磁性材料ppt课件
合集下载
磁性功能材料(ppt 72张)
χ :10-2-10-4
反铁磁性物质的磁结构及磁化率随温度的变化
反铁磁性:
磁化率和温度的关系在涅耳点(TN)有一转折。在TN点以下 为反铁磁性,χ 随温度升高而升高。在TN以上,χ随温度 升高而下降,表现如顺磁性行为。 反铁磁性物质中有A、B两个次晶格,其原子磁矩反平行 排列,且大小相等,自发磁化强度相互抵消,总磁矩为零。
抗磁性
物 质 磁 性 分 类 与外加磁 场的关系 顺磁性 反铁磁性 亚铁磁性 铁磁性
⑴ 抗磁性
χ: -(10-5 – 10-6 )
抗磁性物质的磁结构及磁化率随温度的变化
抗磁性: 磁化率小于零,在外磁场的作用下产生一个与 外磁场方向相反且很小的附加磁场,其值和温 度无关。 抗磁性物质:He,Ne,Ar,H2,N2,C,Si, Ge等
(二)基本磁性参量 磁场强度(H): 电流强度为i的电流在一个每米有N匝线圈的无 限长螺旋管轴线中央产生的磁场强度 H 为:
HNi
距离永磁体r处的磁场强度 H 为:
2 H km r / r l 0
m1为磁极的磁极强度,;r0是r的矢量单位; 磁化强度(M,σ): 单位体积磁性材料内原子磁矩的矢量和
Cr、Mn以及含有Cr、Mn的一些合金是反铁磁性的。
(4)
铁磁性
χ :102-106
铁磁性物质的磁结构及磁化率随温度的变化
铁磁性:
在不大的磁化场下,该物质有较高的磁化强度,并达到饱和 状态; 磁化率随磁场非线性变化; 饱和磁化强度随温度升高而下降,并在一定温度Tc(居里温 度)下,铁磁性消失,变成顺磁性。 铁磁性物质: ①Fe、Co、Ni等纯金属。某些稀土元素如Gd(钆gá)等 ②含Fe、Co、Ni的合金及化合物; ③某些过渡元素组成的合金。
磁性材料ppt_图文
1.组织结构与磁性 能关系
1)性能指标:.矫顽 力Hc,剩磁Br,最大磁能 积(BH)m,居里温度Tc, 剩余磁化强度Mr。
2)硬磁材料的4大特 性:高的矫顽力,高的剩
余磁通密度和高的剩余磁
化强度,高的最大磁能积, 高的稳定性。
硬磁材料
2.硬磁材料及其应用
(1)稀土硬磁材料:这是当前最大磁能积最高的 一大类硬磁材料,为稀土族元素和铁族元素为 主要成分的金属互化物(又称金属间化合物)。 如钕铁硼稀土合金硬磁材料。
磁性橄榄球
司南
永磁材料ቤተ መጻሕፍቲ ባይዱ
二.软磁材料
软磁材料的特点是高的磁导率,低的矫顽力(一 般Hc<100A/m)和低铁芯损耗。
1.组织结构与性能关系
1).通过提高材料的均匀性来降低 矫顽力。
2).通过降低磁各向异性来提高磁 导率,降低铁芯损耗。
软磁材料——铁粉芯
2.软磁材料及其工程应用
软磁材料大概分类为:纯铁和碳钢,镍-铁合金,磁性陶瓷 材料,非晶态合金,纳米晶软磁材料。
3)常用软磁磁芯
磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁 材料。由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被 非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用 于较高频率; 另一方面由于颗粒之间的间隙效应,导致材料具有 低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现 象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉 芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、 它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
总的来说有两大方面的应用:
1.强电流器件的应用,一般在准静态或低频,大电流下使用; 如电磁铁,功率变压器,电机等的铁芯。
磁性材料的认识与应用(PPT)
磁畴结构
磁性材料内部自发形成的、具有一定磁化特性的区域。不同的磁畴具有不同的 磁矩方向和大小,导致宏观上表现出不同的磁性。
磁导率与磁阻
磁导率
描述磁性材料在磁场中磁感应强度与磁场强度的比值,是衡量材料导磁性能的重 要参数。
磁阻
由于磁性材料的磁畴结构、晶格畸变等因素导致的磁感应强度在材料内部传播时 的衰减,表现为磁阻抗。
磁性材料的发展趋势
高性能磁性材料
随着技术的进步,对磁性材料性能的要求越来越高,高性能磁性材料的研究和开发成为 未来的发展趋势。
环保型磁性材料
随着环保意识的提高,环保型磁性材料的研发和应用越来越受到重视,如可回收利用的 磁性材料等。
磁性材料的应用前景
电子行业
磁性材料在电子行业中应用广泛,如电 子元器件、传感器、电机等,随着电子 行业的快速发展,磁性材料的应用前景 十分广阔。
交通工业
磁性材料在交通工业中主要用于轨道交通、汽车制造等领 域,如磁悬浮列车、磁力轴承等。磁性材料具有高磁导率 、高磁感应强度等特点,能够提供稳定的磁场环境,确保 交通工具的安全性和稳定性。
磁性材料在交通工业中还应用于传感器、执行器等新兴领 域,为交通工业的发展提供了新的机遇。
医疗领域
磁性材料在医疗领域中主要用于磁共 振成像、磁疗等新兴领域。磁性材料 能够产生稳定的磁场环境,有助于提 高医疗设备的诊断准确性和治疗效果。
磁性材料的分类
软磁材料
矫顽力低,磁导率高,饱和磁感 应强度大,易于磁化和去磁,适
用于制造变压器、电机等。
硬磁材料
矫顽力高,剩磁和矫顽力均大 ,适用于制造永磁体,如扬声 器、耳机等。
矩磁材料
具有矩形磁滞回线,常用于计 算机存储器等。
磁性材料内部自发形成的、具有一定磁化特性的区域。不同的磁畴具有不同的 磁矩方向和大小,导致宏观上表现出不同的磁性。
磁导率与磁阻
磁导率
描述磁性材料在磁场中磁感应强度与磁场强度的比值,是衡量材料导磁性能的重 要参数。
磁阻
由于磁性材料的磁畴结构、晶格畸变等因素导致的磁感应强度在材料内部传播时 的衰减,表现为磁阻抗。
磁性材料的发展趋势
高性能磁性材料
随着技术的进步,对磁性材料性能的要求越来越高,高性能磁性材料的研究和开发成为 未来的发展趋势。
环保型磁性材料
随着环保意识的提高,环保型磁性材料的研发和应用越来越受到重视,如可回收利用的 磁性材料等。
磁性材料的应用前景
电子行业
磁性材料在电子行业中应用广泛,如电 子元器件、传感器、电机等,随着电子 行业的快速发展,磁性材料的应用前景 十分广阔。
交通工业
磁性材料在交通工业中主要用于轨道交通、汽车制造等领 域,如磁悬浮列车、磁力轴承等。磁性材料具有高磁导率 、高磁感应强度等特点,能够提供稳定的磁场环境,确保 交通工具的安全性和稳定性。
磁性材料在交通工业中还应用于传感器、执行器等新兴领 域,为交通工业的发展提供了新的机遇。
医疗领域
磁性材料在医疗领域中主要用于磁共 振成像、磁疗等新兴领域。磁性材料 能够产生稳定的磁场环境,有助于提 高医疗设备的诊断准确性和治疗效果。
磁性材料的分类
软磁材料
矫顽力低,磁导率高,饱和磁感 应强度大,易于磁化和去磁,适
用于制造变压器、电机等。
硬磁材料
矫顽力高,剩磁和矫顽力均大 ,适用于制造永磁体,如扬声 器、耳机等。
矩磁材料
具有矩形磁滞回线,常用于计 算机存储器等。
铁磁性课件.ppt
31
反铁磁性
• 物质原子间静电交换作用使原子磁矩有序排列,当 交换积分A<0时,原子磁矩反平行排列的状态称为 反铁磁态,处于反铁磁态的物体称为反铁磁体。
某些反铁磁体的磁性常数
物质
TN(K)
χ(θ)/χ(TN)
MnO
122
2/3
MnS
165
0.82
MnSe
150
MnTe
323
0.68
MnF2
72
FeO
5
• 铁磁性研究的核心问题就是为什么铁磁体 的原子磁矩比顺磁体容易整列?
物质内部原子磁矩的排列 a:顺磁性 b:铁磁性 c:反铁磁性 d:亚铁磁性
6
铁磁性的物理本质
7
Weiss假设
• Weiss提出第一个假设:磁体中存在与外场无关的自 发磁化强度,在数值上等于技术饱和磁化强度Ms, 而且这种自发磁化强度的大小与物体所处环境的温 度有关。对于每一种铁磁体都有一个完全确定的温 度,在该温度以上,物质就完全失去了其铁磁性。
• 人们把注意力转向静电力。但是,建立在Newton力 学和Maxwell电磁力学上的经典电子论也不能揭示 铁磁体自发磁化的本质。
• Heisenberg和Frank按照量子理论证明,物质内相邻 原子的电子间有一种来源于静电的相互作用力。由 于这种交换作用对系统能量的影响,迫使各原子的 磁矩平行或反平行排列。
• 磁相互作用力的能量与热运动的能量相比太小了, 根据计算,在磁相互作用力下,物体只需加热到 1K就可以破坏原子磁矩的自发平行取向,因而物 体的居里温度应在1K左右。
13
• 实际铁磁体的居里温度在数百K甚至上千K。
• 引起铁磁体内原子磁矩排列整齐,并使有序状态 保持到如此高的温度的力量显然比磁相互作用力 要大千百倍。
反铁磁性
• 物质原子间静电交换作用使原子磁矩有序排列,当 交换积分A<0时,原子磁矩反平行排列的状态称为 反铁磁态,处于反铁磁态的物体称为反铁磁体。
某些反铁磁体的磁性常数
物质
TN(K)
χ(θ)/χ(TN)
MnO
122
2/3
MnS
165
0.82
MnSe
150
MnTe
323
0.68
MnF2
72
FeO
5
• 铁磁性研究的核心问题就是为什么铁磁体 的原子磁矩比顺磁体容易整列?
物质内部原子磁矩的排列 a:顺磁性 b:铁磁性 c:反铁磁性 d:亚铁磁性
6
铁磁性的物理本质
7
Weiss假设
• Weiss提出第一个假设:磁体中存在与外场无关的自 发磁化强度,在数值上等于技术饱和磁化强度Ms, 而且这种自发磁化强度的大小与物体所处环境的温 度有关。对于每一种铁磁体都有一个完全确定的温 度,在该温度以上,物质就完全失去了其铁磁性。
• 人们把注意力转向静电力。但是,建立在Newton力 学和Maxwell电磁力学上的经典电子论也不能揭示 铁磁体自发磁化的本质。
• Heisenberg和Frank按照量子理论证明,物质内相邻 原子的电子间有一种来源于静电的相互作用力。由 于这种交换作用对系统能量的影响,迫使各原子的 磁矩平行或反平行排列。
• 磁相互作用力的能量与热运动的能量相比太小了, 根据计算,在磁相互作用力下,物体只需加热到 1K就可以破坏原子磁矩的自发平行取向,因而物 体的居里温度应在1K左右。
13
• 实际铁磁体的居里温度在数百K甚至上千K。
• 引起铁磁体内原子磁矩排列整齐,并使有序状态 保持到如此高的温度的力量显然比磁相互作用力 要大千百倍。
功能材料-磁性材料课件
第三章 磁性材料-§3.1 软磁材料
3、高斯织构硅钢片
结构特点:
➢ 易磁化方向[100]与轧制方向平行 ➢ 难磁化方向[111]与轧制方向成55角
轧 [100] 制 方 向
55
[111] [110]
➢ 中等磁化方向[110]与轧制方向成90角
横向
高斯织构硅钢片具有磁各向异性,沿[100](轧制方向)磁性能最佳。
3、主要用途
直流磁场下工作的磁性元件,如电磁铁和继电器的铁芯。
第三章 磁性材料-§3.1 软磁材料
电工用硅钢片
在纯铁中加入1.04.0%Si的铁碳硅合金。 Si的加入,提高了电阻率,从而减少涡流损耗。
1、电工用硅钢片的种类
硅钢片按生产方法、结晶织构和磁性能的分类:
电工用硅钢片
热轧非织构(无取向)硅钢片 冷轧非织构(无取向)硅钢片 冷轧高斯织构(单取向)硅钢片 冷轧立方织构(双取向)硅钢片
150·cm,为1J79铁镍合金的2~3倍。 ➢ 硬度、强度和耐磨性较高。
例如1J16的硬度和耐磨性比1J79合金高,适用于磁头等磁性器件。 ➢ 密度较低。
可以减轻磁性元件的铁芯质量。 ➢ 对应力敏感性小。
适于在冲击、振动等环境下工作。 ➢ 合金的时效性良好。
随着环境温度的变化和使用时间的延长,其磁性变化不大。
第三章 磁性材料-§3.1 软磁材料
2、铁铝合金的主要应用
铁和铝资源丰富、价格低廉,铁铝合金的磁性能与铁镍合金类似, 同时还具有一些独特的优点,因此是铁镍合金的一种替代材料,适用于 电子变压器、磁头和磁致伸缩换能器等方面。
铁铝合金的牌号、主要成分、特点和用途
牌号 铝含量 /%
特点
主要用途
1J6
磁性材料基础知识-ppt课件
求其轴线上一点 p 的磁感强度的方向和大小.
Idl
r
dB
B
o
R
p B
x
*
x
I
dB 0
4π
Idl r2
解: 根据对称性分析
毕奥—萨伐尔定律的应用2
Idl
sin R
R
o
r
x
dB
*p x
r2 R
B0I
4π
r 2 x2
sindl
l r2
dB x
dB 0
4π
Idl r2
dB xdsBin4 π 0Isri2 n dl
0I dl
2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 (已知 n N I)
1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
2 )选 回路(顺时针圆周) .
lB d Bl 2 0π NR I B 0 NI
2π R
d
令L2πRB0NIL
内部交流报告
磁性材料基础知识
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论
磁性材料的认识与应用(PPT)教学资料
磁铁氧体6 万吨、永磁铁氧体8 万吨、钕铁硼磁体2000 吨。
总之, 从市场发展看, 中国长期在全球磁 性材料市场发展前景是乐观的。
六
1.磁材行业经过“七·五”、“八·五”技术改造, 不少厂家引进了 美、日、德、意等国先进生产线或生产线关键设备, 大都取得了
、
较好的经济效益和社会效益, 但个别单位受骗上当, 交了学费, 尤 其是二手设备的引进, 容易失误。
(1) 铁硅合金: 最常用的软磁材料, 常用作低频变压器、 发电机的铁芯;
铁硅合金
低频变压器
(2)铁镍合金:典型代表材料为坡莫合金,具有高 的磁导率(磁导率μ为铁硅合金的10~20倍)、低的损 耗;并且在弱磁场中具有高的磁导率和低的矫顽力, 但力学性能不太好,通常应用于电子材料;
坡莫合金
电压互感器
最大磁能积:最大磁能积是退磁曲线上磁感应强度(B)和磁场强度 乘积(H)的最大值。这个值越大,说明单位体积内存储的磁能越大, 材料的性能越好。
四、磁性材料的应用
1.永磁材料
永磁材料经磁化后,去除外磁场仍保留磁性,其 性能特点是具有高的剩磁、高的矫顽力。永磁材料包 括铁氧体和金属永磁材料两类。
铁氧体的用量大、应用广泛、价格低,但磁性能 一般,用于一般要求的永磁体。金属永磁材料中钕铁 硼(Nb-Fe-B)稀土永磁,钕铁硼磁体不仅性能优, 而且不含稀缺元素钴,作为稀土永磁材料发展的最新 结果,由于其优异的磁性能而被称为“磁王”。
磁化电流,以至于零,那么该材料得磁化过程就是一连串逐渐缩小而最 终趋于原点的环状曲线,如图2所示。当H减小到零时,B亦同时降为零, 达到完全退磁。
3.磁材料常用的性能参数
饱和磁感应强度Bm:其大小取决于材料的成分,它所对应的物理状态是材 料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bm。 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、 应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密 切相关。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时, 自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器 件工作的上限温度。 磁滞损耗 :铁磁材料在磁化过程中由磁滞现象引起的能量损耗 ,降低磁 滞损耗Ph的方法是降低矫顽力Hc 。
磁性材料 课件
题后反思理解磁化和退磁的实质是处理此类问题的关
键。
探究二 磁性材料与磁记录
磁性材料为什么能记录信息?录音、录像磁带上的磁性材料应该用硬 磁性材料还是软磁性材料?
提示:磁性材料在外界磁场作用下,能够被磁化,这就使我们可以利用磁 性材料记录外界磁场的信息。磁记录时,通过把声音、图像或其他信息转变 为变化的磁场,使磁带、磁卡磁条上的磁粉层磁化,这样就能在磁带或磁卡 上记录下与声音、图像或其他信息相应的磁信号;录音、录像磁带上的磁性 材料是用来作磁记录的,需要磁化后长久保持磁性,所以用硬磁性材料。
2.磁记录 (1)磁卡背面的黑条,录音机、录像机上用的磁带,电子计算机上用的磁 盘都含有磁记录用的磁性材料。依靠磁记录,我们可以保存大量的信息,并 在需要的时候读出这些信息。 (2)地磁场留下的记录:地磁场会对含有磁性材料的岩石起作用,据推测, 地磁场的强度和方向随时间的推移在不断改变,大约每过 100 万年,地磁场 南北极会完全颠倒一次。
3.磁化与退磁的实质 铁磁性材料结构与其他物质有所不同,它们本身就是由很多已经磁化 的小区域组成的,这些磁化的小区域叫作磁畴。磁化前,各个磁畴磁化方向 不同,杂乱无章地混在一起,各个磁畴的作用宏观上互相抵消,物体对外不显 磁性。磁化过程中,由于外磁场的影响,磁畴磁化方向有规律地排列起来,使 得磁场大大加强。高温下磁性材料的磁畴会被破坏;在受到剧烈震动时,磁 畴的排列也会被打乱,这些情况下材料就会产生退磁现象,如图所示为材料 磁化前和磁化后的情形。
1.磁化和退磁的概念 (1)磁化 缝衣针、螺丝刀等钢铁物体与磁铁接触后显示磁性的现象叫作磁化。 如图所示。
螺丝刀与磁铁接触后磁化
(2)退磁 原来有磁性的物体,经过高温、剧烈震动或者逐渐减弱的交变磁场的 作用,就会失去磁性,这种现象叫作退磁。
键。
探究二 磁性材料与磁记录
磁性材料为什么能记录信息?录音、录像磁带上的磁性材料应该用硬 磁性材料还是软磁性材料?
提示:磁性材料在外界磁场作用下,能够被磁化,这就使我们可以利用磁 性材料记录外界磁场的信息。磁记录时,通过把声音、图像或其他信息转变 为变化的磁场,使磁带、磁卡磁条上的磁粉层磁化,这样就能在磁带或磁卡 上记录下与声音、图像或其他信息相应的磁信号;录音、录像磁带上的磁性 材料是用来作磁记录的,需要磁化后长久保持磁性,所以用硬磁性材料。
2.磁记录 (1)磁卡背面的黑条,录音机、录像机上用的磁带,电子计算机上用的磁 盘都含有磁记录用的磁性材料。依靠磁记录,我们可以保存大量的信息,并 在需要的时候读出这些信息。 (2)地磁场留下的记录:地磁场会对含有磁性材料的岩石起作用,据推测, 地磁场的强度和方向随时间的推移在不断改变,大约每过 100 万年,地磁场 南北极会完全颠倒一次。
3.磁化与退磁的实质 铁磁性材料结构与其他物质有所不同,它们本身就是由很多已经磁化 的小区域组成的,这些磁化的小区域叫作磁畴。磁化前,各个磁畴磁化方向 不同,杂乱无章地混在一起,各个磁畴的作用宏观上互相抵消,物体对外不显 磁性。磁化过程中,由于外磁场的影响,磁畴磁化方向有规律地排列起来,使 得磁场大大加强。高温下磁性材料的磁畴会被破坏;在受到剧烈震动时,磁 畴的排列也会被打乱,这些情况下材料就会产生退磁现象,如图所示为材料 磁化前和磁化后的情形。
1.磁化和退磁的概念 (1)磁化 缝衣针、螺丝刀等钢铁物体与磁铁接触后显示磁性的现象叫作磁化。 如图所示。
螺丝刀与磁铁接触后磁化
(2)退磁 原来有磁性的物体,经过高温、剧烈震动或者逐渐减弱的交变磁场的 作用,就会失去磁性,这种现象叫作退磁。
第1章磁学与磁性材料基础知识PPT课件精选全文完整版
( )
H
d
=
NxM xi
+ NyMy
j
+ NzMzk
( )
Fd
=
1 2
m0
N
x
M
2 x
+
N
yM
2 y
+
NzM
2 z
N x + N y + N z = 1
球体:Fd = (1/ 6)m0M 2
( ) 细长圆柱体:Fd = (1/ 4)m0 M x2 + M y2
薄圆板片:Fd = (1/ 2)m0M z2
适用条件:磁体内部均匀一致,磁化均匀。
16
1.2. 材料的磁化
▼磁化曲线
表示磁场强度H与所感生的B或M之间的关系 O点:H=0、B=0、M=0,磁中性或原始退磁状态 OA段:近似线性,起始磁化阶段 AB段:较陡峭,表明急剧磁化 H<Hm时,二曲线基本重合。 H>Hm后,M逐渐趋于一定值 MS(饱和磁化强度),而B 则仍不断增大(原因?) 由B-H(M-H)曲线可求 出μ或 χ
FeO, MnO, NiO, CoO, Cr2O3, FeCl2, FeF2, MnF2, FeS, MnS
右图是1938 年测到的MnO 磁化率温度曲线,它是被 发现的第一个反铁磁物质, 转变温度 122K。
38
T
p
该表取自Kittel 书2005中文版p236,从中看出反铁磁物质的 转变温度一般较低,只能在低温下才观察到反铁磁性。
2
磁极和电流周围都存在磁场,磁场可以用磁力线表示:
磁力线特点:
从N极出发,进入与其最邻近的S极,并形成闭合回路; 通常呈直线或曲线,不存在呈直角拐弯的磁力线; 任意二条同向磁力线之间相互排斥,因此不存在相交的磁力线;
磁性材料介绍 ppt课件
TAI-TECH Advanced Electronics Co., Ltd.
NO. 1, YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, TAIWAN, R.O.C.
Ni-Zn系(镍锌)
I、 μ> 1000 :使用于1至300MHz之宽带带
TAI-TECH Advanced Electronics Co., Ltd.
NO. 1, YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, TAIWAN, R.O.C.
软磁材料
软磁材料区分: 1.金属系列材料 ----- 电阻系数小, 低频使用。 2.压粉系列材料 ----- 电阻系数小, 中低频使用。 3.氧化物系列材料--- 电阻系数大, 中高频使用。
TAI-TECH Advanced Electronics Co., Ltd.
NO. 1, YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, TAIWAN, R.O.C.
磁记录材料
磁记录材料区分: 1.磁性粉末---水平记录、垂直记录 2.磁性薄膜---水平磁化膜、垂直磁化膜
TAI-TECH Advanced Electronics Co., Ltd.
NO. 1, YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, 1.金属磁石-----铝镍钴、 铁铬钴 2.稀土类磁石—钐钴、钕铁硼 3.铁氧磁石-----钡系、锶系 4.复合磁石-----铁氧、钐钴
NO. 1, YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, TAIWAN, R.O.C.
Ni-Zn系(镍锌)
I、 μ> 1000 :使用于1至300MHz之宽带带
TAI-TECH Advanced Electronics Co., Ltd.
NO. 1, YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, TAIWAN, R.O.C.
软磁材料
软磁材料区分: 1.金属系列材料 ----- 电阻系数小, 低频使用。 2.压粉系列材料 ----- 电阻系数小, 中低频使用。 3.氧化物系列材料--- 电阻系数大, 中高频使用。
TAI-TECH Advanced Electronics Co., Ltd.
NO. 1, YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, TAIWAN, R.O.C.
磁记录材料
磁记录材料区分: 1.磁性粉末---水平记录、垂直记录 2.磁性薄膜---水平磁化膜、垂直磁化膜
TAI-TECH Advanced Electronics Co., Ltd.
NO. 1, YOU 4TH ROAD, YOUTH INDUSTRIAL DISTRICT, YANG-MEI, TAO-YUAN HSIEN, 1.金属磁石-----铝镍钴、 铁铬钴 2.稀土类磁石—钐钴、钕铁硼 3.铁氧磁石-----钡系、锶系 4.复合磁石-----铁氧、钐钴
磁性材料的介绍 ppt课件
磁性材料
复合材料研究所
2016.12.19
复合材料研究所
复合材料研究所
磁性材料拥有数千年应用历史,如今更与信 息化、自动化、机电一体化、国防、国民经济 的方方面面紧密相关。
磁性材料是高科技发展的重要分支之一。
一个国家的磁性材料能反映其技术 发展水平,对这种材料的需求量能反 映一个国家的经济状况和平均生活水 平。
磁矩m:表征磁性物体磁性大小的物理量,磁矩愈大,磁性愈强,即 物体在磁场中所受的力也大。 磁矩只与物体本身有关,与外磁场无关。
磁 学 磁化强度M:衡量物质有无磁性或磁性大小的物理量,定义为物质单 基 位体积中的磁矩大小,矢量,由S极指向N极。 本 参 磁场强度H:指外界磁场的大小,也是一个矢量,由S极指向N极,磁 量 场强度H一般是由导体中的电流或者永磁体产生。
复合材料研究所
一、材料的磁性
磁学是一门既古老又年轻的学科,磁学基础研究与应用的需求互相促
进,在国防和国民经济中起着重要作用。 早期观点
• 安培分子电流:在磁介质中分子、
磁
原子存在着一种环形电流(分子
性
电流),分子电流使每个物质微
的
粒都成为微小的磁体;在磁场中, 分子电流沿磁场方向排列,显磁
来
性。
源
复合材料研究所
电磁炮
复合材料研究所
原理
传统的火炮都是利用弹药爆 炸时的瞬间膨胀产生的推力将炮 弹迅速加速,推出炮膛。而电磁 炮则是把炮弹放在螺线管中,给 螺线管通电,那么螺线管产生的 磁场对炮弹将产生巨大的推动力, 将炮弹射出。
磁性材料市场的代表企业
……
复合材料研究所
国内磁粉生产商
• 麦格昆磁 • 四川银河 • 上海纪元 • 天津津滨 • 浙江朝日科 • 浙江韵升 • 上海爱普生
复合材料研究所
2016.12.19
复合材料研究所
复合材料研究所
磁性材料拥有数千年应用历史,如今更与信 息化、自动化、机电一体化、国防、国民经济 的方方面面紧密相关。
磁性材料是高科技发展的重要分支之一。
一个国家的磁性材料能反映其技术 发展水平,对这种材料的需求量能反 映一个国家的经济状况和平均生活水 平。
磁矩m:表征磁性物体磁性大小的物理量,磁矩愈大,磁性愈强,即 物体在磁场中所受的力也大。 磁矩只与物体本身有关,与外磁场无关。
磁 学 磁化强度M:衡量物质有无磁性或磁性大小的物理量,定义为物质单 基 位体积中的磁矩大小,矢量,由S极指向N极。 本 参 磁场强度H:指外界磁场的大小,也是一个矢量,由S极指向N极,磁 量 场强度H一般是由导体中的电流或者永磁体产生。
复合材料研究所
一、材料的磁性
磁学是一门既古老又年轻的学科,磁学基础研究与应用的需求互相促
进,在国防和国民经济中起着重要作用。 早期观点
• 安培分子电流:在磁介质中分子、
磁
原子存在着一种环形电流(分子
性
电流),分子电流使每个物质微
的
粒都成为微小的磁体;在磁场中, 分子电流沿磁场方向排列,显磁
来
性。
源
复合材料研究所
电磁炮
复合材料研究所
原理
传统的火炮都是利用弹药爆 炸时的瞬间膨胀产生的推力将炮 弹迅速加速,推出炮膛。而电磁 炮则是把炮弹放在螺线管中,给 螺线管通电,那么螺线管产生的 磁场对炮弹将产生巨大的推动力, 将炮弹射出。
磁性材料市场的代表企业
……
复合材料研究所
国内磁粉生产商
• 麦格昆磁 • 四川银河 • 上海纪元 • 天津津滨 • 浙江朝日科 • 浙江韵升 • 上海爱普生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电机定子铁芯
变压器铁芯
三.硬磁材料
硬磁材料又称永磁材料,是指被外磁场磁化后, 去掉外磁场后仍能保持着较强的剩磁的材料。
1.组织结构与磁性 能关系
1)性能指标:.矫顽 力Hc,剩磁Br,最大磁能 积(BH)m,居里温度Tc, 剩余磁化强度Mr。
2)硬磁材料的4大特 性:高的矫顽力,高的剩
余磁通密度和高的剩余磁
磁性材料
一.
二.软磁材料
1.组织结构与性能的关系
2.软磁材料及其工程应用
三.硬磁材料
1.组织结构与性能的关系
2.硬磁材料及其应用
变压器
四. 发展现状与展望
一.简介
实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化 的程度不同。根据物质在外磁场中表现出的特性,物质可分为五类:顺磁 性物质,抗磁性物质,铁磁性物质,亚铁磁性物质,反磁性物质。
(强磁材料(狭义)和磁有序材料如 反铁磁材料(广义)。其特点是电阻率高,特别 有利于在高频和微波应用。如钡铁氧体 (BaFe12O19)和锶铁氧体(SrFe12O19)等都有很 多应用。
稀土永磁铁面向汽车应用 磁阀
四.发展现状与展望未来
1.硬磁材料,目前应用最为广泛的还是钕铁硼强磁和铁氧体 磁铁。
软磁材料——铁粉芯
2.软磁材料及其工程应用
软磁材料大概分类为:纯铁和碳钢,镍-铁合金,磁性陶瓷 材料,非晶态合金,纳米晶软磁材料。
总的来说有两大方面的应用:
1.强电流器件的应用,一般在准静态或低频,大电流下使用; 如电磁铁,功率变压器,电机等的铁芯。
2.弱电流器件的应用,一般在频率较高,弱电流下使用。如 通讯设备中接收天线线圈的磁芯,电子线路中的小变压器铁芯等。
化强度,高的最大磁能积, 高的稳定性。
硬磁材料
2.硬磁材料及其应用
(1)稀土硬磁材料:这是当前最大磁能积最高的 一大类硬磁材料,为稀土族元素和铁族元素为 主要成分的金属互化物(又称金属间化合物)。 如钕铁硼稀土合金硬磁材料。
(2)金属硬磁材料:这是一大类发展和应用都较 早的以铁和铁族元素(如镍、钴等)为重要组元 的合金型硬磁材料,主要有铝镍钴(AlNiCo)系 和铁铬钴(FeCrCo)系两大类硬磁合金。
高磁通密度和低磁芯损耗的特性,使铁硅铝磁芯非常适用 于功率因数校正电路,以及单向驱动的应用,如回扫变压器, 脉冲变压器。
铁硅铝粉芯磁环
坡莫合金粉芯 坡莫合金指铁镍合金,坡莫合金的最大
特点是具有很高的弱磁场导磁率。它们的饱 和磁感应强度一般在0.6--1.0T之间。
用于制作音频变压器、互感器、磁放大 器、磁调制器、扼流器、音频磁头等。
钕铁硼磁性材料是钕,氧化铁等的合金,又称磁钢。是稀土永磁材 料发展的最新结果,钕铁硼具有极高的磁能积,矫顽力和高能量密度。 在现代工业和电子技术中获得了广泛应用,从而使仪器仪表、电声电机、 磁选磁化等设备的小型化、轻量化、薄型化成为可能。
铁氧体磁铁采用粉末冶金方法生产、剩磁较低,回复磁导磁率小。 矫顽力较大,抗去磁能力较强,特别适宜于用作动态工作条件的磁路结 构。主要原材料是氧化物,故不易腐蚀。工作温度:-40℃至+200℃。
钕铁硼
铁氧体
2.相对而言,软磁材料较硬磁材料的应用范围更加广泛。
软磁材料的应用类型: 1) 磁粉芯:铁粉芯、铁硅铝粉芯、高磁通量粉芯、坡莫合金粉芯、 铁氧体磁芯。 2) 带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金。
3)常用软磁磁芯
磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁 材料。由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被 非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用 于较高频率; 另一方面由于颗粒之间的间隙效应,导致材料具有 低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现 象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉 芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、 它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
铁 粉 芯 磁 环
铁硅铝粉芯 铁硅铝粉芯由9%Al、5%Si, 85%Fe粉构成。主要是用来替代铁粉芯。
与铁粉芯相比,铁硅铝在高温下的表现较好,在一些应用 中,使用铁硅铝也比用铁粉芯尺寸更小。
在必须通过大型交流电压,而不产生饱和的噪音滤波电感 器中,非常适合使用铁硅铝磁芯。采用铁硅铝磁芯可缩小在线 滤波器的尺寸,因为需要的匝数比使用铁氧体少。铁硅铝还具 有接近零的磁致伸縮系数,也就是说,在可听频率范围内噪音 或在线电流的糙作中非常安静。
磁性材料按矫顽力的大小(磁化后去磁的难易程度)可分为硬磁材料 和软磁材料两种。
磁性橄榄球
司南
永磁材料
二.软磁材料
软磁材料的特点是高的磁导率,低的矫顽力(一 般Hc<100A/m)和低铁芯损耗。
1.组织结构与性能关系
1).通过提高材料的均匀性来降低 矫顽力。
2).通过降低磁各向异性来提高磁 导率,降低铁芯损耗。
常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
铁粉芯 铁粉芯是磁性材料四氧化三铁的通俗说法,主要应用于电器回
路中解决电磁兼容性(EMC)问题。即用来消除电器回路中由于各 种不同原因产生的杂波,辐射。
如下图是由铁粉芯制成的磁环,当一定波段的杂波通过磁环时, 磁环的电磁特性导致这一波段的电流被转化为磁力以及部分热量从 而被消耗掉。来达到降低杂波的目的。
坡莫合金
互感器
互感器又称为仪用变压器,
是电流互感器和电压互感器的 统称。其功能主要是将高电压 或大电流按比例变换成标准低 电压(100V)或标准小电流 (5A或1A,均指额定值),以 便实现测量仪表、保护设备及 自动控制设备的标准化、小型 化。
展望未来
磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进 而发展,例如光电子技术促进了光磁材料和磁光材料的研制。
磁性半导体材料和磁敏材料和器件可以应用于遥感、遥则技术和 机器人。人们正在研究新的非晶态和稀土磁性材料(如钕铁合金)。 磁性液体已进入实用阶段。
另外,一些新的物理和化学效应的发现(如拓扑效应)也给新磁 性材料的研制和应用(如磁声和磁热效应的应用)提供了条件。