高中数学立体几何知识点总结(全)

合集下载

高中数学知识点-立体几何

高中数学知识点-立体几何

11.球
⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.
⑵球的体积公式和表面积公式.
二、常用结论、方法和公式
1.从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.
(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理.
立体几何知识要点
一、知识提纲
(一)空间的直线与平面
⒈平面的基本性质 ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.
⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.
⑴公理四(平行线的传递性).等角定理.
⑵异面直线的判定:判定定理、反证法.
⑶异面直线所成的角:定义(求法)、范围.
⒊直线和平面平行 直线和平面的位置关系、直线和平面平行的判定与性质.
⒋直线和平面垂直
⑴直线和平面垂直:定义、判定定理.
⑵三垂线定理及逆定理.
5.平面和平面平行
两个平面的位置关系、两个平面平行的判定与性质.
6.平面和平面垂直
互相垂直的平面及其判定定理、性质定理.
高中数学知识点-立体几何
考试内容
平面及其基本性质.平面图形直观图的画法.
1、平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.
2、直线和平面平行的判定平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结(详细)

高中数学立体几何知识点总结一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形1.3 棱柱的面积和体积公式ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。

2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高) 正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。

高中数学立体几何知识点总结大全

高中数学立体几何知识点总结大全

高中数学立体几何知识点总结大全一、空间几何体的结构及其三视图与直观图1.空间几何体的结构(1)多面体①底面互相平行.②侧面都是平行四边形.③每相邻两个平行四边形的公共边互相平行.(2)旋转体2.空间几何体的三视图(1)三视图的概念①光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;②光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;③光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.(2)三视图的画法规则①排列规则:一般地,侧视图在正视图的右边,俯视图在正视图的下边.如下图:②画法规则ⅰ)正视图与俯视图的长度一致,即“长对正”;ⅱ)侧视图和正视图的高度一致,即“高平齐”;ⅲ)俯视图与侧视图的宽度一致,即“宽相等”.③线条的规则ⅰ)能看见的轮廓线用实线表示;ⅱ)不能看见的轮廓线用虚线表示.(3)常见几何体的三视图3.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox,Oy,再作Oz轴使∠xOz=90°,且∠yOz=90°.②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同. ④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.二、空间几何体的表面积与体积 1.旋转体的表面积2.柱体、锥体、台体的体积公式(1)柱体、锥体、台体体积公式间的关系(2)一个组合体的体积等于它的各部分体积之和或差;(3)等底面面积且等高的两个同类几何体的体积相等.3.球的表面积和体积公式设球的半径为R,它的体积与表面积都由半径R唯一确定,是以R为自变量的函数,其表面积公式为,即球的表面积等于它的大圆面积的4倍;其体积公式为.24πR34π3R三、空间点、直线、平面之间的位置关系1.平面的基本性质1212 面,使αa⊂3 32.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(2)符号语言:如图(1)、(2)所示,在∠AOB与∠A′O′B′中,,则或.图(1)图(2)3.空间两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式:(1)从有无公共点的角度分类:(2)从是否共面的角度分类:4.异面直线所成的角(1)异面直线所成角的定义,OA O A OB O B''''∥∥AOB AO B∠=∠'''180AOB AO B∠+∠'''=︒⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成角的范围异面直线所成的角必须是锐角或直角,异面直线所成角的范围是. (3)两条异面直线垂直的定义如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .5.直线与平面、平面与平面位置关系的分类 (1)直线和平面位置关系的分类 ①按公共点个数分类:②按是否平行分类:③按直线是否在平面内分类:(2)平面和平面位置关系的分类两个平面之间的位置关系有且只有以下两种: (1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线.π(0,]2⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过直线外一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过平面外一点有且只有一条直线与已知平面垂直.(2)异面直线的判定方法经过平面内一点的直线与平面内不经过该点的直线互为异面直线.四、直线、平面平行的判定及其性质1.直线与平面平行的判定定理2.直线与平面平行的性质定理3.平面与平面平行的判定定理证明两个平面平行4.平面与平面平行的性质定理证明线线平行1.平行问题的转化关系2.常用结论(1)如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)如果两个平行平面中有一个平面垂直于一条直线,那么另一个平面也垂直于这条直线.(3)夹在两个平行平面间的平行线段长度相等.(4)经过平面外一点有且只有一个平面与已知平面平行.(5)两条直线被三个平行平面所截,截得的对应线段成比例.(6)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(7)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.(8)如果两个平面垂直于同一条直线,那么这两个平面平行.五、直线、平面垂直的判定及其性质1.直线与平面垂直的定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.记作:l⊥α.图形表示如下:定义中的“任意一条直线”这一词语与“所有直线”是同义语,与“无数条直线”不是同义语.2.直线与平面垂直的判定定理判断直线与平面垂直在应用该定理判断一条直线和一个平面垂直时,一定要注意是这条直线和平面内的两条相交..直线垂直,而不是任意的两条直线. 3.直线与平面垂直的性质定理4.平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.平面α与平面β垂直,记作.图形表示如下:αβ⊥5.平面与平面垂直的判定定理6.平面与平面垂直的性质定理证明直线与平面垂直7.直线与平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足.过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面上的射影.lα⎬⊂⎪⎪⊥⎭平面的一条斜线和它在平面上的射影所成的锐角..,叫做这条直线和这个平面所成的角. (2)规定:一条直线垂直于平面,我们说它们所成的角等于;一条直线和平面平行,或在平面内,我们说它们所成的角等于.因此,直线与平面所成的角.........α.的范围是..... 8.二面角(1)二面角的定义:平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角....这条直线叫做二面角的棱,这两个半平面叫做二面角的面. (2)二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做这个二面角的平面角. (3)二面角的范围:.1.垂直问题的转化关系2.常用结论(1)若两条平行线中一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则这条直线垂直于这个平面内任何一条直线. (3)过空间任一点有且只有一条直线与已知平面垂直. (4)过空间任一点有且只有一个平面与已知直线垂直. (5)两平面垂直的性质定理是把面面垂直转化为线面垂直.(6)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.(7)如果两个平面互相垂直,那么过第一个平面内的一点且垂直于第二个平面的直线在第一个平面内. 六、空间向量与立体几何900π[0,]2[0,π]1.空间直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系,如图所示.2.空间一点M 的坐标(1)空间一点M 的坐标可以用有序实数组来表示,记作,其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.(2)建立了空间直角坐标系后,空间中的点M 与有序实数组可建立一一对应的关系. 3.空间两点间的距离公式、中点公式 (1)距离公式①设点,为空间两点,则两点间的距离. ②设点,则点与坐标原点O 之间的距离为.(2)中点公式设点为,的中点,则. 4.共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(,,)x y z (),,M x y z (,,)x y z 111(,,)A x y z 222(,,)B x y z ,A B ||AB =(),,P x y z (),,P x y z ||OP =(),,P x y z 1111,),(P x y z 2222,),(P x y z 121212222x x x y y y z z z +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩牢记两个推论:(1)对空间任意一点O ,点P 在直线AB 上的充要条件是存在实数t ,使或(其中).(2)如果l 为经过已知点A 且平行于已知非零向量的直线,那么对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使,其中向量叫做直线l 的方向向量,该式称为直线方程的向量表示式. 5.共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使.牢记推论:空间一点P 位于平面ABC 内的充要条件是存在有序实数对(x ,y ),使;或对空间任意一点O ,有. 6.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中,{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.(1)空间任意三个不共面的向量都可构成基底. (2)基底选定后,空间的所有向量均可由基底唯一表示. (3)不能作为基向量.7.空间向量的运算(1)空间向量的加法、减法、数乘及数量积运算都可类比平面向量.(1)OP t OA tOB =-+OP xOA yOB =+1x y +=a OP OA t =+a a x y =+p a b AP xAB y AC =+OP OA x AB y AC =++0(2)空间向量的坐标运算设,则,,, ,,.8.直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.123123(,,),(,,)a a a b b b ==a b 112233(,,)a b a b a b ±=±±±a b 123(,,)()a a a λλλλλ=∈R a 112233a b a b a b ⋅=++a b 112233,,()b a b a b a λλλλλ⇔=⇔===∈R ab b a 1122330a b a b a b ⊥⇔⋅=++=a b a b ==a cos ,⋅==a ba b a b l l α⊥l α平面法向量的求法:设平面的法向量为.在平面内找出(或求出)两个不共线的向量,根据定义建立方程组,得到,通过赋值,取其中一组解,得到平面的法向量.9.利用空间向量表示空间线面平行、垂直设直线的方向向量分别为,平面的法向量分别为. (1)线线平行:若,则;线面平行:若,则; 面面平行:若,则.(2)线线垂直:若,则; 线面垂直:若,则;面面垂直:若,则. 10.利用空间向量求空间角设直线的方向向量分别为,平面的法向量分别为. (1)直线所成的角为,则,计算方法:; (2)直线与平面所成的角为,则,计算方法:;(3)平面所成的二面角为,则,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=.(,,)x y z =α123123(,,),(,,)a a a b b b ==a b 0⋅=⎧⎨⋅=⎩a b αα,l m ,l m ,αβ,αβ//l m ()λλ⇔=∈R lm l m //l α0⊥⇔⋅=l l αα//αβ()λλ⇔=∈R αβαβl m ⊥0⊥⇔⋅=l m l m l α⊥()λλ⇔=∈R ll αααβ⊥0⊥⇔⋅=αβαβ,l m ,l m ,αβ12,n n ,l m θπ02θ≤≤cos θ⋅=l ml ml αθπ02θ≤≤11sin θ⋅=l n l n ,αβθ0πθ≤≤,〈〉ABCD如图②③,分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 11.利用空间向量求距离(1)两点间的距离设点,为空间两点,则两点间的距离. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为.12,n n 1212⋅n n n n 111(,,)A x y z 222(,,)B x yz ,A B ||||(AB AB x ==||||||AB BO ⋅=n n。

高中数学 立体几何知识点总结

高中数学 立体几何知识点总结

立体几何一、空间位置关系的证明(一)平行关系的证明1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理3.重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(4)几何体中线面平行的证明常利用平行四边形的定义、性质或三角形中位线(二)垂直关系的证明1.直线与平面垂直(1)定义::如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理与性质定理2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角. (2)范围:[0,π2]. 3.平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)平面与平面垂直的判定定理与性质定理4.重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. (5)在几何体中垂直关系的证明中要重视勾股定理及平面几何知识的应用,如:菱形的对角线互相垂直,等腰三角形底边上的中线垂直于底边等。

二、立体几何中的向量方法 (一)证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. (二)求空间角1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB→,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结立体几何是数学中的一个分支,研究与三维空间中的几何图形相关的性质和关系。

高中数学中的立体几何部分主要涉及到体积、表面积、平面截面和立体图形的性质等内容。

下面将对高中数学立体几何的知识点进行总结。

一、体积和表面积的计算方法在立体几何中,体积和表面积是重要的衡量参数。

体积用于表示一个立体图形所占据的空间大小,而表面积则表示该立体图形的外表面积。

1.1 直体的体积和表面积计算方法直体包括长方体、正方体和圆柱体等。

长方体的体积等于底面积乘以高,表面积等于长方体的六个面的面积之和。

正方体的体积等于边长的立方,表面积等于六个面的面积之和。

圆柱体的体积等于底面积乘以高,表面积等于上下底面积之和再加上侧面积。

1.2 斜体的体积和表面积计算方法斜体包括棱柱、棱锥、棱台和四面体等。

棱柱的体积等于底面积乘以高,表面积等于底面积加上侧面积。

棱锥的体积等于底面积乘以高除以3,表面积等于底面积加上底面与顶点相连的面积。

棱台的体积等于上底面积加下底面积再乘以高除以2,表面积等于上底面积加下底面积再加上四个侧面的面积。

四面体的体积等于底面积乘以高除以3,表面积等于四个面的面积之和。

1.3 球体的体积和表面积计算方法球体的体积等于4/3乘以π乘以半径的立方,表面积等于4乘以π乘以半径的平方。

二、平面截面的性质和计算方法在立体几何中,平面截面是指一个平面与一个立体图形相交后所形成的截面。

平面截面的性质和计算方法与不同的立体图形有关。

2.1 长方体的平面截面性质和计算方法长方体的平面截面可以是矩形、正方形或平行四边形。

截面的面积等于截面的宽度乘以长度。

2.2 圆柱体的平面截面性质和计算方法圆柱体的平面截面可以是圆形、椭圆形或矩形。

截面的面积等于截面的形状对应的公式计算得出。

2.3 球体的平面截面性质和计算方法球体的平面截面可以是圆形或椭圆形。

截面的面积等于截面的形状对应的公式计算得出。

三、立体图形的性质除了体积、表面积和平面截面之外,立体几何还研究了立体图形的性质和关系。

高中数学第九章知识点总结(精华版)--立体几何

高中数学第九章知识点总结(精华版)--立体几何

高中数学第九章-立体几何考试内容平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.考试要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理,掌握二面角、二面角的平面角、两个平行平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.9(B).直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质。

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结

高中数学中的立体几何知识点总结立体几何是高中数学中一个重要的分支,它研究的是三维空间中的物体形状、大小以及它们之间的相互关系。

本文将对高中数学中的立体几何知识点进行总结,帮助同学们梳理和复习相关内容。

一、点、线、面的关系1. 点:点是空间中最基本的概念,没有大小和形状,只有位置坐标。

2. 线:两个点确定一条线段,线段有长度,可以延伸成直线。

3. 面:三个或三个以上的点确定一个面,面有面积,可以延伸成平面。

二、多面体1. 三棱锥:底面为三角形,侧面为三角形的四面体。

2. 四棱锥:底面为四边形,侧面为三角形的五面体。

3. 五棱锥:底面为五边形,侧面为三角形的六面体。

4. 正棱锥:底面为正多边形,侧面为等边三角形的多面体。

5. 正方体:六个面都是正方形的多面体。

6. 正四面体:四个面都是正三角形的多面体。

7. 正六面体:六个面都是正方形的多面体。

三、平面图形与立体图形1. 投影:图形在投影面上的图象。

2. 平行投影:平行于投影面的投影方式,不改变图形的形状和面积。

3. 斜投影:不平行于投影面的投影方式,改变图形的形状和面积。

4. 立体图形的展开图:将立体图形展开成平面图,便于计算和分析。

5. 空间几何体的视图:主视图、俯视图和侧视图,用来描述一个立体图形。

四、平行与垂直1. 平行关系:两条直线在同一个平面上,且永远不相交。

2. 垂直关系:两条直线在同一个平面上,且相交成直角。

五、角与平面的关系1. 角:由两条射线共同确定的图形,可以是平面角或空间角。

2. 平面角:两个相交的平面所夹的角,范围为0到180度。

3. 相对角:两个相交直线上相对的两个角。

六、面积与体积1. 面积:平面图形所占的面积,常见的有三角形、四边形、圆形的计算公式。

2. 体积:三维物体所占的空间大小,常见的有长方体、正方体、棱柱、棱锥、球体的计算公式。

七、相交与相切1. 相交:两个或多个图形交叠在一起。

2. 相切:两个或多个图形只有一个点是共同的。

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)垂直直线:两条直线的夹角为90度。

XXX.三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:需要指定一个方向向量,点在平面的哪一侧就取决于该方向向量与平面法向量的夹角。

四.直线与平面的位置关系直线在平面上:直线的每一点都在平面上;直线在平面内部:直线与平面没有交点;直线与平面相交:直线与平面有且只有一个交点;直线平行于平面:直线与平面没有交点,且方向向量与平面法向量垂直。

改写后:一、空间几何体的三视图空间几何体的三视图包括正视图、侧视图和俯视图。

其中,正视图是指从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度;侧视图是指从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度;俯视图是指从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

在三视图中,长对正,高平齐,宽相等是反映长、宽、高特点的简洁表述。

二、空间几何体的直观图斜二测画法是一种用于绘制空间几何体直观图的方法。

基本步骤包括建立适当的直角坐标系xOy,建立斜坐标系x'O'y',并画出对应图形。

在直观图中,已知图形平行于X轴的线段画成平行于X'轴,长度不变;已知图形平行于Y轴的线段画成平行于Y'轴,长度变为原来的一半。

直观图与原图形的面积关系是直观图面积为原图形面积的四分之一。

三、空间几何体的表面积与体积圆柱、圆锥、圆台的侧面积分别为2πrl、πrl和πr(l+R),其中r表示底面半径,l表示母线长度,R表示上底面半径。

圆柱、圆锥、圆台的体积分别为Sh、S/3h和S(h/3),其中S为底面积,h为高度。

球的表面积和体积分别为4πR²和(4/3)πR³。

四、点、直线、平面之间的位置关系平面的基本性质包括三条公理,分别是公理1、公理2和公理3.直线与直线的位置关系有相交、平行和垂直;点与平面的位置关系有在平面上、在平面内部、在平面外部、在平面上方或下方;直线与平面的位置关系有在平面上、在平面内部、相交和平行。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结1. 空间直角坐标系空间直角坐标系是三维空间中的坐标系,由三个互相垂直的坐标轴构成。

分别以这三个坐标轴为轴线的平面叫做该坐标轴的坐标平面,相应的,任意三元组(x,y,z)就代表空间中的唯一点。

x,y,z分别为点在三个坐标轴上的投影。

2. 空间中的点、直线、平面和空间图形在空间中,点的位置由其坐标来确定,点没有长度、宽度、高度。

直线是由两点确定的,是一条没有宽度的路径。

平面是由三点确定的,是一条没有厚度的表面。

图形是二维的,但在空间中,我们也需要研究三维的图形,这也是立体几何的研究对象。

3. 空间中的角空间中的角是由两条射线拼成,其中射线的起点称为角的顶点。

空间中的角与平面角类似,但是空间中还涉及到垂直的问题。

例如,在同一个平面内的两条路径的夹角是怎么样的?在不同平面内两条路径的夹角又是怎么样的?这都需要我们去研究。

4. 空间中的直线和角的位置关系空间中直线的位置关系主要有:同一平面内的直线、异面直线和交叉直线。

空间中角的位置关系主要有:邻角、对顶角、对应角、同位角的概念。

5. 空间中的平面和直线的位置关系在空间中,平面和直线的位置关系有:平行、垂直、重合、相交等概念,空间中也有直线相交、平面相交等问题。

6. 空间中的点和直线、点和平面的位置关系空间中的点与点、点与直线、点与平面的位置关系有:点在线上、点在直线外、点在平面内等。

7. 空间中的平面和平面的位置关系空间中的平面和平面的位置关系有:平行、垂直、相交、平面夹角等概念,还会有异面直线和异面直线的位置关系。

8. 空间中的平行四边形空间中的平行四边形和平面中的平行四边形是类似的,都有对角线平分、对边平行等性质。

9. 空间中的平面图形三维空间中的平面图形有:三棱锥、四棱锥、五棱锥等。

这些图形有各自的性质,也会涉及到不同角的夹角、面积等问题。

10. 空间中的体空间中的体有:圆柱、圆锥、台、棱柱、棱锥、棱台等。

这些体都有自己的性质和公式。

高中数学立体几何知识点总结大全

高中数学立体几何知识点总结大全

高中数学立体几何知识点总结大全数学立体几何知识点1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

能够用斜二测法作图。

2.空间两条直线的位置关系:平行、相交、异面的概念;会求异面直线所成的'角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

3.直线与平面①位置关系:平行、直线在平面内、直线与平面相交。

②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。

③直线与平面垂直的证明方法有哪些?④直线与平面所成的角:关键是找它在平面内的射影,范围是⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理.三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.4.平面与平面(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)(2)掌握平面与平面平行的证明方法和性质。

(3)掌握平面与平面垂直的证明方法和性质定理。

尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。

(4)两平面间的距离问题→点到面的距离问题→(5)二面角。

二面角的平面交的作法及求法:①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。

③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。

高中数学立体几何知识点数学知识点1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。

②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。

(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。

3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积 S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底 (3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。

(完整版)高中数学必修二立体几何知识点总结

(完整版)高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高中立体几何知识点总结

高中立体几何知识点总结

高中立体几何知识点总结高中立体几何知识点总结立体几何是几何学的一个分支,研究物体的三维空间结构和性质,其重点是探讨物体的表面积、体积、形状、投影、相交等问题。

作为高中数学的重要组成部分,立体几何的知识点包含几何体、空间向量、空间位置关系和空间几何解析四大方面。

一、几何体1.球与球的关系:两球相离、相切、相交。

2.立体角:定义、立体角对立面的定义及对应角相等、立体角的典型问题及其解法。

3.圆锥面积与圆锥体积:圆锥旋转成体的概念与性质,及圆锥面积和圆锥体积的计算公式。

4.棱锥与棱柱:棱锥的特征和体积公式、棱柱的特征和体积公式、棱柱剖面的面积公式。

5.四面体、六面体:四面体特征和体积公式、六面体特征和体积公式。

二、空间向量1.向量的概念和性质:向量的定义、运算律、数量积、向量积。

2.向量的表示方法:坐标表示、参数表示和模、方向角、方向余弦。

3.线性运算:向量表示为线性组合形式,解决向量的线性方程组。

三、空间位置关系1.点与直线、点与平面、直线与平面的位置关系:点与直线的位置关系、点与平面的位置关系、直线和平面的位置关系。

2.平行、垂直的判定及相关问题:平行、垂直判定公式,两直线距离及交点的坐标求解。

3.点到直线、点到平面的距离:点到直线的距离公式和推导、点到面的距离公式和推导。

4.三角形的性质:三角形重心、垂心、辅助线问题,海伦公式与三角形面积公式。

5.四边形的性质:四边形同种类四边形的性质、对角线互相垂直的条件、美索不达米亚定理。

四、空间几何解析1.空间坐标系的建立:矩形坐标系、极坐标系、柱面坐标系与球长坐标系。

2.空间中的方位角、高度角等概念:距离角度、方位角、高度角的定义及计算。

3.两点之间的距离公式:平面坐标系中求直线距离、空间坐标系中求空间线段的距离。

4.空间直线和平面的方程及相关问题:直线和平面方程求解,直线和平面的交线、交点问题。

高中数学立体几何总结

高中数学立体几何总结

高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。

(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。

2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。

3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。

(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。

2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。

(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。

2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。

3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。

(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。

2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。

(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。

2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。

(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。

当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。

2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结立体几何是数学中的一个重要分支,研究对象是三维空间中的几何体,包括点、线、面以及体。

在高中数学中,学生需要学习和掌握一系列的立体几何知识点,本文将对这些知识点进行总结。

一、点、线、面的基本概念1. 点:在三维空间中没有长度、宽度和高度,只有位置,用坐标表示。

2. 线:由无数相邻的点组成,没有宽度和高度。

3. 面:由无数相邻的线组成,有长度和宽度,无高度。

二、几何体的分类及特征1. 定义:立体几何中的几何体是由点、线、面组成的,有一定形状和大小的实体。

2. 分类:a. 二面体:只有两个面,如圆柱体、圆锥体等。

b. 三面体:有三个面,如正方体、四面体等。

c. 多面体:有多个面,如五面体、六面体等。

3. 特征:a. 顶点:几何体的尖角,由多个线相交而成。

b. 棱:几何体的边界线段,由多个点相连而成。

c. 面:几何体的表面,由多个线组成。

三、常见几何体的特征与性质在学习几何体的过程中,我们需要掌握一些常见几何体的特征与性质,以下是其中几个重要的例子。

1. 立方体:a. 特征:六个面都是正方形,相邻面之间的角为直角。

b. 性质:对称性强,体积为边长的立方,表面积为6倍的边长的平方。

2. 正方体:a. 特征:六个面都是正方形。

b. 性质:对称性强,体积为边长的立方,表面积为6倍的边长的平方。

3. 圆柱体:a. 特征:两个底面是圆形,侧面是矩形。

b. 性质:体积等于底面积乘以高,表面积等于两个底面积加上侧面矩形的面积。

4. 圆锥体:a. 特征:一个底面是圆形,侧面是三角形。

b. 性质:体积等于底面积乘以高再除以3,表面积等于底面积加上底面到顶点的直线与侧面三角形的面积之和。

四、立体几何的计算方法学习立体几何还需要掌握一些计算方法,包括体积、表面积等的计算。

1. 体积计算:a. 立方体的体积等于边长的立方。

b. 柱体的体积等于底面积乘以高。

c. 圆锥体的体积等于底面积乘以高再除以3。

2. 表面积计算:a. 立方体的表面积等于6倍的边长的平方。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

立体几何一、平面的根本性质公理1 假如一条直线上的两点在一个平面内,那么这条直线上全部的点都在这个平面内.公理2 假如两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同始终线上的三个点,有且只有一个平面.依据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.二、空间线面的位置关系共面平行—没有公共点(1)直线及直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有多数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面及平面相交—有一条公共直线(多数个公共点)平行—没有公共点三、异面直线的断定证明两条直线是异面直线通常采纳反证法.有时也可用定理“平面内一点及平面外一点的连线,及平面内不经过该点的直线是异面直线〞.四、线面平行及垂直的断定(1)两直线平行的断定①定义:在同一个平面内,且没有公共点的两条直线平行.②假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即假设a∥αβ,α∩β,那么a∥b.③平行于同始终线的两直线平行,即假设a∥∥c,那么a∥c.④垂直于同一平面的两直线平行,即假设a⊥α,b⊥α,那么a∥b⑤两平行平面及同一个平面相交,那么两条交线平行,即假设α∥β,α∩γ,β∩γ,那么a∥b⑥假如一条直线和两个相交平面都平行,那么这条直线及这两个平面的交线平行,即假设α∩β∥α∥β,那么a∥b.(2)两直线垂直的断定1.定义:假设两直线成90°角,那么这两直线相互垂直.∥⊥b,那么a⊥c⊥α⊂α,a⊥b.∥α⊥α,那么a⊥b.5.三个两两垂直的平面的交线两两垂直,即假设α⊥β,β⊥γ,γ⊥α,且α∩β,β∩γ,γ∩α,那么a⊥⊥⊥a.(3)直线及平面平行的断定①定义:假设一条直线和平面没有公共点,那么这直线及这个平面平行.②⊄α⊂α,a∥b,那么a∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即假设α∥β⊂α,那么l∥β.④α⊥β⊥β,l⊄α,那么l∥α.⑤在一个平面同侧的两个点,假如它们及这个平面的间隔相等,那么过这两个点的直线及这个平面平行,即假设A∉α,B∉α,A、B在α同侧,且A、B到α等距,那么∥α.⑥两个平行平面外的一条直线及其中一个平面平行,也及另一个平面平行,即假设α∥β⊄α,a⊄β,a∥α,那么α∥β.⑦假如一条直线及一个平面垂直,那么平面外及这条直线垂直的直线及该平面平行,即假设a⊥αα,b⊥a,那么b∥α.⑧假如两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即假设a∥∥α∥α(或b⊂α)(4)直线及平面垂直的断定①定义:假设一条直线和一个平面内的任何一条直线垂直,那么这条直线和这个平面垂直.②⊂α,n⊂α,m∩⊥⊥n,那么l⊥α.③∥⊥α,那么l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即假设α∥β⊥β,那么l⊥α.⑤假如两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即假设α⊥β∩β=α,l⊂β,l⊥a,那么l⊥α.⑥假如两个相交平面都垂直于第三个平面,那么它们的交线也垂直于第三个平面,即假设α⊥γ,β⊥γ,且a∩β=α,那么a⊥γ.(5)两平面平行的断定①定义:假如两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即假设⊂α,a∩∥β∥β,那么α∥β.③α⊥a,β⊥a,那么α∥β.④α∥β,β∥γ,那么α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,那么这两个平面平行,即假设⊂α⊂β∩∥∥d,那么α∥β.(6)两平面垂直的断定①定义:两个平面相交,假如所成的二面角是直二面角,那么这两个平面相互垂直,即二面角α-a-β=90°⇔α⊥β.②假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直,即假设l⊥β⊂α,那么α⊥β.③α∥β,α⊥γ,那么β⊥γ.五、直线在平面内的断定(1)利用公理1:始终线上不重合的两点在平面内,那么这条直线在平面内.(2)假设两个平面相互垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即假设α⊥β∈α,⊥β,那么⊂α.(3)过一点和一条直线垂直的全部直线,都在过此点而垂直于直线的平面内,即假设A∈⊥b,A∈α⊥α,那么a⊂α.(4)过平面外一点和该平面平行的直线,都在过此点而及该平面平行的平面内,即假设P∉α,P∈β,β∥α,P∈∥α,那么a⊂β.(5)假如一条直线及一个平面平行,那么过这个平面内一点及这条直线平行的直线必在这个平面内,即假设a∥α∈α,A∈∥a,那么b⊂α.六、存在性和唯一性定理(1)过直线外一点及这条直线平行的直线有且只有一条;(2)过一点及平面垂直的直线有且只有一条;(3)过平面外一点及这个平面平行的平面有且只有一个;(4)及两条异面直线都垂直相交的直线有且只有一条;(5)过一点及直线垂直的平面有且只有一个;(6)过平面的一条斜线且及该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而及另一条平行的平面有且只有一个;(8)过两条相互垂直的异面直线中的一条而及另一条垂直的平面有且只有一个.七、射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不及射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上全部的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面及射影面垂直时,射影是一条线段;当图形所在平面不及射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;()相等的斜线段的射影相等,较长的斜线段的射影也较长;()垂线段比任何一条斜线段都短.八、空间中的各种角1、等角定理及其推论定理:假设一个角的两边和另一个角的两边分别平行,并且方向一样,那么这两个角相等.推论:假设两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.2、异面直线所成的角(1)定义:a、b是两条异面直线,经过空间随意一点O,分别引直线a′∥′∥b,那么a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①依据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.3、直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.()垂线及平面所成的角直线垂直于平面,那么它们所成的角是直角.()一条直线和平面平行,或在平面内,那么它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线及平面所成的角θ.②解含θ的三角形,求出其大小.4、二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线动身的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.5、假设两个平面相交,那么以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上随意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.②二面角的平面角具有以下性质:(i)二面角的棱垂直于它的平面角所在的平面,即⊥平面.()从二面角的平面角的一边上随意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.()二面角的平面角所在的平面及二面角的两个面都垂直,即平面⊥α,平面⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法()垂面法(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′·α其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的间隔公式求二面角的大小.空间的各种间隔点到平面的间隔(1)定义面外一点引一个平面的垂线,这个点和垂足间的间隔叫做这个点到这个平面的间隔 .(2)求点面间隔常用的方法:1)干脆利用定义求①找到(或作出)表示间隔的线段;②抓住线段(所求间隔 )所在三角形解之.2)利用两平面相互垂直的性质.即假如点在平面的垂面上,那么点到两平面交线的间隔就是所求的点面间隔 .3)体积法其步骤是:①在平面内选取适当三点,和点构成三棱锥;②求出1·h,求出h即为所此三棱锥的体积V和所取三点构成三角形的面积S;③由3求.这种方法的优点是不必作出垂线即可求点面间隔 .难点在于如何构造相宜的三棱锥以便于计算.4)转化法将点到平面的间隔转化为(平行)直线及平面的间隔来求.直线和平面的间隔(1)定义一条直线和一个平面平行,这条直线上随意一点到平面的间隔,叫做这条直线和平面的间隔 .(2)求线面间隔常用的方法①干脆利用定义求证(或连或作)某线段为间隔,然后通过解三角形计算之.②将线面间隔 转化为点面间隔 ,然后运用解三角形或体积法求解之. ③作协助垂直平面,把求线面间隔 转化为求点线间隔 .空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原那么: 长对齐、高对齐、宽相等3直观图:斜二测画法〔角度等于45或者135〕4斜二测画法的步骤:〔1〕.平行于坐标轴的线依旧平行于坐标轴;〔2〕.平行于y 轴的线长度变半,平行于x 轴的线长度不变;〔3〕.画法要写好。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结1. 空间直线和平面1.1 直线与平面的位置关系•直线与平面可以有三种位置关系,分别为相交、不相交和平行。

•对于相交的情况,直线和平面的交点为一个点;对于不相交的情况,直线与平面没有公共点;对于平行的情况,直线和平面没有公共点且不在同一个平面中。

1.2 直线与平面的求交问题•已知直线和平面的方程,可以利用联立方程求解,得到交点的坐标。

•已知直线上一点和直线的方向向量,可以利用点向式求解,得到直线和平面的交点坐标。

1.3 直线和平面的垂直关系•如果一条直线与一个平面垂直,那么直线上的所有向量都垂直于该平面的法向量。

•如果一条直线的方向向量与一个平面的法向量垂直,则该直线与该平面垂直。

1.4 平面间的位置关系•平面与平面可以有三种位置关系,分别为相交、不相交和重合。

•对于相交的情况,两个平面的交线可以是一条直线或者平行线;对于不相交的情况,两个平面没有公共点;对于重合的情况,两个平面完全重合。

2. 立体图形的表面积和体积2.1 立体图形的表面积•不同形状的立体图形有不同的表面积计算公式。

•对于常见的立体图形,可以利用公式计算表面积,如长方体的表面积为2(ab + bc + ac),球的表面积为4πr^2。

2.2 立体图形的体积•不同形状的立体图形有不同的体积计算公式。

•对于常见的立体图形,可以利用公式计算体积,如长方体的体积为abc,球的体积为(4/3)πr^3。

2.3 体积的加减原理•如果两个立体图形没有重叠部分,它们的体积之和等于各自的体积之和。

•如果两个立体图形有重叠部分,它们的体积之和等于各自的体积之和减去重叠部分的体积。

3. 空间几何体的性质3.1 球的性质•球是由圆在空间绕其直径旋转一周所形成的几何体。

•球的表面上任意两点之间的最短距离称为球面上的弧长。

•球的内切球是与球内接触且与球的表面相切的最大的球。

•球的外切球是与球外接触且与球的表面相切的最小的球。

3.2 圆锥的性质•圆锥是由一个固定点(顶点)和一条固定直线(轴线)上的所有点组成的几何体。

高中数学立体几何知识点总结4篇

高中数学立体几何知识点总结4篇

高中数学立体几何知识点总结4篇高中数学立体几何知识点总结4篇社会心理学是一种以社会群体和人际关系为研究对象的学科,涉及社会认知、群体动态和人际关系等基本领域。

统计学是一种以数据收集、分析和解释为基础,为决策和研究提供有力支持的学科。

下面就让小编给大家带来高中数学立体几何知识点总结,希望大家喜欢!高中数学立体几何知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x ,y+y )。

a+0=0+a=a。

向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。

② 如果a≠0且λa=μa,那么λ=μ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2 第一章 空间几何体知识点总结
一.空间几何体的三视图
正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度 侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度 俯视图:光线从几何体的上面向下面正投影得到的投影图。

反映了物体的长度和宽度 三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 二.空间几何体的直观图
斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450
(或1350

③画对应图形
在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘
轴,且长度保持不变;
在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘
轴,且长度变为原来的一半; 直观图与原图形的面积关系:4
2S ⋅=原图形直观图S 三.空间几何体的表面积与体积
⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 h S V ⋅=柱体h S V ⋅=3
1锥体
()
1
3
V h S S S S =+⋅+下下
台体上上
球的表面积和体积 3
2
3
44R V R S ππ=
=球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。

正四面体是每个面都是全等的等边三角形的三棱锥。

第二章 点、直线、平面之间的位置关系知识点总结
一. 平面基本性质即三条公理
公理1
公理2
公理3
图形语言
文字
语言
如果一条直线上的两点在
一个平面内,那么这条直线
在此平面内. 过不在一条直线上的三点,有且只有一个平面.
如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
符号
语言 ,,A l B l l A B ααα∈∈⎫⇒⊂⎬∈∈⎭
,,,,A B C A B C α⇒不共线确定平面
,l
P P P l αβαβ=⎧∈∈⇒⎨∈⎩
作用 判断线在面内
确定一个平面
证明多点共线
公理2的三条推论:
推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面.
二.直线与直线的位置关系
共面直线: 相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。

(既不平行,也不相交) 三.直线与平面的位置关系有三种情况:
在平面内——有无数个公共点 . 符号 a α 相交——有且只有一个公共点 符号 a ∩α= A 平行——没有公共点 符号 a ∥α
说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 1.直线和平面平行的判定
(1)定义:直线和平面没有公共点,则称直线平行于平面;
(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号: ////a b a a b ααα⊄⎫
⎪⊂⇒⎬⎪⎭
2.直线和平面平行的性质定理:
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行,则线线平行.
符号: a a a b b α
βαβ⊂⇒=⎫
⎪⎬⎪⎭
3.直线与平面垂直
⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。

⑵判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

简记为:线线垂直,则线面垂直.
符号:,,m n m n A l l m l n αα⊂⎫⎪
=⇒⊥⎬⎪⊥⊥⎭
4.直线与平面垂直
性质Ⅰ:垂直于同一个平面的两条直线平行。

符号: a a b b αα⊥⎫
⇒⎬⊥⎭
性质Ⅱ:垂直于同一直线的两平面平行
符号:l l ααββ⊥⎫⇒⎬⊥⎭
推论:如果两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.
符号语言:a ∥b, a ⊥α,⇒b ⊥α
四.平面与平面的位置关系:
平行——没有公共点: 符号 α∥β 相交——有一条公共直线: 符号 α∩β=a 1.平面与平面平行的判定
(1)定义:两个平面没有公共点,称这两个平面平行;
(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

简记为:线面平行,则面面平行.
符号:,,a b a b A a b αααβββ⊂⊂⎫
⎪=⇒⎬⎪⎭
2.平面与平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。

简记为:面面平行,则线线平行.
符号:a a b b αβ
αγβγ=⇒=⎫

⎬⎪⎭
补充:平行于同一平面的两平面平行; 夹在两平行平面间的平行线段相等;
两平面平行,一平面上的任一条直线与另一个平面平行;
3.平面与平面垂直的判定
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

⑵判定定理:一个平面经过另一个平面的一条垂线,则这两个平面垂直。

简记为:线面面垂直,则面面垂直. 符号:
l l βαβα⊥⇒⊥⊂⎫
⎬⎭
推论:如果一个平面平行于另一个平面的一条垂线,则这个平面与另一个平面垂直。

4.平面与平面垂直的性质定理:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

简记为:面面垂直,则线面垂直.
证明线线平行的方法
①三角形中位线 ②平行四边形 ③线面平行的性质 ④平行线的传递性 ⑤面面平行的性质 ⑥垂直于同一平面的两直线平行; 证明线线垂直的方法
①定义:两条直线所成的角为90°;(特别是证明异面直线垂直); ②线面垂直的性质 ③利用勾股定理证明两相交直线垂直;
④利用等腰三角形三线合一证明两相交直线垂直; 五:三种成角 1.异面直线成角
步骤:1、平移,转化为相交直线所成角;2、找锐角(或直角)作为夹角;3、求解
注意:取值范围:(0。

,90。

].
2.线面成角:斜线与它在平面上的射影成的角,取值范围:(0。

,90。

].
如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。

3.二面角:从一条直线出发的两个半平面形成的图形 取值范围:(0。

,180。


六.点到平面的距离:定义法和等体积法
----,,l OA OB l OA l OB l AOB αβαβαβ⊂⊂⊥⊥∠如图:在二面角中,O 棱上一点,,,的平面角。

且则为二面角
空间向量与立体几何知识点总结
一.向量基本运算:设()111,,a x y z =,()222,,b x y z =
1.12121200a b a b x x y y z z ⊥⇔⋅=⇔++= 2.121212//,,a b a b x x y y z z λλλλ⇔=⇔=== 3.21a a a x =
⋅=+21
cos ,x a b a b a b
x ⋅〈〉=
=
+
一、直线与平面、平面与平面的平行与垂直的向量方法
1.若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1// l 2⇔1u //2u ,l 1⊥l 2⇔1u ⊥2u .
2.若两平面α、β的法向量分别是1v 、2v ,则有α//β⇔1v //2v ,α⊥β⇔1v ⊥2v .
3.若直线l 的方向向量是u ,平面的法向量是v ,则有l //α⇔u ⊥v ,l ⊥α⇔u //v 二、空间角的计算
1.两条异面直线所成角的求法
设直线a 、b 的方向向量为a 、b ,其夹角为ϕ,则有 cos |cos |a b a b
θϕ⋅==

2.直线和平面所成角的求法
设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ,则有
sin |cos |cos sin a u a u
θϕθϕ
⋅==
=⋅或
3.二面角的求法
设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二
面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212
cos n n n n θ⋅=.
三. 点P 到平面α的距离
如果令平面α的法向量为n ,考虑到法向量的方向,可以得到B 点到平面α的距离为
AB n BO n
⋅=。

相关文档
最新文档