化学钢化玻璃的原理及工艺流程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学钢化玻璃的原理及工艺流程
化学钢化玻璃主要以3mm厚度以下的玻璃为主,化学钢化玻璃是通过改变玻璃的表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。

其方法是将含有碱金属离子的硅酸盐玻璃,浸入到熔融状态的锂(Li+)盐中,使玻璃表层的Na+或K+离子与Li+离子发生交换,表面形成Li+离子交换层,由于Li+的膨胀系数小于Na+、K+离子,从而在冷却过程中造成外层收缩较小而内层收缩较大,当冷却到常温后,玻璃便同样处于内层受拉,外层受压的状态,其效果类似于物理钢化玻璃。

化学钢化玻璃的工艺流程为:
白片成品—QC检验—清洗处理—化学钢化---保温冷却—清洗干燥—包装。

由于钾钠离子交换速度较慢,要使玻璃具有大的应力值和符合使用要求的应力层厚度,交换时间需要1小时—8小时不等。

化学钢化玻璃的优点:
化学钢化玻璃未经转变湿度以上的高温过程,所以不会像物理钢化玻璃那样存在翘曲,表面平整度与原片玻璃一样,同时在强度和耐温度变化有一定提高,并可适当作切裁处理。

化学钢化玻璃强度高,其抗压强度可达125MPa以上,比普通玻璃大4~5倍;抗冲击强度也很高,用钢球法测定时,0.8kg的钢球从1.2m高度落下,玻璃可保持完好。

化学钢化玻璃的弹性比普通玻璃大得多,一块1200mm×350mm×6mm的钢化玻璃,受力后可发生达100mm的弯曲挠度,当外力撤除后,仍能恢复原状,而普通玻璃弯曲变形只能有几毫米。

热稳定性好,在受急冷急热时,不易发生炸裂是化学钢化玻璃的又一特点。

这是因为化学钢化玻璃的压应力可抵销一部分因急冷急热产生的拉应力之故。

化学钢化玻璃耐热冲击,最大安全工作温度为288℃,能承受204℃的温差变化。

化学钢化玻璃适宜于在以下建筑场合使用:有减轻自重要求,同时对冲击强度,弯曲强度和耐冷热冲击有一定要求的场合,如农用温室的窗及顶棚,活动房屋的门窗玻璃等。

同物理钢化玻璃相似的是化学钢化玻璃的表层压应力使玻璃强度得以提高,区别在于物理钢化的原理是加热后淬冷,由非均匀收缩形成表面压应力,而化学钢化是通过离子交换形成玻璃的表面压应力。

通常所用的化学钢化玻璃是采用低温离子交换工艺制造的,所谓低温系是指交换温度不高于玻璃转变温度的范围内,是相对于高温离子交换工艺在转变温度以上,软化点以下的温度范围而言。

低温离子交换工艺的简单原理是在400℃左右的碱盐溶液中,使玻璃表层中半径较小的离子与溶液中半径较大的离子交换,比如玻璃中的锂离子与溶液中的钾或钠离子交换,玻璃中的钠离子与溶液中的钾离子交换,利用碱离子体积上的差别在玻璃表层形成嵌挤压应力。

大离子挤嵌进玻璃表层的数量与表层压应力成正比,所以离子交换的数量与交换的表层深度是增强效果的关键指标。

离子交换钢化玻璃与物理钢化玻璃的应力分布不同,前者表面层的压应力厚度较小,与其平衡的内部拉应力不大,这是化学钢化玻璃的内部拉应力层达到破坏时也不像物理钢化玻璃那样碎成小片的原因。

由于离子交换层较薄,所以化学钢化玻璃方法用于增强薄玻璃效果显著,对厚玻璃的增强效果不甚明显,特别适合增强2~4mm厚的玻璃。

化学钢化玻璃适宜于在以下建筑场合使用:有减轻自重要求,同时对冲击强度,弯曲强度和耐冷热冲击有一定要求的场合,如农用温室的窗及顶棚,活动房屋的门窗玻璃等。

化学钢化玻璃的优点是,其未经转变湿度以上的高温过程,所以不会像物理钢化玻璃那样存在翘曲,表面平整度与原片玻璃一样,同时在强度和耐温度变化有一定提高,并可适当作切裁处理。

化学钢化的缺点是随时间易产生应力松弛现象,目前已有保护性工艺措施,使化学钢化玻璃具有其他强化玻璃品种不可替代的应用特点。

化学钢化是通过离子交换形成玻璃的表面压应力。

离子交换工艺的简单原理是在400LC 左右碱盐溶液中,使玻璃表层中半径较小的离子与溶液中半径较大的离子交换,比如玻璃中的锂离子与溶液中的钠离子交换,玻璃中的钠离子与溶液中的钾离子交换,利用碱离子体积上的差别产生表层压应力。

对厚玻璃的增强效果不甚明显,特别适合增2~4mm厚的玻璃。

化学钢化玻璃的优点是,其未经转变温度以上的高温过程,所以不会像物理钢化玻璃那样存在翘曲,表面平整度与原片玻璃一样,同时在强度和耐温度变化有一定提高,并可适当作切裁处理。

化学钢化的缺点是随时间易产生应力松弛现象,目前已有保护性工艺措施,使化学钢化玻璃具有其他强化玻璃品种不可替代的应用特点。

玻璃的化学钢化产生于一种称之为离子交换的工艺。

将玻璃浸入一个温度低于玻璃退火温度的熔化盐池。

玻璃片为钠钙浮法玻璃和钠钙平板玻璃时,盐池中成分为硝酸钾。

在浸入周期内,较大的碱性钾离子同较小的钠离子在玻璃表面发生置换,较大的钾离子嵌入由较小的钠离子构成的表面。

这种“强化”嵌入玻璃表面的深度只有数千分之一英寸,化学钢化玻璃的压应力可以达到10 000 psi(6.9×107Pa)。

由于表面缺陷的影响,上述压应力水平会大幅降低。

许多公布的数据或规范只是平均应力值。

这明显意味着玻璃样品可以有较高的应力值,也可以有较低的应力值:在同一盐池生产出的化学钢化玻璃的应力值也会有很大差别。

化学钢化玻璃破碎时,不一定碎成小颗粒,其碎片状态可能类似于普通玻璃。

因此这种玻璃不能用在需要安全玻璃的地方。

一些技术专家和研究人员宣称:离子交换实际上只有很少的分子在玻璃表面数百万分之一英寸深进行的,而不是像玻璃钢化协会手册上说明的“数千分之一英寸”。

尽管化学钢化玻璃在处理完后可以被切割,但是切割过程会使切口两边1 in(25 mm)范围内的压应力彻底丧失,使其回复到普通玻璃状态。

化学钢化玻璃广泛应用于眼镜和航空工业以及电子行业中,对要求厚度小于1/8 in(3 mm)又要求有较高强度的玻璃,可以采用化学钢化。

这种玻璃还可作为聚碳酸脂保护层使用。

相关文档
最新文档