口是一种只含有抽象方法或常量的一种特殊的抽象类C.通过接口说明多个类所需实现的方法D.定义一个包要用package关键字5. Java语言与其他主要语言相比较,独有的特点是()。

A.面向对象B.多线程D.可扩展性C.平台无关性6.表达式(int)9.9的值是多少?()。

A.9 B.10D.”9.9”C.9.97.switch语句用什么关键字跳出语句块?()A.default B.lastD.continueC.break8.下列逻辑表达式的值为true的是?()。

A.true && 3>4 C.x<0 && x>0 B.(x != 0) || (x = = 0)D.false || (x=0 = =1)9.针对下列的程序,哪个选项是正确的(int i=0,j=9;)。

do {if (i++>--j)break ;}while (i<4);System.out .println("i="+i+" and j="+j);A .i = 4 and j = 4 C .i = 5 and j = 410.在成员变量中,指明变量为私有访问权限的是( B .i = 5 and j = 5D .i = 4 and j = 5)。

材料化学期末复习参考题

材料化学期末复习参考题

试卷总结材料化学一、选择〔每题2 分〕1.晶体的特性是〔 B 〕〔A〕有确定的熔点,无各向异性;〔B〕有确定的熔点,有各向异性;〔C〕无确定的熔点,有各向异性;〔D〕无确定的熔点,无各向异性;2.在一般状况下,假设金属的晶粒细,则〔 A 〕。

〔A〕金属的强度高,塑性好,韧性好。

〔B〕金属的强度高,塑性好,韧性差。

〔C〕金属的强度高,塑性差,韧性好。

〔D〕金属的强度低,塑性好,韧性好。

3.高温下从熔融的盐溶剂中生长晶体的方法称为〔 C 〕。

A、溶液法B、水热法C、溶剂法D、熔体法4.依据晶体对称度的不同,可把晶体分成〔 D 〕大晶系。

A、32B、14C、11D、75.晶胞肯定是一个:〔C〕。

A、八面体B、六方柱体C、平行六面体D、正方体6.某晶体外型为正三棱柱,问该晶体属于( D )晶系A.立方B. 三方C. 四方D.六方7、从我国河南商遗址出土的司母戊鼎重8750N,是世界上最古老的大型〔 C 〕。

〔A〕石器〔B〕瓷器〔C〕青铜器〔D〕铁器8、晶体中的位错是一种〔B 〕。

〔A〕点缺陷〔B〕线缺陷〔C〕面缺陷〔D〕间隙原子9. 工程材料一般可分为〔D〕等四大类。

〔A〕金属、陶瓷、塑料、复合材料〔B〕金属、陶瓷、塑料、非金属材料(C)钢、陶瓷、塑料、复合材料〔D〕金属、陶瓷、高分子材料、复合材料10.用特别方法把固体物质加工到纳米级〔1-100nm〕的超细粉末粒子,然后制得纳米材料。

以下分散系中的分散质的微粒直径和这种粒子具有一样数量级的是〔 C 〕A.溶液B.悬浊液C.胶体D.乳浊液11.美国《科学》杂志评出了 2023 年十大科技成就,名列榜首的是纳米电子学,其中美国的IBM 公司科学家制造了第一批纳米碳管晶体管,制造了利用电子的波性来传递信息的“导线”,纳米材料是指微粒直径在1 nm~100 nm 的材料。

以下表达正确的选项是〔 B 〕A.纳米碳管是一种型的高分子化合物B.纳米碳管的化学性质稳定C.纳米碳管导电属于化学变化D.纳米碳管的构造和性质与金刚石一样12.晶行沉淀陈化的目的是〔 C 〕A 沉淀完全B 去除混晶C 小颗粒长大,是沉淀更纯洁D 形成更细小的晶体13.晶族、晶系、点群、布拉菲格子、空间群的数目分别是〔 A 〕A 3,7,32,14,230B 3,720,15,200C 3,5,32,14,230D 3,7,32,14,20014.晶体与非晶体的根本区分是:( A )A.晶体具有长程有序,而非晶体长程无序、短程有序。

《结构化学》期末复习题

《结构化学》期末复习题

E
n2h2 8ml 2
D. n (x)
2 sin( n2x )
l
l,
E
n2h 8ml 2
13. 如果 E0 是一维势箱中电子最低能态的能量,则电子的较高一级能态的能量 E1 是( )
A. 2 E0
B. 4 E0
C. 8 E0
D. 16 E0
14. 关于力学量 A、其算符 Â 及状态函数 ψ 的描述正确的是:( )
A. 光是一束光子流,每一种频率的光的能量都有一个最小单位,称为光子。
B. 光子不但有能量,还有质量,但光子的静止质量不为 0。
C. 光子具有一定的动量。
D. 光的强度取决于单位体积内光子的数目,即,光子密度。
3. 下面哪种判断是错误的?( )
A. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子。
A. 若状态函数 ψ 不是力学量 A 的算符 Â 的状态函数,则无法求出这个力学量的平均值。
B. 若状态函数 ψ 不是力学量 A 的算符 Â 的状态函数,则 Âψ ≠ aψ。
4
C. 若状态函数 ψ 是力学量 A 的算符 Â 的状态函数,则解出的本征值 a 是唯一的。
D. 若状态函数 ψ 是力学量 A 的算符 Â 的状态函数,则这个函数 ψ 应该是唯一的。
23. 按 HMO 处理, 苯分子的第__一__和第__六___个 分子轨道是非简并分, 其余都是 __二___重简并
的。由分子图判断反应发生位置,若________最大处起反应(p157 规律) 24. dz2sp3 杂化轨道形成___三方(角)双锥形__几何构型。d2sp3 杂化轨道形成__正八面体形__几何构型。
D. 2.17 ×1015 s ‒1

材料合成与制备期末复习题

材料合成与制备期末复习题

材料合成与制备期末复习题第零章绪论1.材料合成:材料合成是指促使原子或分子构成材料的化学或物理过程;2.材料制备:材料制备是指研究如何控制原子与分子使其构成有用的材料,但材料制备还包括在更为宏观的尺度上控制材料的结构,使其具备所需的性能和使用效能。

3.材料合成与制备的最终目标是:制造高性能、高质量的新材料以满足各种构件、物品或仪器等物件的日益发展的需求。

4.材料合成与制备的发展方向:材料的高性能化、复合化、功能化、低维化、低成本化、绿色化;5.影响热力学过程自发进行方向的因素:(1)能量因素;(2)系统的混乱度因素; 6.隔离系统总是自发的向着熵值增加的方向进行。

7.论述反应速率的影响因素:(1)浓度对反应速率的影响:对于可逆反应,增加反应物浓度可以使平衡向产物方向移动,因此,提高反应物浓度是提高产率的一个办法,但如果反应物成本很高,将反应物之一在生成后立即分离出去或转移到另一相中去,也是提高反应产率的一个很好的办法。

对于有气相的反应,如果反应前后气体物质的反应计量数不等,则增加压力会有利于反应向气体计量数小的方向进行。

另外,对于多个反应同时进行的反应,则应按主反应的情况来控制反应物的配比;(2)温度对反应速率的影响:对于一个可逆反应,正反应吸热,则逆反应就放热;如果正反应放热,则逆反应就吸热,升高温度有利于反应向吸热方向进行,不利于放热反应;对于放热反应,用冷水浴或冰浴使其降温的办法有利于反应的进行,但影响反应速率。

实际生产中,要综合考虑单位实际内的产量和转化率同时进行;(3)溶剂等对反应速率的影响:溶剂在反应中的作用:一是提供反应的场所,二是发生溶剂化效应。

溶剂最重要的物理效应即溶剂化作用,化学效应主要有溶剂分子的催化作用和容积分子作为反应物或产物参与了化学反应。

若溶剂分子与反应物生成不稳定的溶剂化物,可使反应的活化能降低,加快反应速率;若生成稳定的溶剂化物,则使反应活化能升高,降低反应速率;若生成物与溶剂分子生成溶剂化物,不论它是否稳定,都会使反应速率加快。

(完整版)复合材料期末复习

(完整版)复合材料期末复习

复合材料复习资料1复合材料的定义?复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。

复合后的产物为固体时才称为复合材料,若为气体或液体,就不能成为复合材料。

2复合材料的分类:1)按基体材料类型分为:聚合物基复合材料;金属基复合材料;无机非金属基复合材料。

(始终有基字)2)按增强材料分为:玻璃纤维复合材料;碳纤维复合材料;有机纤维复合材料;金属纤维复合材料;陶瓷纤维复合材料(始终有纤维二字)3)按用途分为:功能复合材料和结构复合材料。

(两种的区别)结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,且能承受一定温度。

功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。

3复合材料的基体:金属基---对于航天与航空领域的飞机、卫星、火箭等壳体和内部结构,要求材料的质量小、比强度和比模量高、尺寸稳定性好,选用镁、铝合金等轻金属合金做基体。

对于高性能发动机,要求材料具有高比强度、高比模量、优良的耐高温性能,同时能在高温、氧化环境中正常工作,可以选择钛基镍基合金以及金属间化合物作为基体材料;对于汽车发动机,选用铝合金基体材料;对于电子集成电路,选用银铜铝等金属为基体。

轻金属基体—铝基、镁基,使用温度在450℃左右或以下使用,用于航天及汽车零部件。

连续纤维增强金属基采用纯铝或单相铝合金,颗粒、晶须增强…采用高强度铝合金。

钛基,使用温度在650℃(450-700),用作高性能航天发动机镍基、铁基钴基及金属间化合物,使用温度在1200℃(1000℃以上),耐高温4聚合物基体一)简答题(各自优缺点)聚合物基复合材料的聚合物基主要有:不饱和聚酯树脂、环氧树脂、酚醛树脂等热固性树脂。

各自优缺点:二)聚合物基体的作用选择题:a . 将纤维黏在一起;b.分配纤维间的载荷;c .保护纤维不受环境的影响5陶瓷基特点:比金属更高的熔点和硬度,化学性质非常稳定,耐热性、抗老化性好,但脆性大,韧性差。

材料力学重点公式复习

材料力学重点公式复习

1、应力 全应力正应力切应力线应变 的大小; 外力偶矩当功率P 当功率拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N FAσ= 3-1式中N F 为该横截面的轴力,A 为横截面面积;正负号规定 拉应力为正,压应力为负; 公式3-1的适用条件:1杆端外力的合力作用线与杆轴线重合,即只适于轴向拉压杆件; 2适用于离杆件受力区域稍远处的横截面;3杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; 4截面连续变化的直杆,杆件两侧棱边的夹角020α≤时 拉压杆件任意斜截面a 图上的应力为平均分布,其计算公式为全应力 cos p ασα= 3-2正应力 2cos ασσα=3-3切应力1sin 22ατα=3-4 式中σ为横截面上的应力;正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负;ασ 拉应力为正,压应力为负;ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负;两点结论:1当00α=时,即横截面上,ασ达到最大值,即()max ασσ=;当α=090时,即纵截面上,ασ=090=0;2当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αατ=1.2 拉压杆的应变和胡克定律 1变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长;如图3-2;图3-2 轴向变形 1l l l ∆=- 轴向线应变 llε∆= 横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负; 2胡克定律当应力不超过材料的比例极限时,应力与应变成正比;即 E σε= 3-5 或用轴力及杆件的变形量表示为 N F ll EA∆=3-6 式中EA 称为杆件的抗拉压刚度,是表征杆件抵抗拉压弹性变形能力的量;公式3-6的适用条件:a 材料在线弹性范围内工作,即p σσ〈;b 在计算l ∆时,l 长度内其N 、E 、A 均应为常量;如杆件上各段不同,则应分段计算,求其代数和得总变形;即1ni ii i iN l l E A =∆=∑3-7 3泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值;即 ενε'=3-8强度计算许用应力 材料正常工作容许采用的最高应力,由极限应力除以安全系数求得; 塑性材料 σ=s s n σ ; 脆性材料 σ=b bn σ其中,s b n n 称为安全系数,且大于1;强度条件:构件工作时的最大工作应力不得超过材料的许用应力; 对轴向拉伸压缩杆件[]NAσσ=≤ 3-9 按式1-4可进行强度校核、截面设计、确定许克载荷等三类强度计算; 2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关;2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态; 2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用τ表示; 2.4 剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即 G τγ= 3-10式中G 为材料的切变模量,为材料的又一弹性常数另两个弹性常数为弹性模量E 及泊松比ν,其数值由实验决定;对各向同性材料,E 、 ν、G 有下列关系 2(1)EG ν=+ 3-112.5.2切应力计算公式横截面上某一点切应力大小为 p pT I ρτ=3-12 式中p I 为该截面对圆心的极惯性矩,ρ为欲求的点至圆心的距离;圆截面周边上的切应力为 max tTW τ=3-13 式中p t I W R=称为扭转截面系数,R 为圆截面半径;2.5.3 切应力公式讨论(1) 切应力公式3-12和式3-13适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内; (2) 极惯性矩p I 和扭转截面系数t W 是截面几何特征量,计算公式见表3-3;在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强;因此,设计空心轴比实心轴更为合理;2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏;因此,强度条件为[]max maxt T W ττ⎛⎫=≤⎪⎝⎭ 3-14 对等圆截面直杆 []maxmax tT W ττ=≤ 3-15式中[]τ为材料的许用切应力; 3.1.1中性层的曲率与弯矩的关系1zMEI ρ=3-16 式中,ρ是变形后梁轴线的曲率半径;E 是材料的弹性模量;E I 是横截面对中性轴Z 轴的惯性矩; 3.1.2横截面上各点弯曲正应力计算公式 ZMy I σ=3-17 式中,M 是横截面上的弯矩;Z I 的意义同上;y 是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处 max max max max z zM My I W σ=•= 3-18 式中,max z z I W y =称为抗弯截面系数;对于h b ⨯的矩形截面,216z W bh =;对于直径为D 的圆形截面,332z W D π=;对于内外径之比为d a D =的环形截面,34(1)32z W D a π=-; 若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等;3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为 []maxmax zM W σσ=≤ 3-19 对于由拉、压强度不等的材料制成的上下不对称截面梁如T 字形截面、上下不等边的工字形截面等,其强度条件应表达为[]maxmax 1l t z M y I σσ=≤ 3-20a []maxmax 2y c zM y I σσ=≤ 3-20b 式中,[][],t c σσ分别是材料的容许拉应力和容许压应力;12,y y 分别是最大拉应力点和最大压应力点距中性轴的距离;3.3梁的切应力 z z QS I bτ*= 3-21式中,Q 是横截面上的剪力;z S *是距中性轴为y 的横线与外边界所围面积对中性轴的静矩;z I 是整个横截面对中性轴的惯性矩;b 是距中性轴为y 处的横截面宽度; 3.3.1矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布;切应力计算公式 22364Q h y bh τ⎛⎫=- ⎪⎝⎭3-22最大切应力发生在中性轴各点处,max 32QAτ=; 3.3.2工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担;切应力沿腹板高度的分布亦为二次曲线;计算公式为 ()2222824z Q B b h H h y I b τ⎡⎤⎛⎫=-+-⎢⎥ ⎪⎝⎭⎣⎦3-23近似计算腹板上的最大切应力:dhFs 1max=τd 为腹板宽度 h 1为上下两翼缘内侧距3.3.3圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化;最大切应力发生在中性轴上,其大小为 2max42483364z z d d Q QS Q d I b Adππτπ*⋅⋅===⨯ 3-25 圆环形截面上的切应力分布与圆截面类似;3.4切应力强度条件梁的最大工作切应力不得超过材料的许用切应力,即 []max max maxz z Q S I bττ*=≤ 3-26式中,max Q 是梁上的最大切应力值;max z S *是中性轴一侧面积对中性轴的静矩;z I 是横截面对中性轴的惯性矩;b 是maxτ处截面的宽度;对于等宽度截面,max τ发生在中性轴上,对于宽度变化的截面,max τ不一定发生在中性轴上; 4.2剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的 ,则名义切应力为 AQ=τ 3-27 剪切强度条件:剪切面上的工作切应力不得超过材料的 许用切应力[]τ,即 []ττ≤=AQ3-285.2挤压的实用计算名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则 []bsbs bs bsP A σσ=≤ 3-29 式中,bs A 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影;当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积;挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力 []bs bsbs A Pσσ≤=3-30 1, 变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角;相距为l 的两个横截面的相对扭转角为dx GI TlP⎰=0ϕ rad 4.4 若等截面圆轴两截面之间的扭矩为常数,则上式化为PGI Tl=ϕ rad 4.5 图4.2式中P GI 称为圆轴的抗扭刚度;显然,ϕ的正负号与扭矩正负号相同;公式4.4的适用条件:(1) 材料在线弹性范围内的等截面圆轴,即P ττ≤;(2) 在长度l 内,T 、G 、P I 均为常量;当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角;即 ∑==ni P i ii iI G l T 1ϕ rad 4.6 当T 、P I 沿轴线连续变化时,用式4.4计算ϕ; 2, 刚度条件扭转的刚度条件 圆轴最大的单位长度扭转角max 'ϕ不得超过许可的单位长度扭转角[]'ϕ,即[]''maxmax ϕϕ≤=PGI T rad/m 4.7 式 []'180'max max ϕπϕ≤⨯=︒P GI T m /︒ 4.82,挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系EIM=ρ1对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得()()EIx M x =ρ1 利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ()EIx M =''ω 4.9 将上式积分一次得转角方程为 ()C dx EIx M +==⎰'ωθ 4.10再积分得挠曲线方程 ()D Cx dx dx EI x M ++⎥⎦⎤⎢⎣⎡=⎰⎰ω 4.11 式中,C,D 为积分常数,它们可由梁的边界条件确定;当梁分为若干段积分时,积分常数的确定除需利用边界条件外,还需要利用连续条件; 3,梁的刚度条件限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即 []ωω≤max ,[]θθ≤max 4.12 3,轴向拉伸或压缩杆件的应变能在线弹性范围内,由功能原理得 l F W V ∆==21ε 当杆件的横截面面积A 、轴力F N 为常量时,由胡克定律EAlF l N =∆,可得 EA l F V N 22=ε 4.14杆单位体积内的应变能称为应变能密度,用εV 表示;线弹性范围内,得 σεε21=V 4.15 4,圆截面直杆扭转应变能 在线弹性范围内,由功能原 ϕe r M W V 21== 将T M e =与P GI Tl =ϕ代入上式得 Pr GI lT V 22= 4.16图4.5根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度r V : r V r τ21= 4.175,梁的弯曲应变能在线弹性范围内,纯弯曲时,由功能原理得 将M M e =与EIMl=θ代入上式得 EI l M V 22=ε 4.18图4.6横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用式4.18,积分得全梁的弯曲应变能εV ,即()⎰=lEI dxx M V 22ε 4.192.截面几何性质的定义式列表于下:静 矩 惯性矩惯性半径惯性积 极惯性矩3.惯性矩的平行移轴公式静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示; 定义式: ⎰=Ay zdA S ,⎰=Az ydA S Ⅰ-1量纲为长度的三次方;由于均质薄板的重心与平面图形的形心有相同的坐标C z 和C y ;则由此可得薄板重心的坐标 C z 为 AS A zdA z yAC==⎰同理有 A S y zC =所以形心坐标 A S z y C =,ASy z C = Ⅰ-2或 C y z A S ⋅=,C z y A S ⋅=由式Ⅰ-2得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即0=C y ,0=z S ;0=C z ,则 0=y S ;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心;静矩与所选坐标轴有关,其值可能为正,负或零;如一个平面图形是由几个简单平面图形组成,称为组合平面图形;设第 I 块分图形的面积为 i A ,形心坐标为Ci Ci z y , ,则其静矩和形心坐标分别为 Ci i n i z y A S 1=∑=,Ci i ni y z A S 1=∑= Ⅰ-3∑∑====ni ini Cii z C AyA AS y 11,∑∑====ni ini cii y C AzA AS z 11 Ⅰ-4§Ⅰ-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示;⎰=Ay dA z I 2,⎰=Az dA y I 2 Ⅰ-5量纲为长度的四次方,恒为正;相应定义AI i y y =,AI i zz =Ⅰ-6 为图形对 y 轴和对 z 轴的惯性半径;组合图形的惯性矩;设 zi yi I I , 为分图形的惯性矩,则总图形对同一轴惯性矩为yi ni y I I 1=∑=,zi ni z I I 1=∑= Ⅰ-7若以ρ表示微面积dA 到坐标原点O 的距离,则定义图形对坐标原点O 的极惯性矩⎰=Ap dA I 2ρ Ⅰ-8因为 222z y +=ρ所以极惯性矩与轴惯性矩有关系 ()z y Ap I I dA z yI +=+=⎰22Ⅰ-9式Ⅰ-9表明,图形对任意两个互相垂直轴的轴惯性矩之和,等于它对该两轴交点的极惯性矩;下式 ⎰=Ayz yzdA I Ⅰ-10定义为图形对一对正交轴 y 、z 轴的惯性积;量纲是长度的四次方; yz I 可能为正,为负或为零;若 y ,z 轴中有一根为对称轴则其惯性积为零;§Ⅰ-3平行移轴公式由于同一平面图形对于相互平行的两对直角坐标轴的惯性矩或惯性积并不相同,如果其中一对轴是图形的形心轴()c cz ,y时,如图Ⅰ-7所示,可得到如下平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I Aa I I C C C C z y yzz z y y 22 Ⅰ-13 简单证明之: 其中⎰AC dA z 为图形对形心轴 C y 的静矩,其值应等于零,则得同理可证I-13中的其它两式;结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小;在使用惯性积移轴公式时应注意 a ,b 的正负号;把斜截面上的总应力p 分解成与斜截面垂直的正应力n σ和相切的切应力n τ图222123n l m n σσσσ=++ 2222222123n n l m n τσσσσ=++-在以n σ为横坐标、n τ截面上的正应力n σ和切应力n τ区域图13.2中阴影中的一点;由图13.2显见。

材料学导论期末复习资料

材料学导论期末复习资料

材料学导论期末复习资料1、材料的分类:按化学组成分类:金属材料、无机材料、高分子材料(有机材料)、复合材料按物理状态分类:气态、液态、固态按主要的作用分类:结构材料、功能材料按用途分类:建筑材料、耐火材料、电子材料、医用材料、服用材料、农用材料、军用材料等2、纯金属的晶体结构:面心立方、体心立方、密排六方。

3、金属材料的特性:(1)金属材料的结合键主要为金属键,在室温下通常为晶体结构的固体;(2)金属材料具有金属光泽、强度较高、具有良好的导电导热性;许多纯金属具有良好的塑性,多数金属易被氧化。

(3)钢铁材料高性能化的途径:提高材料的纯净度、微合金化、超细晶粒、形变和相变耦合等。

4、从微观结合方式和宏观性能等方面说明无机材料的特点:1)无机材料的原子结合方式大都为离子键和共价键,或两者的混合键。

2)由于其结合键很难破坏,因此大多数无机材料具有高熔点、高强度和高硬度。

3)由于内部自由电子少,表现为导电性差,多为绝缘体,具有抗氧化和耐腐蚀。

5、列举无机材料的类型并说明它们的应用领域:结构陶瓷:耐热、耐磨结构件,耐火材料,建筑材料,航天材料,耐蚀材料(卫生洁具,餐具等)。

功能(信息)陶瓷:手机、电脑,医疗,航空航天。

人工晶体:高能物理(射线检测),如粒子对撞机,医疗体检系统,安检等。

涂层:航空航天用耐热涂层,生物涂层。

生物材料:人工骨材料,齿科材料。

能源材料:锂电池、钠硫电池(储能电池),热电材料。

6、复合材料的定义:由一种和几种非连续相的材料增强连续相材料构成,在材料间存在界面,界面间的作用力主要是范德瓦力,也可能存在半化学键,如氢键。

7、与单相传统材料相比复合材料的优点:与单相材料相比,其综合性能有所提高,如力学性能、耐热性、耐疲劳性等。

8、按维数分,纳米材料可分为:(1)零维纳米材料,指在空间三维尺度均在纳米尺度,如纳米尺度颗粒、原子团簇等。

(2)一维纳米材料,指在空间中有两维处于纳米尺度,如纳米线、纳米管、纳米棒等。

《材料导论》复习题

《材料导论》复习题

《材料导论》期末考试复习题一:基础知识1.生物和生命科学、纳米技术、能源与环境、电子与信息、材料是目前科学技术的七大热点和重点领域。

2.材料、能源和信息并列成为现代科学技术的三大支柱。

3.材料的分类:金属(金属、金属合金)、非金属(有机高分子材料、无机非金属材料)4.高分子材料的定义:包含由小分子通过共价键形成长链的天然或人工合成的材料。

5.高分子材料的分类:弹性体、热固性及热塑性树脂。

6.材料技术的发展趋势:从均质材料向复合材料发展、由结构材料往功能材料、多功能材料并重的方向发展、材料结构的尺度向越来越小的方向发展、由被动性材料向具有主动性的智能材料方向发展、通过仿生途径来发展新材料。

7.塑料:塑料是以合成树脂为主要成分,另加有(或不加)改性用的添加剂或加工助剂,在一定温度、压力条件下可塑化成型、并在常温下保持其形状的材料。

有时还包括塑料的半成品,如压塑粉、注塑粒料等。

经过成型加工,可制成具有特定形状又具有实用价值的塑料制品。

8.塑料的分类:合成塑料、天然塑料(按来源);热塑性塑料、热固性塑料(按热行为);通用塑料、工程塑料(使用范围和用途)。

9.塑料的特性:质轻、耐腐蚀、电绝缘、加工性能好;不耐热、易变形、不耐老化、易燃、原料受石化资源制约10.常用的塑料加工方式:挤出成型、注射成型、压延成型。

11.橡胶的定义:橡胶是一类线形柔性高分子聚合物。

其分子链柔顺性好,在外力作用下可产生较大的变形,除去外力后能迅速恢复原状。

12.橡胶的分类:天然橡胶、合成橡胶(按来源);热固性橡胶、热塑性橡胶(按加工性)。

13.橡胶配方的五大体系:生胶、填充补强、硫化促进、防老、软化增塑体系。

14.纤维的定义:指长度比直径大很多倍并且有一定的柔韧性的纤细物质。

15.涂料的定义和组成:涂料是合成树脂另一种应用形式,用来涂覆物体表面,形成保护或装饰膜层。

主要有三种组分:成膜物、颜料、溶剂。

16.黏合剂的定义:黏合剂也称胶黏剂,是一种把各种材料紧密地结合在一起的物质。

(完整)纳米材料导论期末复习重点

(完整)纳米材料导论期末复习重点

名词解释:1、纳米:纳米是长度单位,10-9米,10埃。

2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。

3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm)。

4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。

5、布朗运动:悬浮微粒不停地做无规则运动的现象.6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应.7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。

8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。

9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。

10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。

11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。

HAII—Petch公式:σ--强度; H--硬度;d--晶粒尺寸;K--常数纳米复合材料:指分散相尺度至少有一维小于100nm的复合材料。

14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。

15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。

大题:纳米粒子的基本特性?(1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。

(2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。

(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性)(3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。

磁性材料期末复习学习资料

磁性材料期末复习学习资料

磁性材料期末复习学习资料⼀、名词解释磁矩:反映磁偶极⼦的磁性⼤⼩及⽅向的物理量,定义为磁偶极⼦等效的平⾯回路内的电流和回路⾯积的乘积µ=i.s磁化强度:定义为单位体积内磁偶极⼦具有的磁矩⽮量和,是描述宏观磁体磁性强弱的物理量磁场强度:单位正电荷在磁场中受到的⼒,⽤H表⽰磁极化强度:单位体积内磁偶极矩的⽮量和磁感应强度:⽤来描述磁场强弱和⽅向的物理量,⼤⼩等于垂直于磁场⽅向长度为1m,电流为1A的导线所受⼒的⼤⼩;可逆磁化:畴壁位移磁化过程中磁位能的降低和铁磁体内能的增加相等不可逆磁化:每个磁化状态都处于亚稳态且磁化状态不随时间改变涡流损耗:导体在⾮均匀磁场中移动或处在随时间变化的磁场中时,导体内的感⽣的电流导致的能量损耗磁滞损耗:铁磁材料在磁化过程中由磁滞现象引起的能量损耗交换作⽤:铁磁性物质中近邻原⼦之间通过电⼦间的静电交换作⽤实现的作⽤⽅式超交换作⽤:反磁性物质中的磁性离⼦以隔在中间的⾮磁性离⼦为媒介实现的交换作⽤磁化曲线:表征磁感应强度B,磁化强度M与磁场强度H之间的⾮线性关系的曲线磁滞回线:在外加磁场H从正的最⼤到负的最⼤,再回到正的最⼤这个过程中,M-H或B-H形成了⼀条闭合曲线,称为磁滞回线磁化率:置于外磁场中的磁体,其磁化率为磁化强度M与外磁场强度H的⽐值,是表征磁体磁性强弱的⼀个参量磁导率:磁导率是表征磁体的磁性,导磁率及磁化难易程度的磁学量,是磁感应强度B与外磁场强度H 的⽐值起始磁导率:磁中性化的磁性材料,当磁场强度趋近于零时磁导率的极限值最⼤磁导率:对应基本磁化曲线上各点磁导率的最⼤值退磁场:当⼀个有限⼤⼩的样品被外磁场磁化时,在他两端的⾃由磁极所产⽣的⼀个与磁化强度⽅向相反的磁场称为退磁场退磁场Hd的强度与磁体的强度及形状有关,Hd=-NM退磁因⼦:仅与材料形状有关的影响材料退磁场强度的参数铁磁性:是指物质中相邻原⼦或离⼦的磁矩由于它们的相互作⽤⽽在某些区域中⼤致按同⼀⽅向排列,当所施加的磁场强度增⼤时,这些区域的合磁矩定向排列程度会随之增加到某⼀极限值的现象。

现代PVD表面工程技术期末复习内容及答案

现代PVD表面工程技术期末复习内容及答案

PVD1810.221.PVD:真空蒸镀、溅射镀膜、离子镀。

2.真空泵的分类:气体传输泵、气体捕集器。

3.弧源、磁过滤器、真空靶室和其他附属部分4.PVD的前处理:清洗、去毛刺、喷砂抛光等。

5.分析膜层组织形貌可以采用:金相显微镜、扫描电子显微镜、透射电子显微镜。

6.涂层的微观结构和形状最终决定了其性质。

7.衍射峰位角2θ是反映衍射方向的问题,主要与辐射波长,晶胞类型,晶胞大小及形状有关。

遵循布拉格方程。

8.涂层结合力的检测方法:划痕、压痕、球痕测试法。

9.常见的应力测试方法:X射线和电子衍射法,试样变形分析法和光干涉法。

10.靶材按成分分为:单质金属、合金、陶瓷靶材。

11.PVD涂层的研究方向:设备、涂层组元、涂层膜结构、涂层纳米化。

12.真空泵主要分为:气体传输泵、气体捕集泵。

13.靶材形状分为:矩形平面靶材,圆形平面靶材和圆柱靶材。

14.传统靶材制造方法包括:铸造,粉末冶金和非金属粉末。

15.零件的主要失效形式:腐蚀、磨损、疲劳、断裂。

16.涂层内应力主要分为热应力和涂层生长应力。

17.涂层厚度的检测方法:断面法、球痕法、无损检测法。

判断题1.与化学气相沉积相比,物理气相沉积温度高、无污染。

(错,温度低)2.真空度即是气体的稀薄程度。

(错,真空度是指处于真空状态下的气体稀薄程度。

)3.与溅射镀和离子镀相比,蒸镀结合性能最好。

(错,最差)4.对刀具喷砂处理可起到刃口细化作用。

(对)5.氮铝化钛涂层是紫黑色,附着力比氮化钛涂层大,耐热性能优越(对)6.清洗是PVD涂层前必不可少的一道工序。

(对)7.刀具涂层要求周边厚度一致,因此涂层过程中必须有三个转动惯量。

(对,自转,公转,大工件台转动)8.在工业领域内,通常用自来水进行漂洗。

(错,杂质多)9.在刀具刃尖涂层沉积最厚,涂层内应力更高。

(对)10.一般情况下,涂层与基体的界限越明显,则涂层结合力越好。

(错,越明显越差)11.相比于平面靶材,旋转管靶材利用率较大。

新型建筑材料复习资料

新型建筑材料复习资料

新型建筑材料期末复习资料1、简述孔隙率与空隙率的区别?答:孔隙率:指材料中孔隙体积与材料在自然状态下的体积之比的百分率。

空隙率:空隙率是指散粒材料在某种堆积体积内,颗粒之间的空隙体积所占的比例。

2、简述吸水率与含水率的区别?答:吸水性是指材料在水中能吸收水分的性质。

吸水性的大小用吸水率表示。

吸水率为材料浸水后在规定时间内吸入水饱和的质量〔或体积〕占材料绝干质量〔或干燥时体积〕的百分比。

材料在潮湿的空气中吸收空气中水分的性质称为吸湿性。

吸湿性的大小用含水率表示。

含水率为材料所含水的质量占材料干燥质量的百分比。

3、当某一个建筑材料的空隙率增大时,材料的密度、强度、吸水性、抗冻性、导热性是如何变化的?答:孔隙对材料性质的影响(孔隙增多) 1〕材料的体积密度减小 2〕体积密度减小,导热系数和热容随之减小 3〕材料受力的有效面积减小,强度降低 4〕透气性,透水性,吸水性变大 5〕对抗冻性,要看孔隙大小和形态而定,有些能提高抗冻性,抗渗性4、简述新型建筑材料特点及其选用原则?答:特点:复合化;多功能化;节能化、绿色化;轻质高强化;生产工业化。

选用原则:按建筑物类别选用;按建筑功能选用;按材料性质选用;按经济条件选用5、新型建筑材料按照化学组成分类分为哪几类?答:无机建筑材料、有机建筑材料、复合建筑材料。

6、轻质隔墙板按照其构造和选用材料分别分为哪几类?答:按构造分:实心的、空心的、复合的三种。

按选用材料分:石膏类、水泥类。

7、复合墙体材料按其使用功能分为哪几类?答:按使用能可分为以下几类:墙面板材料、保温吸声材料、墙体龙骨材料。

8、砌墙砖的工程尺寸?答:240mm×115mm×53mm9、在空心砖外壁和厚度均相同的条件下,不同的孔形对空心砖的热导率影响也很大,其中热导率最小的是那种孔形?最大的?答:矩形孔;圆形孔10、混凝土小型空心砖块的主规格?答:390mm×190mm×190mm11、新型建筑材料答:新型建筑材料是相对于传统建筑材料而言的,具有建筑材料无法比拟的功能。

材料性能学复习范文

材料性能学复习范文

材料性能学复习范文首先,我们需要了解材料性能的分类。

材料性能可以分为力学性能、热学性能、电学性能、光学性能和化学性能等多个方面。

力学性能包括材料的强度、硬度、韧性等;热学性能包括导热性、热膨胀系数等;电学性能包括导电性、介电性等;光学性能包括透光性、折射率等;化学性能包括材料在化学环境中的稳定性和反应性等。

其次,我们需要了解材料性能的测试和评价方法。

常见的测试方法包括拉伸试验、冲击试验、硬度测试等。

拉伸试验可以测量材料的强度和韧性,冲击试验可以评估材料的抗冲击性能,硬度测试可以衡量材料的硬度。

此外,还有一些专门用于测试特定性能的方法,比如热导率测试、电导率测试、抗腐蚀性能测试等。

然后,我们需要了解材料性能与微观结构之间的关系。

材料的性能受到其微观结构的影响。

例如,晶体的晶格结构和晶体缺陷会影响材料的力学性能;晶界和孪晶对材料的强度和变形能力有显著影响;材料中的晶粒尺寸和晶粒形状也会影响其力学性能。

因此,通过分析材料的微观结构,可以预测和改善材料的性能。

最后,我们还需要了解材料性能的变化规律。

材料的性能在不同条件下会发生变化。

例如,温度升高可以导致材料的强度下降;应力集中会导致材料的疲劳寿命降低;材料的长期使用会导致老化现象。

了解这些变化规律可以帮助我们预测材料的寿命和性能变化。

需要指出的是,在学习材料性能学的过程中,我们不仅需要理论知识的掌握,还需要进行实践和实验。

通过实验可以直观地观察材料的性能和性能变化,并验证理论的正确性。

总之,材料性能学是研究材料性能和性能变化规律的一门学科,随着科学技术的进步和对材料性能要求的不断提高,其在工程领域中的作用日益重要。

希望以上的复习内容可以帮助你巩固材料性能学的知识。

材料现代测试技术-期末复习题

材料现代测试技术-期末复习题

材料现代测试技术-期末复习题射线管主要由阳极,阴极,和窗口构成。

射线透过物质时产生的物理效应有:散射,光电效应,荧光辐射,俄歇效应。

3.德拜照相法中的底片安装方法有:正装,反装,和偏装三种。

射线物相分析方法分:定性分析和定量分析两种。

5.透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。

7.电子探针包括波谱仪和能谱仪成分分析仪器。

8.扫描电子显微镜常用的信号是二次电子和背散射电子。

9.人眼的分辨率本领大约是:)10.扫描电镜用于成像的信号:二次电子和背散射电子,原理:光栅扫描,逐点成像。

的功能是:物相分析和组织分析(物相分析利用电子和晶体物质作用可发生衍射的特点;组织分析;利用电子波遵循阿贝成像原理):定性分析(或半定量分析),测温范围大。

DSC:定量分析,测温范围常在800℃以下。

13.放大倍数(扫描电镜):M=b/B(b:显像管电子束在荧光屏上的扫描幅度,通常固定不变;B:入射电子束在样品上的扫描幅度,通常以改变B来改变M)射线衍射分析方法中,应用最广泛、最普通的是衍射仪法。

15.透射电镜室应用透射电子来成像。

无机非金属材料大多数以多相、多组分的非导电材料,直到60年代初产生了离子轰击减薄法后,才使无机非金属材料的薄膜制备成为可能。

17.适合透射电镜观察的试样厚度小于200nm的对电子束“透明”的试样。

~18.扫描电镜是用不同信号成像时分辨率不同,分辨率最高的是二次电子成像。

19.在电子与固体物质相互作用中,从试样表面射出的电子有背散射电子,二次电子,俄歇电子。

20.影响红外光谱图中谱带位置的因素有诱导效应,键应力,氢键,物质状态。

1.电离能:在激发光源作用下,原子获得足够的能量就发生电离,电离所必须的能量称为电离能。

2.原子光谱分析技术:是利用原子在气体状态下发射或吸收特种辐射所产生的光谱进行元素定性和定量分析的一种分析技术。

3.X射线光电效应:当X射线的波长足够短时,其光子的能量就很大,以至能把原子中处于某一能级上的电子打出来,而它本身则被吸收,它的能量就传递给电子了,使之成为具有一定能量的光电子,并使原子处于高能的激发态。

人教部编版三年级上册信息技术各单元知识点总结期末复习材料

人教部编版三年级上册信息技术各单元知识点总结期末复习材料

人教部编版三年级上册信息技术各单元知识点总结期末复习材料第一单元:计算机基本操作- 计算机的基本组成部分:硬件和软件- 计算机的开机、关机和重启操作- 桌面的基本元素:图标、任务栏、开始按钮- 鼠标的基本操作:左键点击、右键点击、拖拽- 键盘快捷键的使用:复制、粘贴、撤销第二单元:操作系统和文件管理- 常见的操作系统:Windows、Mac OS、Linux- 桌面操作系统的基本功能:文件管理、程序运行- 文件和文件夹的基本操作:新建、复制、移动、删除、重命名- 文件的属性:文件类型、文件大小、创建时间、修改时间第三单元:图片的查看和编辑- 常见的图片格式:JPEG、PNG、GIF- 图片的查看和打开方式:双击打开、右键打开- 图片的编辑操作:调整大小、裁剪、旋转、亮度调节第四单元:文字的输入和处理- 文字的输入方式:键盘输入、复制粘贴- 文字的编辑操作:选中、删除、插入- 文字的格式设置:字体、大小、颜色第五单元:互联网和网络安全- 互联网的特点和功能:信息获取、电子邮件、网上购物- 常见的网络服务:搜索引擎、社交媒体、视频网站- 网络安全的基本知识:密码的设置、防止病毒攻击、不泄露个人信息第六单元:多媒体和音频视频播放- 常见的多媒体文件格式:MP3、MP4、AVI- 音频和视频文件的播放方式:双击播放、使用播放器软件- 音频和视频的基本控制:播放、暂停、调节音量、快进、快退第七单元:简单网页的制作- 网页编辑工具的使用:文本编辑器、网页设计软件- 网页的保存和预览操作第八单元:计算机的维护和保护- 计算机的常见问题和故障:死机、蓝屏、慢速、病毒感染- 计算机维护的基本操作:清理硬盘、更新软件、定期关机重启第九单元:信息技术的应用- 信息技术在日常生活中的应用:手机使用、电子支付、在线研究- 信息技术在教育中的应用:电子教室、网络研究平台- 信息技术在工作中的应用:办公软件使用、邮件沟通、数据处理以上是人教部编版三年级上册信息技术各单元的知识点总结。

中国石油大学期末考试复习题 040114工程材料-18

中国石油大学期末考试复习题 040114工程材料-18

《工程材料》综合复习资料一、解释概念1、失效,2、共晶体,3、C 曲线,5、热加工,5、固溶处理,6、调质处理二、填空题1、按照结合键的性质,可将工程材料分为( )、( )、( )等四大类。

2、α-Fe 的晶格类型是( ),β-Fe 的晶格类型是( )。

3、金属晶体中的线缺陷主要是( ),其又分为两种类型,分别是:( )、( )。

4、一般实际金属晶体中常存在( )、( )和( )三类晶体缺陷。

5、金属的结晶是由( )、( )两个过程组成的。

6、金属中晶粒越细小,晶界面积越( ),强度和硬度越( )。

7、滑移的本质是( )。

8、根据使用用途不同,合金钢分为( )。

9、机械零件选材的三原则是( )。

10、按照几何特征,晶体缺陷主要可区分为( )。

11、球化退火的目的是( )。

12、晶体与非晶体结构上最根本的区别是( )。

13、再结晶晶粒度的大小主要取决于( )。

14、当金属液体进行变质处理时,变质剂的作用是( )。

15、过冷度是指( )。

三、判断题(正确者标注∨,错误者标注×)1可锻铸铁在高温时可以进行锻造加工。

( ) 2金属铸件可以通过再结晶退火来细化晶粒。

( )3所谓金属的加工硬化是指金属变形后强度、硬度提高,而塑性、韧性下降的现象。

( ) 4比T12钢和40钢有更好的淬透性和淬硬性。

( )5在铁碳合金中,只有共析成分的合金结晶时,才能发生共析转变,形成共析组织。

( ) 6隙相不是一种固溶体,而是一种金属间化合物。

( ) 7素体的本质是碳在Fe -γ中的固溶体。

( ) 8由液体凝固成固体的过程都是结晶过程。

( )9经加热奥氏体化后,在任何情况下,奥氏体中碳的含量均与钢中碳的含量相等。

( ) 10钢比T12钢的碳质量分数要低。

( )四、选择题1在立方晶系中指数相同的晶面和晶向的关系是()。

A. 垂直B. 平行C. 呈45度角D. 其晶向在晶面上2下列钢种中,以球化退火作为预备热处理的钢种是()。

新材料科学导论期末复习题(有答案版)

新材料科学导论期末复习题(有答案版)

新材料科学导论期末复习题(有答案版)一、填空题:1.材料性质的表述包括力学性能、物理性质和化学性质。

2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。

3.材料的结构包括键合结构、晶体结构和组织结构。

4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。

5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。

6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。

7.复合材料可分为结构复合材料和功能复合材料两大类。

8.聚合物分子运动具有多重性和明显的松弛特性。

9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。

如有光,电,热,磁,阻尼,声,摩擦等功能。

10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。

11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚合度。

12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示为增强体与基体的互补。

(ppt-复合材料,15页)13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能);(3)抗粉末化性能;(4)导热性能;(5)滞后现象。

14.典型热处理工艺有淬火、退火、回火和正火。

15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。

复合效应表现线性效应和非线性效应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。

16.新材料发展的重点已经从结构材料转向功能材料。

17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。

功能高分子材料的制备主要有以下三种基本类型:①功能小分子固定在骨架材料上;②大分子材料的功能化;③已有功能高分子材料的功能扩展;18.材料的化学性质主要表现为催化性能和抗腐蚀性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、名词解释(共24分,每个3分)居里温度:铁电体失去自发极化使电畴结构消失的最低温度(或晶体由顺电相到铁电相的转变温度)。

铁电畴:铁电晶体中许许多多晶胞组成的具有相同自发极化方向的小区域称为铁电畴。

电致伸缩:在电场作用下,陶瓷外形上的伸缩(或应变)叫电致伸缩。

介质损耗:陶瓷介质在电导和极化过程中有能量消耗,一部分电场能转变成热能。

单位时间内消耗的电能叫介质损耗。

n型半导体:主要由电子导电的半导体材料叫n型半导体。

电导率:电导率是指面积为1cm2,厚度为1cm的试样所具有的电导(或电阻率的倒数或它是表征材料导电能力大小的特征参数)。

压敏电压:一般取I=1mA时所对应的电压作为I随V陡峭上升的电压大小的标志称压敏电压。

施主受主相互补偿:在同时有施主和受主杂质存在的半导体中,两种杂质要相互补偿,施主提供电子的能力和受主提供空状态的能力因相互抵消而减弱。

二、简答(共42分,每小题6分)1.化学镀镍的原理是什么?答:化学镀镍是利用镍盐溶液在强还原剂(次磷酸盐)的作用下,在具有催化性质的瓷件表面上,使镍离子还原成金属、次磷酸盐分解出磷,获得沉积在瓷件表面的镍磷合金层。

由于镍磷合金具有催化活性,能构成催化自镀,使得镀镍反应得以不断进行。

2.干压成型所用的粉料为什么要造粒?造粒有哪几种方式?各有什么特点?答:为了烧结和固相反应的进行,干压成型所用粉料颗粒越细越好,但是粉料越细流动性越差;同时比表面积增大,粉料占的体积也大。

干压成型时就不能均匀地填充模型的每一个角落常造成空洞、边角不致密、层裂、弹性后效等问题。

为了解决以上问题常采用造粒的方法。

造粒方式有两种方式:加压造粒法和喷雾干燥法。

加压造粒法的特点是造出的颗粒体积密度大、机械强度高、能满足大型和异型制品的成型要求。

但是这种方法生产效率低、自动化程度不高。

喷雾干燥法可得到流动性好的球状团粒,产量大、可连续生产,适合于自动化成型工艺。

但是这种方法得到的团粒体积密度不如喷雾干燥法大、机械强度不如喷雾干燥法高。

3.铁电体与反铁电体的自发极化有何不同特点?并分别解释为什么总的ΣP=0?答;铁电体自发极化的特点是单元晶胞中的偶极子成对的按相同方向平行排列,晶体中存在着一个个由许多晶胞组成的自发极化方向相同的小区域-铁电畴,但各个铁电畴的极化方向是不同的、杂乱无章的分布;反铁电体自发极化的特点是单元晶胞中的偶极子成对的按相反方向平行排列且这两部分偶极子的偶极矩大小相等方向相反。

铁电体ΣP=0是由于一般情况下整个铁电晶体的内部不同方向取向的电畴其自发极化强度可相互抵消,所以铁电晶体的ΣP=0;反铁电体晶胞中偶极子以反平行方向排列偶极子的偶极矩在晶胞内部自行抵消,所以对外不显示极性ΣP=0。

4.独石电容器的的特点是什么?答:性能特点:大容量、小体积、长寿命、高可靠性适应电子设备向集成化、小型化发展;工艺特点:合并了烧银和薄膜制坯工艺;结构特点:涂有金属电极浆料的陶瓷坯体以多层交替堆叠的方式叠合起来,使陶瓷材料和电极同时烧成一个整体。

5.什么是受主?形成有效受主掺杂的条件是什么(以SrTiO3为例说明)?什么是受主能级?形成受主能级有哪几种方式?答:受主是能够在禁带提供空能级的杂质;形成有效受主的条件以SrTiO3为例,若想取代Sr2+(或Ti4+),1)掺杂离子与Sr2+(或Ti4+)半径相近;2)掺杂离子电价低于Sr2+(或Ti4+)。

受主杂质上的电子态相应的能级是受主能级;形成受主能级的方式有:低价外来阳离子替位;阳离子缺位;阴离子添隙等。

6.什么是半导体陶瓷,半导体陶瓷的能带结构有什么特点?答:半导体陶瓷是导电能力介于导体和绝缘体之间的陶瓷。

能带结构特点是价带全部被电子填满,禁带没有被电子填充是全空的,禁带宽度小于绝缘体一般小于2ev。

7.气敏陶瓷吸附气体有哪几种具体情况?各有什么电学特点?答:气敏陶瓷吸附气体有四种具体情况:1)N型半导体吸附氧化性气体其特点是N型半导体的载流子数目减少,电导率减小;2)N型半导体吸附还原性气体其特点是N型半导体的载流子数目增多,电导率增大;3)P型半导体吸附氧化性气体其特点是P型半导体的载流子数目增多,电导率增大;4)P型半导体吸附还原性气体其特点是P型半导体的载流子数目减少,电导率减小三、论述题(共34分)1、SrTiO3基陶瓷半导化的条件是什么?用氧挥发半导化机理进行解释。

(10分)答:SrTiO3基陶瓷半导化的条件是还原性气氛和施主掺杂同时具备缺一不可。

根据氧挥发半导化机理1)施主离子的加入导致阳离子空位锶空位的产生。

2)锶空位的出现大大削弱了空位近邻的钛氧八面体的Ti-O结合键。

3)在还原气氛中高温烧结时,氧通过扩散挥发在晶格中形成氧空位,氧空位电离而成为N型半导体2、BaTiO3基铁电电容器与BaTiO3基晶界层电容器的配方组成、微观结构及生产工艺有何不同?并解释为什么晶界层电容器的视在介电常数比铁电电容器大几十倍。

(12分)答:配方组成上,BaTiO3基铁电电容器根据具体性能要求加入移峰剂和压峰剂等,而BaTiO3基晶界层电容器一般要加入施主掺杂剂促进半导化。

微观结构上,BaTiO3基铁电电容器晶粒是介电常数较大的BaTiO3晶体;BaTiO3基晶界层电容器是由半导化的晶粒和晶粒表面的一层介电常数较大的介质层组成且晶粒。

生产工艺上,BaTiO3基铁电电容器是在氧化气氛下烧成;BaTiO3基晶界层电容器的半导化阶段还原气氛更有利且一般需要两次烧结。

晶界层电容器等效电路相当于一个阻容网络,其视在介电常数ε≈(d2/d1)εb,其中d1为晶界绝缘介质层的厚度,d2为半导化晶粒的直径,εb纯BaTiO3的介电常数。

由于d2>>d1可达几十倍,所以晶界层电容器的视在介电常数比铁电电容器大几十倍。

3、ZnO压敏陶瓷的相组成及每一相的作用是什么?并描述其显微结构的连续分布图像。

(12分)答:ZnO压敏陶瓷的相组成为:ZnO相,其作用是构成陶瓷的主晶相,由于Zn的添隙或Co 的溶入使它具有n型电导的特征;富铋相,由于富铋相溶有大量的ZnO和少量的Sb2O3所以富铋相有助于液相烧结。

又由于富铋相在晶粒边界结晶溶有大量的ZnO少量的Sb2O3、CoO、MnO2等对于产生高非线性有作用。

另外,还有抑制晶粒生长的作用;立方尖晶石相,是不连续的,它对陶瓷的非线性不起直接作用,但由于该相和ZnO以及富铋相在高温下共存,所以它对各成分向各相的分配起作用使富铋相具有一个特定的组成。

又由于它在ZnO 晶粒边界凝结故能抑制晶粒的生长;立方焦绿石相,该相也是不连续的,对陶瓷的非线性不起作用,但在高温时能与作用生成富铋相。

ZnO显微结构的连续分布图像:ZnO晶粒构成陶瓷的主体多处ZnO晶粒的晶粒边界没有晶界相,上述其它各相主要分布在三到四个ZnO晶粒的交角处是不连续的,富铋层很薄(约2nm)处在大多数ZnO-ZnO晶粒之间,对非线性起重要作用。

(试卷)周根柱功能材料一、名词解释(共21分,每个3分)1.电导率:电阻率的倒数或它是表征材料导电能力大小的特征参数)。

2.铁电性:某些晶体在一定的温度范围内具有自发极化(其极化方向可以因外电场的反向而反向)晶体的这种性质称为铁电性。

3.居里温度:铁电体失去自发极化使电畴结构消失的最低温度(或晶体由顺电相到铁电相的转变温度)。

4.介电常数:介电常数是衡量电介质储存电荷能力的特征参数。

5.功能材料:是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。

6.超导体临界磁场Hc:超导电性可以被外加磁场所破坏。

对于温度为T(T<Tc)的超导体,当外磁场超过某一数值Hc(T)的时候,超导电性就被破坏了,Hc(T)称为临界磁场。

7.正压电效应:压电效应(piezoelectric effect)是指对材料施加压力,张力或切向力时,发生与应力成比例的介质极化以及在晶体的两端出现正负电荷的现象.这种由于应力诱导而极化,称正压电效应.8.气敏陶瓷:气敏陶瓷对某一种或某几种气体特别敏感,其阻值将随该种气体的浓度(分压力)作有规则的变化,检测灵敏度通常为百万分之一的量级,个别可达十亿分之一的量级,故有“电子鼻”之称。

9.纳米量子尺寸效应:当纳米粒子的尺寸下降到某一值时 ,金属粒子费米面附近电子能级由准连续变为离散能级 ;纳米半导体微粒存在不连续的最高被占据的分子轨道能级和最低未被占据的分子轨道能级 ,使得能隙变宽的现象 ,被称为纳米材料的量子尺寸效应。

10.逆压电效应:在晶体上施加电场而引起介质极化时,如果产生了与电场强度成比例的变形或机械应力时,称其为负压电效应.11.高温超导:具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。

12.快淬技术:它是将熔化的液态合金急速冷却至室温,制得非晶态或纳米晶态合金。

13.燃烧电池:是一种将燃料和氧化剂之间的化学能持续地转变为电能而电极、电解质体系基本保持不变的系统。

14.光生伏特效应:当光量子的能量大于半导体禁带宽度的光照射到结区时,光照产生的电子-空穴对在结电场作用下,电子推向n区,空穴推向p区;电子在n区积累和空穴在p区积累使P-n结两边的电位发生变化,p-n结两端出现一个因光照而产生的电动势,这一现象称为光生伏特效应。

(二)填空(共30个空)(1)世界上第一块气敏陶瓷是用二氧化锡和氯化钯混合再研得极细,在高温炉中烧结而成的.它颗粒极细,吸附气体能力很强,此外,它又能显半导体性质,随吸附气体多寡,可改变导电率,所以,气敏陶瓷又被称作“电子鼻”。

(2)将超导体冷却到某一临界温度(TC)以下时电阻突然降为零的现象称为超导体的零电阻现象。

3.这种由于形变而产生的电效应,称为压电效应。

材料的压电效应取决于晶体结构的不对称性,晶体必须有极轴,才有压电效应。

4.制造透明陶瓷的关键是消除气孔和控制晶粒异常长大。

5.常见的功能材料制备方法有溶胶-凝胶法,快淬火快凝技术,复合与杂化6.功能材料的表征方法有材料组成表征、材料结构表征、材料性能表征。

7.电热材料的种类繁多,根据用途主要分为金属型和非金属性两种。

8.电热材料就是电流通过导体将放热,利用电流热效应的材料。

9.热敏电阻按其基本性能的不同可分为负温度系数NTC型热敏电阻、正温度系数PTC型热敏电阻、临界温度CTR型热敏电阻三类。

10.热释电系数除与温度有关外,还与晶体所处状态有关。

11.气敏元件有多种形式,但广泛使用的是半导体式和接触燃烧式。

12.超导体有3个基本的临界参数分别是临界温度T c、临界磁场H c、临界电流I C。

13.超导材料的基本物理性质有零电阻现象、完全抗磁性。

相关文档
最新文档