高三数学第一轮复习:等差数列

合集下载

高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

第二节 等差数列及其前n 项和突破点一 等差数列的基本运算[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -12d =n a 1+a n 2.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) 答案:(1)× (2)√ (3)√ (4)√ 二、填空题1.若m 和2n 的等差中项为4,2m 和n 的等差中项为5,则m 与n 的等差中项是________. 答案:32.在等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6的值为________. 答案:143.已知{a n }是等差数列,且a 3+a 9=4a 5,a 2=-8,则该数列的公差是________. 答案:44.在等差数列{a n }中,已知d =2,S 100=10 000,则S n =________. 答案:n 2[典例感悟]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2019·山东五校联考)已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+da 1+2d =8,∴⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4, ∴S n =n -4+3n -72=n 3n -112.[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n a 1+a n2=na 1+n n -12d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[针对训练]1.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 9=12,则a 15=( )A .10B .30C .40D .20解析:选B 法一:设数列⎩⎨⎧⎭⎬⎫a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法二:由于数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.2.(2018·信阳二模)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得________钱.( )A.53 B .32 C.43D .54解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎪⎨⎪⎧2a 1+d =52,3a 1+9d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,故甲得43钱,故选C.3.(2018·菏泽二模)已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40.(1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以⎩⎪⎨⎪⎧a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.突破点二 等差数列的性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(6)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.(8)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (9)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n. [基本能力]1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意,得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74. 答案:742.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 答案:23.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________.答案:26[全析考法]考法一 等差数列的性质[例1] (1)(2019·武汉模拟)若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3-3,则S 9=( )A .25B .27C .50D .54(2)(2019·莆田九校联考)在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( )A .10B .15C .20D .40[解析] (1)设等差数列{a n }的公差为d ,a 1=2a 3-3=2a 1+4d -3, ∴a 5=a 1+4d =3,S 9=9a 5=27.(2)因为a 1,a 2 019为方程x 2-10x +16=0的两根,所以a 1+a 2 019=10. 由等差数列的性质可知,a 1 010=a 1+a 2 0192=5,a 2+a 2 018=a 1+a 2 019=10,所以a 2+a 1 010+a 2 018=10+5=15.故选B. [答案] (1)B (2)B [方法技巧]利用等差数列的性质求解问题的注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m ,S 2n -1=(2n -1)a n ,S n =n a 1+a n 2=n a 2+a n -12(n ,m ∈N *)等. [提醒] 一般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n+a m +n =2a m .考法二 等差数列前n 项和最值问题等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用二次函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[例2] (2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. [解] (1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)法一:(二次函数法)由(1)得S n =n a 1+a n2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16. 法二:(通项变号法) 由(1)知a n =2n -9,则S n =n a 1+a n2=n 2-8n .由S n 最小⇔⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,即⎩⎪⎨⎪⎧2n -9≤0,2n -7≥0,∴72≤n ≤92, 又n ∈N *,∴n =4,此时S n 的最小值为S 4=-16. [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)二次函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . [集训冲关]1.[考法一]设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5等于( )A .15B .17C .19D .21解析:选A 因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8.又S 15=a 1+a 2+…+a 15=15a 8,所以S 153a 5=15a 8a 8=15.2.[考法一]在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B ∵等差数列有2n +1项,∴S 奇=n +1a 1+a 2n +12,S 偶=n a 2+a 2n2.又a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10. 3.[考法二]等差数列{a n }中,S n 为前n 项和,且a 1=25,S 17=S 9,请问:数列前多少项和最大?解:法一:∵a 1=25,S 17=S 9,∴17a 1+17×162d =9a 1+9×82d ,解得d =-2.∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212.∴当n =13时,S n 有最大值. 法二:∵a 1=25,S 17=S 9, ∴17a 1+17×162d =9a 1+9×82d ,解得d =-2. 从而S n =25n +n n -12(-2)=-n 2+26n=-(n -13)2+169. 故前13项之和最大.突破点三 等差数列的判定与证明[典例] (2019·济南一中检测)各项均不为0的数列{a n }满足a n +1a n +a n +22=a n +2a n ,且a 3=2a 8=15.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .[解] (1)证明:依题意,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,所以1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2.(2)由(1)可知b n =a n 2n +6=12·1n +2n +3=12( 1n +2-1n +3 ),故S n =12( 13-14+14-15+…+1n +2-1n +3)=n6n +3. [方法技巧]等差数列的判定与证明方法 方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题定中的判问题前n 项和公式法验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[针对训练](2019·沈阳模拟)已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧2a 1+d =2,3a 1+3×22d =-6,∴⎩⎪⎨⎪⎧a 1=4,d =-6,∴a n =4-6(n -1)=10-6n ,S n =na 1+n n -12d =7n -3n 2.(2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2=-6n 2-4n -6,2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4, 若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列, 则-6n 2-4n -6=-6n 2-6n +4,解得n =5, ∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.。

高考数学第一轮知识点 第2课时 等差数列及其前n项和课时复习课件 理

高考数学第一轮知识点 第2课时 等差数列及其前n项和课时复习课件 理
∴n-n 1=43.∴n=4,an=11.
∴数列的中间项为 11,项数为 7.
【变式训练】 3.在等差数列{an}中,Sn 表示其 前 n 项和. (1)若 a3+a17=10,求 S19 的值; (2)若 S4=124,Sn-4=54,Sn=210,求项数 n; (3)若 S4=1,S8=4,求 a17+a18+a19+a20 的值.
解析: (1)S19=a1+a219×19=a3+a217×19
=95.
(2)SS4n=-aS1n+-4=a2+an+a3+ana-41=+1a2n-42,+an-3=156,
由两式相加得 a1+an=70. ∴Sn=a1+a2n×n=70×2 n=210. ∴n=6. (3)S4=1,S8-S4=3,S12-S8,S16-S12,S20 -S16 成等差数列,首项为 1,公差为 2,
解得ad1==21. 2,
所以 an=2n+10.
(2)由 Sn=na1+nn2-1d,Sn=242, 得 12n+nn2-1×2=242.解得 n=11 或 n= -22(舍去).
等差数列的性质
1.等差数列的单调性 等差数列公差为 d,若 d>0,则数列递增; 若 d<0,则数列递减;若 d=0,则数列为常数 列. 2.等差数列的最值 若{an}是等差数列,求前 n 项和的最值时, (1)若 a1>0,d<0,且满足aann≥ +1≤0,0, 前 n 项和 Sn 最大;
等差数列的判断与证明
判断或证明数列{an}为等差数列,常见的方法 有以下几种: (1)利用定义:an+1-an=d(常数)(n∈N*); (2)利用等差中项:2an+1=an+an+2;
(3)利用通项公式:an=dn+c(d、c 为常数),d 为公差.当 d≠0 时,通项公式 an 是关于 n 的 一次函数;d=0 时为常函数,也是等差数列; (4)利用前 n 项和公式:Sn=an2+bn(a、b 为常 数).若一个数列的前 n 项和为关于 n 的二次

高考数学第一轮复习:《等差数列》

高考数学第一轮复习:《等差数列》

高考数学第一轮复习:《等差数列》最新考纲1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题. 4.了解等差数列与一次函数的关系.【教材导读】1.“a ,A ,b 是等差数列”是“A =a +b2”的什么条件? 提示:充分必要条件.2.如何推导等差数列的通项公式? 提示:可用累加法.3.如何推导等差数列的前n 项和公式? 提示:利用倒序相加法推导.1.等差数列的相关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n -a n -1=d (n ≥2,n ∈N *,d 为常数).(2)等差中项:若a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且A =a +b2. 2.等差数列的通项公式(1)若等差数列{a n }的首项是a 1,公差为d ,则其通项公式为a n =a 1+(n -1)d . (2)通项的推广:a n =a m +(n -m )d . 3.等差数列的前n 项和公式(1)已知等差数列{a n }的首项a 1和第n 项a n ,则其前n 项和公式S n =n (a 1+a n )2.(2)已知等差数列{a n }的首项a 1与公差d ,则其前n 项和公式S n =na 1+n (n -1)2d .4.等差数列{a n }的性质(1)若m +n =p +q ,则a m +a n =a p +a q (其中m ,n ,p ,q ∈N *),特别地,若p +q =2m ,则a p +a q =2a m (p ,q ,m ∈N *).(2)若等差数列{a n }的前n 项和为S n ,则S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列. (3)若下标成等差数列,则相应的项也成等差数列,即a k ,a k +m ,a k +2m ,…(k ,m ∈N *)成等差数列.(4)若等差数列{a n }的前n 项和为S n ,则S 2n -1=(2n -1)a n . 5.等差数列的增减性与最值公差d >0时为递增数列,且当a 1<0时,前n 项和S n 有最小值;d <0时为递减数列,且当a 1>0时,前n 项和S n 有最大值.6.等差数列与一次函数的关系由等差数列的通项公式a n =a 1+(n -1)d 可得a n =dn +(a 1-d ),如果设p =d ,q =a 1-d ,那么a n =pn +q ,其中p ,q 是常数.当p ≠0时,(n ,a n )在一次函数y =px +q 的图象上,即公差不为零的等差数列的图象是直线y =px +q 上的均匀排开的一群孤立的点.当p =0时,a n =q ,等差数列为常数列,此时数列的图象是平行于x 轴的直线(或x 轴)上的均匀排开的一群孤立的点.【重要结论】1.等差数列{a n }中,若a m =n ,a n =m ,则a m +n =0. 2.等差数列{a n }的前n 项和为S n ,若S m =S n (m ≠n ), 则S m +n =0.3.等差数列{a n }的前n 项和为S n ,若S m =n ,S n =m , 则S m +n =-(m +n ).1.已知数列{a n }中,a 3=2,a 7=1,若⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1为等差数列,则a 11等于( )(A)0 (B)12 (C)23(D)2B 解析:由已知可得1a 3+1=13,1a 7+1=12分别是等差数列⎩⎨⎧⎭⎬⎫1a n +1 的第3项和第7项,其公差d =12-137-3=124,由此可得1a 11+1=1a 7+1+(11-7)d =12+4×124=23.解之得a 11=12. 2.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) (A)1 (B)2 (C)4(D)8C解析:设等差数列{an }的公差为d ,∴⎩⎨⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,∴d =4,故选C.3.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) (A)(-3,+∞) (B)-∞,-83 (C)-3,-83(D)-3,-83D 解析:由题意知a 9≥0,a 10<0, ∴a 9=a 1+8d =24+8d ≥0,d ≥-3. a 10=a 1+9d =24+9d <0,d <-83. 综上知-3≤d <-83.故选D.4.设等差数列{a n }的前10项和为20,且a 5=1,则{a n }的公差为( ) (A)1 (B)2 (C)3(D)4B 解析:等差数列{a n }的前10项和为20,所以S 10=10(a 1+a 10)2=5(a 1+a 10)=5(a 5+a 6)=20.所以a 6=4-a 5=3.则{a n }的公差为a 6-a 5=3-1=2.故选B.5.等差数列{a n }的前n 项和为S n ,若a 2=3,S 5=25,则a 8=( ) (A)16(B)15(C)14 (D)13B 解析:设公差为d ,由a 2=3,S 5=25可得a 1+d =3,5a 1+5×42d =25 ∴a 1=1,d =2,则a 8=a 1+7d =15.考点一 等差数列的基本量运算(1)已知等差数列{a n }中,a 1010=3,S 2017=2017,则S 2018=( ) (A)2018 (B)-2018 (C)-4036(D)4036(2)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( ) (A)8 (B)9 (C)10(D)11(3)已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64a n的最小值为( ) (A)7 (B)152 (C)172(D)8解析:(1)由等差数列前n 项和公式结合等差数列的性质可得: S 2017=a 1+a 20172×2017=2a 10092×2017=2017a 1009=2017,则a 1009=1,据此可得:S 2018=a 1+a 20182×2018=1009(a 1009+a 2010)=1009×4=4036.故选D.(2)由S n -S n -3=51得,a n -2+a n -1+a n =51, 所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10.(3)设{a n }的公差为d ,由a 2=4,S 10=110得⎩⎨⎧a 1+d =4,10a 1+10×92d =110,解得⎩⎪⎨⎪⎧a 1=2,d =2,故a n =2+2(n -1)=2n , S n =2n +n (n -1)2×2=n 2+n . 所以S n +64a n=n 2+n +642n=n 2+32n +12≥2n 2·32n +12=172,当且仅当n 2=32n ,即n =8时取等号.故选C.【反思归纳】 等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可知三求二.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想.【即时训练】 (1)若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) (A)12 (B)13 (C)14(D)15(2)已知在等差数列{a n }中,a 1=20,a n =54,S n =3 700,则数列的公差d ,项数n 分别为( )(A)d =0.34,n =100 (B)d =0.34,n =99 (C)d =3499,n =100(D)d =3499,n =99(3)《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份的量为( )(A)52(B)54(C)53 (D)56解析:(1)B 由题意得S 5=5(a 1+a 5)2=5a 3=25,a 3=5,公差d =a 3-a 2=2,a 7=a 2+5d=3+5×2=13.故选B.(2)C由⎩⎪⎨⎪⎧a n =a 1+(n -1)d S n =na 1+n (n -1)d 2,得⎩⎪⎨⎪⎧54=20+(n -1)d ,3700=20n +n (n -1)d 2,解得d =3499,n =100.故选C.(3)C 易得中间的那份为20个面包,设最小的一份为a 1,公差为d ,根据题意,有[20+(a 1+3d )+(a 1+4d )]×17=a 1+(a 1+d ),解得a 1=53.故选C.考点二 等差数列的判断与证明已知S n 为等差数列{a n }的前n 项和,b n =S nn (n ∈N *).求证:数列{b n }是等差数列. 证明:设等差数列{a n }的公差为d , 则S n =na 1+12n (n -1)d , ∴b n =S n n =a 1+12(n -1)d .法一:b n +1-b n =a 1+12nd -a 1-12(n -1)d =d2(常数), ∴数列{b n }是等差数列.法二:b n +1=a 1+12nd ,b n +2=a 1+12(n +1)d , ∴b n +2+b n =a 1+12(n +1)d +a 1+12(n -1)d =2a 1+nd =2b n +1. ∴数列{b n }是等差数列.【反思归纳】 判定数列{a n }是等差数列的常用方法 (1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数;(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1; (3)通项公式法:数列的通项公式a n 是n 的一次函数;(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.【即时训练】 已知数列{a n }的首项a 1=1,且点(a n ,a n +1)在函数f (x )=x4x +1的图象上,b n =1a n(n ∈N *).(1)求证:数列{b n }是等差数列,并求数列{a n },{b n }的通项公式;(2)试问数列{a n }中a k ·a k +1(k ∈N *)是否仍是{a n }中的项?如果是,请指出是数列的第几项;如果不是,请说明理由.解:(1)证明:由已知得a n +1=a n 4a n +1,1a n +1=4+1a n,∴1a n +1-1a n=4,即b n +1-b n =4, ∴数列{b n }是以1为首项,4为公差的等差数列, ∴数列{b n }的通项公式为b n =1+4(n -1)=4n -3. 又b n =1a n ,故数列{a n }的通项公式为a n =14n -3.(2)由(1)可得a k ·a k +1=14k -3·14(k +1)-3=116k 2-8k -3=14(4k 2-2k )-3, ∵4k 2-2k =2k (2k -1)∈N *,∴a k ·a k +1∈{a n },所以a k ·a k +1是数列{a n }中的项,是第4k 2-2k 项. 考点三 等差数列的性质(1)设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )(A)0(B)37(C)100 (D)-37(2)等差数列{a n}中,a1+3a8+a15=120,则2a9-a10的值是()(A)20 (B)22(C)24 (D)-8(3)等差数列{a n}的前m项和为30,前3m项和为90,则它的前2m项和为________.解析:(1)设{a n},{b n}的公差分别为d1,d2,则(a n+1+b n+1)-(a n+b n)=(a n+1-a n)+(b n+1-b n)=d1+d2,所以{a n+b n}为等差数列.又a1+b1=a2+b2=100,所以{a n+b n}为常数列.所以a37+b37=100.(2)因为a1+3a8+a15=5a8=120,所以a8=24,所以2a9-a10=a10+a8-a10=a8=24.(3)由S m,S2m-S m,S3m-S2m成等差数列,可得2(S2m-S m)=S m+S3m-S2m,即S2m=3S m+S3m3=3×30+903=60.答案:(1)C(2)C(3)60【反思归纳】一般地,运用等差数列性质可以优化解题过程,但要注意性质运用的条件,如m+n=p+q,则a m+a n=a p+a q(m,m,p,q∈N*).【即时训练】(1)等差数列{a n}中,a1+a7=26,a3+a9=18,则数列{a n}的前9项和为()(A)66 (B)99(C)144 (D)297(2)设S n是公差不为零的等差数列{a n}的前n项和,且a1>0,若S5=S9,则当S n最大时,n等于()(A)6 (B)7(C)8 (D)9(3)在等差数列{a n}中,S n为前n项和,2a7=a8+5,则S11=()(A)55 (B)11(C)50 (D)60解析:(1)由a1+a7=2a4=26,得a4=13.由a3+a9=2a6=18,得a6=9.S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.故选B.(2)因为S 5=S 9, 所以a 6+a 7+a 8+a 9=0. 又a 6+a 9=a 7+a 8, 所以a 7+a 8=0, 又a 1>0, 所以a 7>0,a 8<0.所以当n =7时S n 最大.故选B.(3)由2a 7=a 8+5,a 6=5,S 11=(a 1+a 11)·112=11a 6=55.故选A.答案:(1)B (2)B (3)A等差数列的最值问题教材源题:已知等差数列5,427,347,…的前n 项和为S n ,求使得S n 最大的序号n 的值. 解:由题意知,等差数列5,427,347,…的公差为-57, 所以S n =n 22×5+(n -1)-57 =75n -5n 214=-514n -1522+1 12556.于是,当n 取与152最接近的整数即7或8时,S n 取最大值.【规律总结】 求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.若对称轴取不到,需考虑最接近对称轴的自变量n (n 为正整数);若对称轴对应两个正整数的中间,此时应有两个符合题意的n 值.【源题变式】 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?解:法一 设等差数列{a n }的公差为d , 由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0. 所以S n =na 1+n (n -1)2d =na 1+n (n -1)2·-18a 1 =-116a 1(n 2-17n ) =-116a 1n -1722+28964a 1,因为a 1>0,n ∈N *,所以n =8或n =9时,S n 有最大值. 法二 设等差数列{a n }的公差为d ,同法一得 d =-18a 1<0.设此数列的前n 项和最大,则⎩⎨⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n =a 1+(n -1)·-18a 1≥0,a n +1=a 1+n ·-18a 1≤0,解得⎩⎨⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值.课时作业基础对点练(时间:30分钟)1.已知等差数列{a n }的前n 项和为S n ,若6a 3+2a 4-3a 2=5,则S 7=( ) (A)28 (B)21 (C)14(D)7D 解析:解法一 由6a 3+2a 4-3a 2=5,得6(a 1+2d )+2(a 1+3d )-3(a 1+d )=5a 1+15d =5(a 1+3d )=5,即5a 4=5,所以a 4=1,所以S 7=7×(a 1+a 7)2=7×2a 42=7a 4=7,故选D.解法二 由6a 3+2a 4-3a 2=5,得6(a 4-d )+2a 4-3(a 4-2d )=5, 即5a 4=5,所以a 4=1,所以S 7=7×(a 1+a 7)2=7×2a 42=7a 4=7,故选D.2.已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) (A)18 (B)12 (C)9(D)6D 解析:设等差数列{a n }的公差为d ,由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.3.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( ) (A)S 7 (B)S 6 (C)S 5(D)S 4C 解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.故选C.4.已知等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,如果当n =m 时,S n 最小,那么m 的值为( )(A)10 (B)9 (C)5(D)4C 解析:解法一 设等差数列{a n }的公差为d .由已知得⎩⎨⎧11a 1+11×102d =22,a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7.所以S n =-33n +n (n -1)2×7=72n 2-73n 2=72⎝ ⎛⎭⎪⎫n -73142-72×⎝ ⎛⎭⎪⎫73142,因为n ∈N *,所以当n =5时,S n 取得最小值,故选C.解法二 设等差数列{a n }的公差为d .由已知得11(a 1+a 11)2=22,所以11a 6=22,解得a 6=2,所以d =a 6-a 42=7,所以a n =a 4+(n -4)d =7n -40,所以数列{a n }是单调递增数列,又a 5=-5<0,a 6=2>0,所以当n =5时,S n 取得最小值,故选C.5.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )(A)54钱 (B)43钱 (C)32钱(D)53钱B 解析:依题意,设甲所得为a 1,公差为d ,则a 1+a 2=a 3+a 4+a 5=52,即2a 1+d =3a 1+9d =52,解得a 1=43,∴甲得43钱.故选B.6.公差不为零的等差数列{a n }的前n 项和为S n ,若a 6=3a 4,且S 10=λa 4,则λ的值为( ) (A)15 (B)21 (C)23(D)25D 解析:由题意有:a 1+5d =3(a 1+3d )⇒a 1=-2d ,λ=S 10a 4=10a 1+10×92d a 1+3d=25,故选D.7.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:∵a n +1-a n =2(n ≥1),∴{a n }为等差数列,∴a n =1+(n -1)×2,即a n =2n -1. 答案:2n -1.8.(2019苏北四市一模)在等差数列{a n }中,已知a 2+a 8=11,则3a 3+a 11的值为________. 解析:设等差数列{a n }的公差为d ,由题意可得a 2+a 8=11=2a 5,则a 5=112,所以3a 3+a 11=3(a 5-2d )+a 5+6d =4×112=22.答案:229.由正数组成的等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且a n b n =2n -13n -1,则S 5T 5=________.解析:由S 5=5(a 1+a 5)2=5a 3,T 5=5(b 1+b 5)2=5b 3,得S 5T 5=a 3b 3=2×3-13×3-1=58.答案:5810.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解:(1)设{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧ a 1q =3,a 1q 4=81,解得⎩⎪⎨⎪⎧a 1=1,q =3.因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 2.能力提升练(时间:15分钟)11.今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,问:几何日相逢?( )(A)12日 (B)16日 (C)8日(D)9日D 解析:由题易知良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13n +90,驽马每日所行里数也构成一等差数列,其通项公式为b n =97-12(n -1)=-12n +1952,二马相逢时所走路程之和为2×1 125=2 250,所以n (a 1+a n )2+n (b 1+b n )2=2 250,即n (103+13n +90)2+n ⎝ ⎛⎭⎪⎫97-12n +19522=2 250,化简得n 2+31n -360=0,解得n =9或n =-40(舍去),故选D.12.已知数列{a n +1-a n }是公差为2的等差数列,且a 1=1,a 3=9,则a n =________. 解析:数列{a n +1-a n }是公差为2的等差数列,且a 1=1,a 3=9,∴a n +1-a n =(a 2 -1)+2(n -1), a 3-a 2 =(a 2-1)+2,∴3-a 2=(a 2-1)+2,∴a 2=1. ∴a n +1-a n =2n -2,∴a n =2(n -1)-2+2(n -2)-2+……+2-2+1=2×(n -1)n2-2(n -1)+1=n 2-3n +3. ∴a n =(n 2-3n +3)2.n =1时也成立. 则a n =(n 2-3n +3)2. 答案:(n 2-3n +3)2.13.等差数列{a n }中,a 1=12 015,a m =1n ,a n =1m (m ≠n ),则数列{a n }的公差d =________. 解析:因为a m =12 015+(m -1)d =1n ,a n =12 015+(n -1)d =1m ,所以(m -n )d =1n -1m ,所以d =1mn ,所以a m =12 015+(m -1)1mn =1n ,解得1mn =12015,即d =12015.答案:1201514.设同时满足条件:①b n +b n +22≤b n +1(n ∈N +);②b n ≤M (n ∈N +,M 是与n 无关的常数)的无穷数列{b n }叫“特界”数列.(1)若数列{a n }为等差数列,S n 是其前n 项和:a 3=4,S 3=18,求S n ; (2)判断(1)中的数列{S n }是否为“特界”数列,并说明理由.解:(1)设等差数列{a n }的公差为d ,则a 1+2d =4,S 3=a 1+a 2+a 3=3a 1+3d =18, 解得a 1=8,d =-2,∴S n =na 1+n (n -1)2d =-n 2+9n .(2){S n }是“特界”数列,理由如下:由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2=a n +2-a n +12=d 2=-1<0,得S n +S n +22<S n +1,故数列{S n }适合条件①.而S n =-n 2+9n =-⎝ ⎛⎭⎪⎫n -922+814(n ∈N +),则当n =4或5时,S n 有最大值20,即S n ≤20,故数列{S n }适合条件②.综上,数列{S n }是“特界”数列.15.(2019南昌模拟)已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. (1)证明:因为b n =1a n,且a n =a n -12a n -1+1,所以b n +1=1a n +1=1a n 2a n +1=2a n +1a n .所以b n +1-b n =2a n +1a n-1a n=2.又b 1=1a 1=1,所以数列{b n }是首项为1,公差为2的等差数列. (2)解:由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,所以a n =1b n=12n -1.所以数列{a n}的通项公式为a n=1.2n-1。

[精]高三第一轮复习全套课件3数列:等差数列

[精]高三第一轮复习全套课件3数列:等差数列
新疆 源头学子小屋
http :/ www.xjktyg .com /wxc /
特级教师 王新敞 wxckt @126 .com
解:设三个数为 a,公差为 d,则这 5 个数依次为 a-2d,a-d ,a ,a+d ,a+2d依题意: 新疆 源头学子小屋 /wxc/
/wxc/
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
⑴求点 Pn 的坐标;
⑵设抛物线列 c1, c2 , c3 ,, cn ,中的每一条的对称轴都垂直于 x 轴,第 n
/wxc/
特级教师 王新敞 wxckt@
⑶ 设 S x | x 2xn , n N, n 1,T y | y 4 yn , n 1 , 等 差 数 列
an 的 任 一 项 an S T , 其 中 a1 是 S T 中 的 最 大 数 ,
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
解:设数列{an}的公差为 d,首项为 a1, 由已知得 5a1 + 10d = -5, 10a1 + 45d = 15 解得 a1=-3 ,d=1
∴Sn =
n(-3)+
n(n 1) 2
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
由此得
a6>-a7>0 因为 新疆 源头学子小屋 /wxc/
特级教师 王新敞 wxckt@
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
(a-2d)2 +(a-d)2 + a2 + (a+d)2 + (a+2d)2 = 85 9

高考数学一轮复习《等差数列》练习题(含答案)

高考数学一轮复习《等差数列》练习题(含答案)

高考数学一轮复习《等差数列》练习题(含答案)一、单选题1.若3与13的等差中项是4与m 的等比中项,则m =( ) A .12B .16C .8D .202.在等差数列{}n a 中,49a =,且2410,,a a a 构成等比数列,则公差d 等于( ) A .3-B .0C .3D .0或33.已知等差数列{}n a 的前n 项和为n S ,若7614,10S a ==,则{}n a 的公差为( ) A .4B .3C .2D .14.已知数列{}n a ,{}n b 均为等差数列,且125a =,175b =,22120a b +=,则3737a b +的值为( ) A .760B .820C .780D .8605.在等差数列{an }中,若a 2+2a 6+a 10=120,则a 3+a 9等于( ) A .30B .40C .60D .806.在明朝程大位《算法统宗》中有首依筹算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推详算莫差争.”题意是:“现有甲、乙、丙、丁、戊、己、庚七人,他们手里钱不一样多,依次成等差数列,已知甲、乙两人共237钱,戊、己、庚三人共261钱,求各人钱数.”根据上题的已知条件,戊有( ) A .107钱B .102钱C .101钱D .94钱7.已知数列{an }是首项为1a ,公差为d 的等差数列,前n 项和为Sn ,满足4325a a =+,则S 9=( ) A .35B .40C .45D .50 8.正项等比数列{}n a 中,5a ,34a ,42a -成等差数列,若212a =,则17a a =( ) A .4B .8C .32D .649.已知{}n a 是公差不为零的等差数列,2414a a +=,且126,,a a a 成等比数列,则公差为( ) A .1B .2C .3D .410.设等差数列{}n a 的公差为d ,10a >,则“50a >”是“0d >”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.设等差数列 {}n a 的前n 项和为n S ,若3710a a += ,则9S = ( ) A .22.5B .45C .67.5D .9012.在等差数列{}n a 中n S 为前n 项和,7624a a =- ,则9S =( ) A .28 B .30C .32D .36二、填空题13.记n S 为等差数列{n a }的前n 项和,若24a =,420S =,则9a =_________.14.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若4a ,5S ,{}750S ∈-,,则n S 的最小值为__________.15.已知数列{}n a 中,11a =,()1121n n n n a a n a na ++⋅=+-,则通项公式n a =______. 16.等差数列{}n a 的前n 项和为n S ,若30a =,636S S =+,则7S =_____. 三、解答题17.已知等差数列{}n a 满足32a =,前4项和47S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,415b a =,数列{}n b 的通项公式.18.已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .19.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.20.已知在n的展开式中,前3项的系数成等差数列,求:(1)展开式中二项式系数最大项的项; (2)展开式中系数最大的项; (3)展开式中所有有理项.21.设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤---恒成立,求实数λ的最小值.22.这三个条件中任选一个,补充在下面题目条件中,并解答.①25a =,()11232,n n n S S S n n *+--+=≥∈N ;②25a =,()111322,n n n n S S S a n n *+--=--≥∈N ;③()132,12n n S S n n n n *--=≥∈-N . 问题:已知数列{}n a 的前n 项和为n S ,12a =,且___________.(1)求数列{}n a 的通项公式;(2)已知n b 是n a 、1n a +的等比中项,求数列21n b ⎧⎫⎨⎬⎩⎭的前n 项和n T参考答案1.B2.D3.A4.B5.C7.C8.D9.C10.B11.B12.D 13.18 14.6- 15.21nn - 16.717.(1)设等差数列{}n a 首项为1a ,公差为d .∵3427a S =⎧⎨=⎩∴()1122441472a d a d +=⎧⎪⎨⨯-+=⎪⎩解得:1112a d =⎧⎪⎨=⎪⎩∴等差数列{}n a 通项公式()11111222n a n n =+-⨯=+(2)设等比数列{}n b 首项为1b ,公比为q∵2341528b a b a ==⎧⎨==⎩∴13128b q b q ⋅=⎧⎨⋅=⎩ 解得:24q =即112b q =⎧⎨=⎩或112b q =-⎧⎨=-⎩ ∴等比数列{}n b 通项公式12n n b -=或()12n n b -=--18.(1)根据题意得,13331log 15log 10log 42a =-+333331533log log log log 2log 211022⎛⎫=+=+=⨯= ⎪⎝⎭,因为数列{}n a 是等差数列,设公差为d ,则由3718a a +=,得112618a d a d +++=,解得2d =,所以()11221n a n n =+-⨯=-.(2)由(1)可得1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭11122121nn n ⎛⎫=-=⎪++⎝⎭. 19.(1)因为221nn S n a n +=+,即222n n S n na n+=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----, 即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列. (2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-. [方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-, 所以13n a n =-,即有1123210,0a a a a <<<<=.则当12n =或13n =时,()min 78n S =-. 20.(1)n展开式的通项公式为1C kn kk k nT -+=⋅3561C 2n kk n k x -=,依题意得122112C 1C 22n n ⋅⋅=+⋅,即2C 4(1)n n =-,得8n =,所以8的展开式有9项,二项式系数最大的项为5项,所以22433584135C 28T x x ==. (2)由(1)知,2456181C 2kk k k T x -+=,设展开式中系数最大的项为第1k +项,则1881188111C C 2211C C 22k k k k k k k k --++⎧≥⎪⎪⎨⎪≥⎪⎩,即()()()()()()8!8!2!8!1!9!8!8!2!8!1!7!k k k k k k k k ⎧≥⋅⎪⋅--⋅-⎪⎨⎪⋅≥⎪⋅-+⋅-⎩,即92228k k k k -≥⎧⎨+≥-⎩,解得23k ≤≤,所以2k =或3k =, 所以展开式中系数最大的项为737x 和327x . (3)由2456181C 2kk k k T x -+=(0,1,2,3,4,5,6,7,8)k =为有理项知,2456k -为整数,得0k =,6.所以展开式中所有有理项为4x 和716x. 21.(1)设等差数列{}n a 的公差为d , 由535S =得151035a d +=, 因为4a 是1a 与13a 的等比中项,所以()()2111312a d a a d +=+.化简得172a d =-且2123a d d =,解方程组得17,0a d ==或13,2a d==.故{}n a 的通项公式为7n a =或21n a n =+(其中N n *∈);因为245n T n n =+,所以214(1)5(1)n T n n -=-+-,(2)n ≥,所以22145[4(1)5(1)]81n n n b T T n n n n n -=-=+--+-=+,因为119b T ==,满足上式,所以()81N n b n n *=+∈;(2)因为14a <,所以21n a n =+, 所以(2)n S n n =+,所以221114488141n n S b n n n n ==-+---,所以22211221111114442141(2)1n n S b S b S b n +++=+++------1111335(21)(21)n n =+++⨯⨯-+111111123352121n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭, 易见111221n ⎛⎫- ⎪+⎝⎭随n 的增大而增大,从而11112212n ⎛⎫-< ⎪+⎝⎭恒成立, 所以12λ≥,故λ的最小值为12.22.(1)解:选条件①时,25a =,1123n n n S S S +--+=,整理得()()113n n n n S S S S +----=,故13n n a a +-=(常数),且213a a -=, 所以数列{}n a 是以2为首项,3为公差的等差数列.故()13131n a a n n =+-=-;选条件②时,25a =,()*111322,n n n n S S S a n n +--=--≥∈N ,整理得()1112n n n n n S S S S a +---=--,故112n n n a a a +-+=,故数列{}n a 是等差数列,公差213d a a =-=,故()13131n a a n n =+-=-; 选条件③时,()*132,12n n S S n n n n --=≥∈-N ,且121S =, 所以数列n S n ⎧⎫⎨⎬⎩⎭是以2为首项,32为公差的等差数列,则()33121222n S n n n =+-=+,所以23122n S n n =+,则2n ≥时,131n n n a S S n -=-=-.又112311a S ===⨯-满足31n a n =-,所以31n a n =-,*n ∈N . (2)解:由(1)得:31n a n =-,由于n b 是n a 、1n a +的等比中项,所以()()213132n n n b a a n n +==-+⋅,则()()211111313233132n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 故()11111111113255831323232232n nT n n n n ⎛⎫⎛⎫=⨯-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭。

2021届高三数学总复习第一轮——等差数列

2021届高三数学总复习第一轮——等差数列

等差数列高考大纲思维导图讲义导航知识梳理一、等差数列的定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示二、等差数列的通项公式等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.三、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).四、等差数列的求和公式等差数列的前n项和公式等差数列的前n项和的公式:①()12nnn a aS+=;②()112nn nS na d-=+.五、等差数列最值求解等差数列前n项和的最值问题可转化为项的正负问题,也可转化为二次函数最值问题.例题讲解一、等差数列定义的理解例1.下面数列中,是等差数列的有( ) ①4,5,6,7,8…②3,0,-3,0,-6,…③0,0,0,0…④110,210,310,410,… A .1个 B .2个C .3个D .4个例2.下列数列中不是等差数列的为( ) A.0,0,0,0,0 B.0,1-,2-,3-,4- C.2,3,4,5,6 D.0,1,2,1,0二、等差数列通项公式例1.在等差数列{}n a 中,已知32a =,5815a a +=,则10(a = ) A .64 B .26C .18D .13例2.在等差数列{}n a 中,214a =,55a =,则公差(d = )A .2-B .3-C .2D .3例3.已知{}n a 是等差数列,124a a +=,7828a a +=,则公差等于( ) A .2 B .4 C .6 D .8三、等差数列的性质例1.等差数列{}n a 中,已知21016a a +=,则468(a a a ++= ) A .16 B .20 C .24 D .28例2.等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值是( )A .14B .15C .16D .17例3.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是( )A .(2,4)B .(,2)-∞C .(2,)+∞D .(4,)+∞四、等差数列的求和公式例1.已知等差数列{}n a 的前n 项和为n S ,若33S a =,且30a ≠,则43(S S = ) A .1B .53C .83D .3例2.等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项的和9S 等于( ) A .99 B .66C .144D .297例3.设{}n a 是任意等差数列,它的前n 项和、前2n 项和与前4n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .23X Z Y +=B .44X Z Y +=C .237X Z Y +=D .86X Z Y +=六、等差数列最值求解例1.已知等差数列{}n a 中,39a a =,公差0d <,则使其前n 项和n S 取得最大值的自然数n 是( ). A.4或5 B.5或6 C.6或7 D.不存在例2.设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值_______.例3.在各项均为正数的等比数列{a n }中,214a =,且a 4+a 5=6a 3.练习A1.下列说法中正确的是( )A.若a ,b ,c 成等差数列,则222,,a b c 成等差数列B.若a ,b ,c 成等差数列,则222log ,log ,log a b c 成等差数列C.若a ,b ,c 成等差数列,则a+2,b+2,c+2成等差数列D.若a ,b ,c 成等差数列,则2,2,2a b c 成等差数列2.已知下列各数列,其中为等差数列的个数为( ) 1 4,5,6,7,8,... 2 3,0,-3,0,-6,... 3 0,0,0,0, (4)1234,,,,10101010… A.1 B.2C.3D.43.已若{}n a 是等差数列,则由下列关系确定的数列{}n b 也一定是等差数列的是( )A. 2n n b a =B. 2n n b a n =+C. 1n n n b a a +=+D. n n b na =4.已知数列{}n a 为等差数列,且39a =,53a =,则9a 等于( )A .9-B .6-C .3-D .275.已知等差数列{}n a 中,1232a a a ++=,3456a a a ++=,则91011a a a ++的值为( ) A .18 B .16 C .14 D .126.等差数列{}n a 中,若46101290a a a a +++=,则10141(3a a -= )A .15B .30C .45D .607.等差数列{}n a 中,31a =-,1117a =-,则7a 等于( )A .9-B .8-C .92-D .4-8.在等差数列{}n a 中,公差为12,1359960a a a a +++⋯+=,则246100(a a a a +++⋯+= ) A .60 B .70 C .75 D .859.已知等差数列{}n a 满足12910a a a ++⋯+=,则有( )A .3890a a +=B .2900a a +<C .1910a a +>D .4646a =10.已知数列{}n a 为等差数列,且17132a a a π++=,则7tan (a = )A.BC. D.11.已知0a >,0b >,并且1a ,12,1b成等差数列,则9a b +的最小值为( ) A .16 B .9C .5D .412.等差数列{}n a 中,已知21016a a +=,则468(a a a ++= ) A .16 B .20C .24D .2813.在等差数列{}n a 中,若4681012120a a a a a ++++=,则10122a a -的值为( ) A .20 B .22C .24D .2814.等差数列{}n a 中,156a a +=,65a =,那么9a 的值是( ) A .7- B .7 C .113-D .11315.已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则8967a a a a ++等于( )A.1+B.1-C.3+D.3-16.已知等差数列{}n a 的前n 项和为n S ,若33S a =,且30a ≠,则43(S S = ) A .1B .53C .83D .317.设等差数列{}n a 的前n 项和n S ,若4104a a +=,则13(S = ) A .13 B .14C .26D .5218.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5(S = ) A .5 B .7C .9D .1019.在等差数列{}n a 中,若351024a a a ++=,则此数列的前13项的和等于( ) A .8 B .13C .16D .2620.在等差数列{}n a 中,若14739a a a ++=,36927a a a ++=,则9(S = ) A .66 B .99C .144D .29721.已知{}n a 为等差数列,n S 为其前n 项和.若312S =,244a a +=,则6(S = ) A .6 B .12C .15D .1822.等差数列{}n a 前n 项和为n S ,111a =-,466a a +=-.则当n S 取最小值时,(n = ) A .6 B .7C .8D .923.数列{}n a 的通项公式为2328n a n n =-,则数列{}n a 各项中最小项是( )A .第4项B .第5项C .第6项D .第7项24.已知数列{}n a 是等差数列,若91130a a +<,10110a a <,且数列{}n a 的前n 项和n S 有最大值,那么当n S 得最小正值时,n 等于( ) A .20 B .17 C .19 D .2125.已知n S 是等差数列*{}()n a n N ∈的前n 项和,且564S S S >>,以下有四个命题:①数列{}n a 中的最大项为10S ②数列{}n a 的公差0d < ③100S >④110S <其中正确的序号是( )A .②③B .②③④C .②④D .①③④26.在等差数列{}n a 中,128a =-,公差4d =,若前n 项和n S 取得最小值,则n 的值为( ) A .7 B .8C .7或8D .8或927.数列{}n a 是首项为111a =,公差为2d =-的等差数列,那么使前n 项和n S 最大的n 值为( ) A .4 B .5C .6D .7练习B1.设{}n a 为等差数列,则下列数列中,成等差数列的个数为( )①2{}na ②{}n pa ③{}n pa q + ④{}(n na p 、q 为非零常数) A .1 B .2C .3D .42.等差数列{}n a 的公差0d >,前n 项和为n S ,则对2n >时有( ) A .1nn S a a n<< B .1nn S a a n <<C .1n n Sa a n<<D .1,,n n Sa a n的大小不确定3.设等差数列{}n a 的前n 项和为n S ,在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )A .当4n =时,n S 取得最大值B .当3n =时,n S 取得最大值C .当4n =时,n S 取得最小值D .当3n =时,n S 取得最小值4.已知数列{}n a 是等差数列,n S 为其前n 项和.若3916S S =,则612(S S = )A .110B .310C .510D .7105.设等差数列{}n a 的前n 项和为n S ,且满足100S >,110S <,则下列数值最大的是( )A .4SB .5SC .6SD .7S6.等差数列{}n a 与{}n b 的前n 项和分别为n S 与n T ,若3221n n S n T n -=+,则77(ab = ) A .3727B .3828C .3929D .40307.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为( ) A .10 B .12 C .14 D .168.已知点(n ,*)()n a n N ∈都在直线3240x y --=上,那么在数列n a 中有79(a a += )A .790a a +>B .790a a +<C .790a a +=D .790a a =9.已知等差数列{}n a 满足3243a a =,则{}n a 中一定为零的项是( )A .6aB .8aC .10aD .12a10.在等差数列{}n a 中,15a =,470a a +=,则数列{}n a 中为正数的项的个数为( ) A .4 B .5 C .6 D .711.已知数列{}n a 中,132(3n n a a ++= *)n N ∈,且356820a a a a +++=,那么10a 等于( ) A .8 B .5 C .263D .712.若等差数列{}n a 的公差为d ,前n 项和为n S ,记nn S b n=,则( ) A .数列{}n b 是等差数列,{}n b 的公差也为dB .数列{}n b 是等差数列,{}n b 的公差为2dC .数列{}n n a b +是等差数列,{}n n a b +的公差为dD .数列{}n n a b -是等差数列,{}n n a b -的公差为2d13.等差数列{}n a 中,已知113a =,254a a +=,33n a =,则n 为( )A .48B .49C .50D .5114.若等差数列的首项是24-,且从第10项开始大于零,则公差d 的取值范围是( )A .83d > B .3d < C .833d < D .833d <15.在数列{}n a 中,若1332()n n a a n N +=+∈,且247920a a a a +++=,则10a 为( ) A .5 B .7C .8D .1016.等差数列{}n a 前n 项和为n S ,111a =-,466a a +=-.则当n S 取最小值时,(n = ) A .6 B .7C .8D .917.在各项均为正数的等比数列{}n a 中,63a =,则48(a a += )A .有最小值6B .有最大值6C .有最大值9D .有最小值318.已知实数序列1a ,2a ,⋯,n a 满足:任何连续3项之和均为负数,且任何4项之和均为正数,则n 的最大值是( ) A .4 B .5C .6D .719.已知n S 是等差数列*{}()n a n N ∈的前n 项和,且564S S S >>,以下有四个命题:①数列{}n a 中的最大项为10S ②数列{}n a 的公差0d < ③100S >④110S <其中正确的序号是( )A .②③B .②③④C .②④D .①③④20.已知各项均为正数的等比数列{}n a 中,如果21a =,那么这个数列前3项的和3S 的取值范围是( )A .(-∞,1]-B .[1,)+∞C .[2,)+∞D .[3,)+∞21.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ,下列四个命题中,假命题是( )A .公差d 的最大值为2-B .70S <C .记n S 的最大值为K ,K 的最大值为30D .20162017a a >练习C1.已知||0x y >>.将四个数,,x x y x y -+( )A .当0x >时,存在满足已知条件的x ,y ,四个数构成等比数列B .当0x >时,存在满足已知条件的x ,y ,四个数构成等差数列C .当0x <时,存在满足已知条件的x ,y ,四个数构成等比数列D .当0x <时,存在满足已知条件的x ,y ,四个数构成等差数列2.等差数列{}n a 的公差0d >,前n 项和为n S ,则对2n >时有( )A .1nn S a a n<< B .1nn S a a n<<C .1nn S a a n<< D .1,,nn S a a n的大小不确定3.设等差数列{}n a 的前n 项和为n S ,在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )A .当4n =时,n S 取得最大值B .当3n =时,n S 取得最大值C .当4n =时,n S 取得最小值D .当3n =时,n S 取得最小值4.等差数列,的前项和分别为,,若,则 A . B .C .D .5.在等差数列中,,其前项和为,若,则 A . B .C .2008D .20096.设为等差数列,则下列数列中,成等差数列的个数为① ② ③ ④、为非零常数) A .1 B .2 C .3 D .47.设表示等差数列的前项和,已知,那么等于 A .B .C .D .8.等差数列中,,,则该数列前项之和为{}n a {}n b n n S n T 231n n S n T n =+(n na b =)232131n n --2131n n ++2134n n -+{}n a 12007a =-n n S 20082006220082006S S -=2009(S =)2009-2008-{}n a ()2{}na {}n pa {}n pa q +{}(n na p q n S {}n a n 51013S S =1020SS ()193101813{}n a 1m a k =1()k a m k m=≠mk ()A .B .C .D .9.设数列为等差数列,其前项和为,已知,,若对任意,都有成立,则的值为A .22B .21C .20D .1910.设等差数列的公差为,前项和为.若,则的最小值为 A .10 B .C .D .二.填空题(共2小题) 11.在等差数列中,,若它的前项和有最大值,则使取得最小正数的 19 .12.已知两个等差数列、的前项和分别为和,若,则使为整数的正整数的个数是 5个 .课后练习1.等差数列中,若,则 .2.设等差数列的前项和为,若,,则 0 ,的最小值为 .3.等差数列中,,,则取最大值时, 6或7 .4.已知等差数列的前项和为,能够说明“若数列是递减数列,则数列是递减数列”是假命题的数列的一个通项公式为 (答案不唯一) .5.设等差数列的前项和为,若,,则数列的公差等于 .6.若等差数列满足,则12mk-2mk12mk +12mk+{}n a n n S 14799a a a ++=25893a a a ++=*n N ∈n k S S k (){}n a d n n S 11a d ==8n nS a +()927212+{}n a 11101a a <-n n S n S n ={}n a {}n b n n A n B 7453n n A n B n +=+n na b {}n a 31110a a +=678a a a ++={}n a n n S 23a =-510S =-5a =n S {}n a 10a >49S S =n S n ={}n a n n S {}n a {}n S {}n a 27n a n =-+{}n a n n S 1122S =71a ={}n a 1-{}n a 1461,52a a a =+=2019a =20192二.解答题(共3小题)7.在等差数列中,已知,,. (Ⅰ)求数列的通项公式; (Ⅱ)求.8.设等差数列满足,. (1)求的通项公式;(2)求的前项和及使得最大的序号的值.9.已知为等差数列,,. ( I ) 求数列的通项公式以及前项和. (Ⅱ)求使得的最小正整数的值.{}n a 1312a a +=2418a a +=*n N ∈{}n a 3693n a a a a +++⋯+{}n a 35a =109a =-{}n a {}n a n n S n S n {}n a 112a =-562a a ={}n a n n S 14n S >n。

2023年新教材高考数学一轮复习第五章数列第二节等差数列课件

2023年新教材高考数学一轮复习第五章数列第二节等差数列课件

[提速度]
1.(2022·枣庄质检)已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,
所有偶数项之和为290,则该数列的中间项为
()
A.28
B.29
C.30
D.31
解析:由结论(8),设项数为奇数2n-1,S奇-S偶=an=319-290=29, 故选B.
答案:B
2.已知Sn是等差数列{an}的前n项和,若a1=-2 020,2S2002200 -2S2001144 =6,则S2 023=
b1+2 b5=192+ 2 64=128.故选C.
答案:C
2.已知等差数列{an}满足a4+a6=22,a1·a9=57,则该等差数列的公差为 ( )
A.1或-1
B.2
C.-2
D.2或-2
解析:由a1+a9=a4+a6=22,a1·a9=57,所以a1,a9是方程x2-22x+57=0的两 实数根,解得aa19= =31,9 或aa19= =13,9, 所以公差d=a9-8 a1=2或-2.故选D. 答案:D
第二节 等差数列
(1)理解等差数列的概念和通项公式的意义;(2)探索并掌握等差数列的前n项 和公式,理解等差数列的通项公式与前n项和公式的关系;(3)体会等差数列与一 元一次函数的关系.
目录
CONTENTS
1
知识 逐点夯实
2
考点 分类突破
3
课时过关检测
01 知识 逐点夯实 课前自修
重点准 逐点清 结论要牢记
等差数列的判定与证明方法 方法
解读
适合题型
定义法 对于数列{an},an-an-1(n≥2,n∈N *)为同一常
数⇔{an}是等差数列
解答题中的

高考数学第一轮复习资料汇总

高考数学第一轮复习资料汇总

高考数学第一轮复习资料汇总高考数学第一轮复习资料 1数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1—an=dan=a1+(n—1)da,A,b成等差2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b ba>b,b>c a>ca>b a+c>b+ca+b>c a>c—ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 aca>b>0,c>d>0 aca>b>0 dn>bn(n∈Z,n>1)a>b>0 > (n∈Z,n>1)(a—b)2≥0a,b∈R a2+b2≥2ab|a|—|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或aa—b>0(或a—b<0=即可(2)若b>0,要证a>b,只需证明。

要证a综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。

分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”高考数学第一轮复习资料 21、直线两点距离、定比分点直线方程|AB|=| ||P1P2|=y—y1=k(x—x1)y=kx+b两直线的位置关系夹角和距离或k1=k2,且b1≠b2l1与l2重合或k1=k2且b1=b2l1与l2相交或k1≠k2l2⊥l2或k1k2=—1 l1到l2的角l1与l2的夹角点到直线的距离2、圆锥曲线圆椭圆标准方程(x—a)2+(y—b)2=r2圆心为(a,b),半径为R一般方程x2+y2+Dx+Ey+F=0其中圆心为(),半径r(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系(2)两圆的位置关系用圆心距d与半径和与差判断椭圆焦点F1(—c,0),F2(c,0)(b2=a2—c2)离心率准线方程焦半径|MF1|=a+ex0,|MF2|=a—ex0双曲线抛物线双曲线焦点F1(—c,0),F2(c,0)(a,b>0,b2=c2—a2)离心率准线方程焦半径|MF1|=ex0+a,|MF2|=ex0—a抛物线y2=2px(p>0)焦点F准线方程坐标轴的平移这里(h,k)是新坐标系的原点在原坐标系中的坐标。

2023年新高考数学一轮复习7-2 等差数列及其前n项和(知识点讲解)解析版

2023年新高考数学一轮复习7-2 等差数列及其前n项和(知识点讲解)解析版

专题7.2 等差数列及其前n 项和(知识点讲解)【知识框架】【核心素养】1.与归纳推理相结合,考查数列的概念与通项,凸显逻辑推理的核心素养.2.与函数、不等式相结合,考查数列的概念及其性质,凸显数学抽象、逻辑推理、数学运算的核心素养. 3.与递推公式相结合,考查对求通项公式的方法的掌握,凸显数学运算、数学建模的核心素养.【知识点展示】(一)等差数列1.定义:等差数列定义:一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示.用递推公式表示为或.2.等差数列的通项公式:;说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列, 为递减数列.3.等差中项的概念:定义:如果,,成等差数列,那么叫做与的等差中项,其中 . 2d 1(2)n n a a d n --=≥1(1)n n a a d n +-=≥1(1)n a a n d =+-A P d 0>0d =0d <a A b A a b 2a bA +=,,成等差数列. 4.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列. 5.注意区分等差数列定义中同一个常数与常数的区别. (二)等差数列的前和的求和公式:. (三)等差数列的通项公式及前n 项和公式与函数的关系(1)当d ≠0时,等差数列{a n }的通项公式a n =dn +(a 1-d )是关于d 的一次函数. (2)当d ≠0时,等差数列{a n }的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 是关于n 的二次函数. (四)等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. (五)等差数列的性质:(1)在等差数列中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列中,相隔等距离的项组成的数列是等差数列, 如:,,,,……;,,,,……;(3)在等差数列中,对任意,,,;(4)在等差数列中,若,,,且,则,特殊地,时,则,是的等差中项.(5)等差数列被均匀分段求和后,得到的数列仍是等差数列,即成等差数列.(6)两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. (7)若数列{}n a 是等差数列,则{}n ka 仍为等差数列.(8)设数列是等差数列,且公差为,(Ⅰ)若项数为偶数,设共有项,则①-S S nd =奇偶; ②;(Ⅱ)若项数为奇数,设共有项,则①S S -偶奇(中间项);②. (9)等差数列中,(),p q a q a p p q ==≠,则0p q a +=,m n m n S S S mnd +=++.a Ab ⇔2a bA +=n 11()(1)22n n n a a n n S na d +-==+{}n a {}n a 1a 3a 5a 7a 3a 8a 13a 18a {}n a m n N +∈()n m a a n m d =+-n ma a d n m-=-()m n ≠{}n a m n p q N +∈m n p q +=+m n p q a a a a +=+{}n a d 2n 1n n S a S a +=奇偶21n -n a a ==中1S nS n =-奇偶(10)如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是两个原等差数列公差的最小公倍数.(11)若与{}n b 为等差数列,且前n 项和分别为n S 与'n S ,则2121'm m m m a Sb S --=. (12)等差数列的增减性:0d >时为递增数列,且当10a <时前n 项和n S 有最小值.0d <时为递减数列,且当10a >时前n 项和n S 有最大值.【常考题型剖析】题型一:等差数列基本量的运算例1.(2019·全国·高考真题(理))记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( ) A .25n a n =- B .310n a n =- C .228n S n n =-D .2122n S n n =-【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A . 【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .例2.(2022·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______. 【答案】2 【解析】【分析】转化条件为()112+226a d a d =++,即可得解. 【详解】由32236S S =+可得()()123122+36a a a a a +=++,化简得31226a a a =++, 即()112+226a d a d =++,解得2d =. 故答案为:2.{}n a【总结提升】1.解决等差数列运算问题的思想方法(1)方程思想:等差数列的基本量为首项a 1和公差d ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用a 1,d 表示,寻求两者间的联系,整体代换即可求解.(3)利用性质:运用等差数列性质可以化繁为简、优化解题过程. 2.等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题.3.特殊设法:三个数成等差数列,一般设为,,a d a a d -+;四个数成等差数列,一般设为3,,,3a d a d a d a d --++.这对已知和,求数列各项,运算很方便.题型二:等差数列的判定与证明例3. (2020·山东·高考真题)某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决. 【答案】140里. 【解析】 【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同, 所以该男子这9天中每天走的路程数构成等差数列, 设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d , 则91260S =,147390a a a ++=. 因为1(1)2n n n S na d -=+,1(1)n a a n d =+-, 1(1)n a a n d =+-11()(1)22n n n a a n n S na d +-==+所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=, 所以该男子第5天走140里.例4.(2021·全国·高考真题(文))记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列. 【答案】证明见解析. 【解析】 【分析】的公差d,进一步写出的通项,从而求出{}n a 的通项公式,最终得证. 【详解】∵数列是等差数列,设公差为d(n -()n *∈N∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦∴{}n a 是等差数列.例5.(2021·全国·高考真题(理))已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①①①中选取两个作为条件,证明另外一个成立. ①数列{}n a是等差数列:②数列是等差数列;③213a a =. 注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】证明过程见解析 【解析】 【分析】选①②作条件证明③时,结合,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选②③作条件证明①时,an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论. 【详解】选①②作条件证明③:[方法一]:待定系数法+n a 与n S 关系式(0)an b a +>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.[方法二] :待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d -,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a =.所以213a a =. 选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=, 所以()21112n n n S na d n a -=+=,)1n =+=所以是等差数列. 选②③作条件证明①: [方法一]:定义法(0)an b a +>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a +-03a=-<不合题意,舍去. 综上可知{}n a 为等差数列. [方法二]【最优解】:求解通项公式因为213a a =,因为也为等差数列,所以公差1d()11n d =-=故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意. 【整体点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a两项的差1d11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论. 【总结提升】等差数列的四种判断方法(1) 定义法:对于数列{}n a ,若d a a n n =-+1()n N ∈*(常数),则数列{}n a 是等差数列; (2) 等差中项:对于数列{}n a ,若212+++=n n n a a a ()n N ∈*,则数列{}n a 是等差数列; (3)通项公式:n a pn q =+(,p q 为常数,n N ∈*)⇔是等差数列;(4)前n 项和公式:2n S An Bn =+(,A B 为常数, n N ∈*)⇔是等差数列;(5)是等差数列⇔n S n ⎧⎫⎨⎬⎩⎭是等差数列. 提醒:判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.题型三:等差数列的前n 项和例6.【多选题】(2022·湖南永州·三模)已知等差数列{}n a 是递减数列,n S 为其前n 项和,且78S S =,则( )A .0d >B .80a =C .150S >D .7S 、8S 均为n S 的最大值【答案】BD 【解析】【分析】根据等差数列的性质以及其前n 项和的性质,逐个选项进行判断即可求解 【详解】因为等差数列{}n a 是递减数列,所以,10n n a a +-<,所以,0d <,故A 错误; 因为78S S =,所以8870a S S =-=,故B 正确; 因为()115158151502a a S a +===,故C 错误; 因为由题意得,789000a a a >⎛ = <⎝,所以,*78()n S S S n N =≥∈,故D 正确;故选:BD例7.(2020·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________. 【答案】25 【解析】 【分析】因为{}n a 是等差数列,根据已知条件262a a +=,求出公差,根据等差数列前n 项和,即可求得答案. 【详解】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d = 解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=∴1025S =. 故答案为:25.例8.(2018·全国·高考真题(文))记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)n a =2n –9,(2)Sn =n 2–8n ,最小值为–16. 【解析】 【详解】分析:(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n 项和公式得nS 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{}n a 的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{n a }的通项公式为n a =2n –9. (2)由(1)得Sn =n 2–8n =(n –4)2–16. 所以当n =4时,Sn 取得最小值,最小值为–16.例9.(2021·全国·高考真题)记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 【答案】(1)26n a n =-;(2)7. 【解析】 【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式; (2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-, 从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.例10.(2022·福建·厦门一中模拟预测)已知数列{}n a 的前n 项和n S ,11a =,0n a >,141n n n a a S +=-. (1)计算2a 的值,求{}n a 的通项公式;(2)设1(1)nn n n b a a +=-,求数列{}n b 的前2n 项和2n T .【答案】(1)23a =,21n a n =- (2)24(21)n T n n =+ 【解析】 【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差得到24n n a a +-=,再根据等差数列通项公式计算可得;(2)由(1)可得(1)(21)(21)n n b n n =--+,利用并项求和法计算可得; (1)解:当1n =时,12141a a a =-,解得23a =, 由题知141n n n a a S +=-①,12141n n n a a S +++=-②,由②-①得121()4n n n n a a a a +++-=,因为0n a >,所以24n n a a +-=, 于是:数列{}n a 的奇数项是以11a =为首项,以4为公差的等差数列, 即()2114(1)432211n a n n n -=+-=-=--,偶数项是以23a =为首项,以4为公差的等差数列,即234(1)41n a n n =+-=- 所以{}n a 的通项公式21n a n =-; (2)解:由(1)可得(1)(21)(21)n n b n n =--+,212(43)(41)(41)(41)4(41)n n b b n n n n n -=---+-+=-+21234212(341)()()()4[37(41)]44(21)2n n n n n T b b b b b b n n n -+-=++++++=+++-=⨯=+. 【总结提升】1.利用等差数列的单调性或性质,求出其正负转折项,便可求得和的最值.当10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;若已知n a ,则n S 最值时n 的值(n N +∈)则当10a >,0d <,满足100n n a a +≥⎧⎨≤⎩的项数n 使得n S 取最大值,(2)当10a <,0d >时,满足10n n a a +≤⎧⎨≥⎩的项数n 使得n S 取最小值.2.利用等差数列的前n 项和:2n S An Bn =+(,A B 为常数, n N ∈*)为二次函数,通过配方或借助图像,二次函数的性质,转化为二次函数的最值的方法求解;有时利用数列的单调性(0d >,递增;0d <,递减);3. 利用数列中最大项和最小项的求法:求最大项的方法:设为最大项,则有11n n n n a a a a -+≥⎧⎨≥⎩;求最小项的方法:设为最小项,则有11n n n n a a a a -+≤⎧⎨≤⎩.只需将等差数列的前n 项和1,2,3,n =依次看成数列{}n S ,利用数列中最大项和最小项的求法即可.4.在解含绝对值的数列最值问题时,注意转化思想的应用. 题型四:等差数列性质及应用例11.(2020·浙江·高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n *∈N ,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b =【答案】D 【解析】 【分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立. 【详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,n a n a()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.例12.(2014·北京高考真题(理))若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n =__________时,{}n a 的前n 项和最大. 【答案】8 【解析】由等差数列的性质,,,又因为,所以所以,所以,,故数列的前8项最大.例13.(2016·北京·高考真题(理))已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______. 【答案】6 【解析】 【详解】试题分析:因为{}n a 是等差数列,所以35420a a a +==,即40a =,又4136a a d -==-,所以2d =-, 所以616156615(2)6S a d =+=⨯+⨯-=.故答案为6.例14.(2021·江西新余四中高二月考(理))等差数列{}n a 、{}n b 的前n 项和分别为n S 和n T ,若2132n n S n T n +=+,则2517208101214a a a ab b b b +++=+++________.【答案】4365【分析】 证明得出2121n n n n a S b T --=,结合等差中项的基本性质可求得结果. 【详解】因为等差数列{}n a 、{}n b 的前n 项和分别为n S 和n T ,则()()()()()()12121121212121221212n n n n n n n nn a a n a S a n b b T n b b -----+-===-+-,所以,25172011218101214112142211434321265a a a a a Sb b b b b T +++⨯+====+++⨯+.故答案为:4365. 【温馨提醒】等差数列的性质主要涉及“项的性质”和“和的性质”,因此,要注意结合等差数列的通项公式、前n 项和公式求解.。

高三一轮复习 数列的复习

高三一轮复习  数列的复习

数列的复习【知识整理】:一 、等差数列1.等差数列的通项公式:①a n =a 1+____×d②(推广公式)a n =a m +______×d注意:数列{}n a 是等差数列的充要条件是此数列的通项公式为q pn a n +=,其中p,q 为常数,特别地,数列{}n a 是公差不为0的等差数列的充要条件是此数列的通项公式为q pn a n +=,其中p,q 为常数,且0≠p .2、等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.注意:①b 是a 、c 的等差中项的充要条件是a ,b ,c 成等差数列;②若a ,b ,c 成等差数列,那么c b b a b c a b c a b ca b -=--=-+=+=;;;22都是等价的;③若数列{}n a 是等差数列,则()*-+∈≥-=-N n n a a a a n n n n ,211,整理得211+-+=n n n a a a . 3、等差数列的性质{}n a 是等差数列,d 为公差.(1)1123121,+---+=+==+=+=+k n k n n n n a a a a a a a a a a 即 (2)若m, n, p, q ∈N*,若m +n =p +q ,则_________________若m, n, p ∈N*,若m +n =2p ,则__________________ (3)()mn a a d d m n a a mn m n --=⇔-+= (m, n, ∈N*,且m ≠ n ).(4)序号成等差数列的项又组成一个等差数列,即 ,,,2m k m k k a a a ++仍成等差数列,公差为()*∈Nm k md ,.(5)若{}{}n n b a ,都是等差数列,则数列{}{}{}{}{}2121,,,,,(λλλλλλb k c b a b a b a ka c a n n n n n n n ++++,,,,均为常数)也是等差数列.(6)连续三个或三个以上k 项和依次组成一个等差数列,即)2(,,,232*∈≥--N k k S S S S S k k k k k 且 成等差数列,公差为d k 2.(7)①当项数为奇数()12+n 项时,其中有()1+n 个奇数项,n 个偶数项.1-+=n a S S 偶奇;()112++=+n a n S S 偶奇; ()nn S S na S a n S n n 1,,111+=∴=+=++偶奇偶奇. ②当项数为偶数n 2项时,()11,-,,+++=+===n n n n a a n S S nd S S na S na S 奇偶奇偶偶奇 ∴1+=n na a S S 偶奇. 能力知识清单:1、等差数列{}n a 中,若()0,,=≠==+nm n n a n m n a m a 则. 2、等差数列{}n a 中,若()()n m S n m n S m S n m m n +-=≠==+则,, 3、等差数列{}n a 中,若()0,=≠=+nm m n S n m S S 则; 4、若{}n a 与{}n b ,为等差数列,且前1-21-2m m m m n n T S b a T S n =,则与项和为二、等比数列1. 等比数列的通项公式:①a n =a 1q n -1 ② a n =a m q n -m2、若﹛a n ﹜为等比数列,m, n, p, q ∈N*,若m +n =p +q ,则___________ 3. 等比数列的前n 项和公式: S n = ⎪⎩⎪⎨⎧=≠)1()1(q qS n = _________________()1≠q4、等比数列{a n }的前n 项和S n ,S 2n -S n ,S 3n -S 2n 成 数列,且公比为________ 7.等比中项:如果a ,b ,c 成等比数列,那么b 叫做a 与c 的等比中项,即b²=_____________________三、判断和证明数列是等差(等比)数列常有四种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。

[精]高三第一轮复习全套课件3数列:第1课时 等差数列与等比数列

[精]高三第一轮复习全套课件3数列:第1课时  等差数列与等比数列

4.重要性质: m+n=p+q am+an=ap+aq(等差数列) (m、n、p、q∈N*) am·n=ap·q(等比数列) a a
特别地 m+n=2p am+an=2ap(等差数列)
am·n=a2p(等比数列) a
返回
课前热身
1.观察数列:30,37,32,35,34,33,36,( 31 点,在括号内适当的一个数是_____. ),38的特
返回
能力·思维·方法
1.四个正数成等差数列,若顺次加上2,4,8,15后成等比 数列,求原数列的四个数.
【解题回顾】本题是利用等差数列、等比数列的条件设未 知数,充分分析题设条件中量与量的关系,从而确定运用 哪些条件设未知数,哪些条件列方程是解这类问题的关键 所在.
2.{an}是等差数列,且a1-a4-a8-a12+a15=2,求a3+a13的值.
【解题回顾】本题将函数、不等式穿插到数列中考查,用拓展
4.若a1,a2,a3 成等差数列,公差为d;sina1,sina2,sina3 成等比数列,公比为q,则公差d=kπ,k∈Z
【解题回顾】本题对sin2a2降次非常关键,不宜盲目积化和差
5.数列{an}与{bn}的通项公式分别为an=2n,bn=3n+2,它们的 公共项由小到大排成的数列是{cn}.
①写出{cn}的前5项.
②证明{cn}是等比数列.
【解题回顾】依定义或通项公式,判定一个数列为等差或等 比数列,这是数列中的基本问题之一.
返回
误解分析
1.在用性质m+n=p+q则am+an=ap+aq时,如果看不清下标关 系,常会出现错误.

【高考第一轮复习数学】数列专题

【高考第一轮复习数学】数列专题

专题三、数列一、等差数列:1、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.2、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a c b +=,则称b 为a 与c 的等差中项. 3、若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.()n m a a n m d =+-4、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 5、等差数列的性质:(1)m n p q +=+(m 、n 、p 、*q ∈N ),则m np q a a a a +=+; 特别地,若2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+.(2)n S ,2n n S S -,32n n S S -成等比数列.(3)若项数为()*2n n ∈N ,则S S nd -=偶奇,.(4)若项数为()*21n n -∈N ,则()2121n n S n a -=-,1S n S n =-奇偶 二、等比数列:1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.2、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.3、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.n m n m a a q -=4、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩ 5、等比数列的前n 项和的性质:(1)m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =⋅.(2)n S ,2n n S S -,32n n S S -成等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{an}为等差数列,公差为d an,an+m,an+2m, 是等差数列, 公差为md
{an}等差数列 ,公差d,前n项和Sn Sn,S2n-Sn,S3n-S2n, 是等差 数列 ,公差为 n2d
05.12.2020
教学ppt
6
学习活动1:亲身体验
题型:关于基本量的问题 例1:在等差数列{an}中, (1)已知a15=33,a45=153,求a61; (2)已知S8=48,S12=168,求a1和d; (3)已知a6=10,S5=5,求a8和S8; (4)已知a16=3,求S31;
教学ppt
10
练习巩固 3.等差数列{an}中,a2=-6,a8=6,Sn是{an}的 前n项和,则( )
A. S 4 SB5 . S 4C. S5 D. S6 S5
S6 S5
4.等差数列{an}中,a1= n=( )
1 3
,a2+a5=4,an=33,则
A.48 B.49 C.50 D.51
2 a , b , c 成 等 差 数 列 2 b a c
4.等差数列前n项和公式:
n(n1) Sn na1 2 d
05.12.2020
教学ppt
Sn
n(a1 2
an)
4
学习活动1:梳理基础知识
5.等差数列的判定方法:
定义法: a n 1 a n d ( 常 数 ) ( n ∈ N ) { a n } 等 差 数 列 ❖中项公式法: 2 a n 1 a n a n 2 n Ν { a n } 等 差 数 列
通项公式法:
a n k n b ( k , b 常 数 ) ( n N ) { a n } 等 差 数 列
05.12.2020
教学ppt
5
性质 性质1
性质2
性质3
等差数列{an}常用的性质
p q m n a p a q a m a n 2 m p q 2 a m a p a q
05.12.2020
教学ppt
7
例题讲解
题型2:等差数列前n项和的应用 例2:数列{an}中,Sn=100n-n2(nN+) (1){an}是什么数列? (2)若bn=|an|,求{bn}的前n项和
05.12.2020
教学ppt
8
例题讲解
题型3:等差数列的证明 例 求证3:设:{b{na}n是}是等等差差数数列列,bna1a2 n an(nN +)
高三数学第一轮复习
05.12.2020
教学ppt
1
学习目标
1、理解等差数列的概念、通项公式、等 差中项公式,会用公式解决问题
2、掌握等差数列的前n项和公式,体会 等差数列的通项及等差数列的前n项和 可分别表示为一次函数和二次函数
3、探索并总结等差数列的性质,会运用 性质解决有关问题
05.12.2020
05.12.2020
教学ppt
11
课外作业
1.等差数列{an}的前n项和为Sn,已知a10=30, a20=50. (1)求通项{an}; (2)若Sn=242,求n. 2.设等差数列{an}的前n项和为Sn,若a3=12, S12>0,S13<0. (1)求公差d的取值范围; (2)指出S1,S2,S3,…,S12中哪一个最 大,并说明理由.
05.12.2020
Байду номын сангаас
教学ppt
9
练习巩固
1.已知等差数列{an}中,a7+a9=16,a4=1,则 a12=( )
A.15 B.30 C.31 D.64
2.首项为-24的等差数列,从第10项起为正,
则公差d的取值范围是( )
A. d 8B.
3
dC. 3 8D. d 3
3
8d 3 3
05.12.2020
教学ppt
2
学习活动1:梳理基础知识
1.等差数列的定义: 若数列从第二项起,每一项与它的前一 项的差是同一个常数,则数列是等差数 列。其中常数是公差 2.通项公式: ana1(n1)d 通项公式推广: anak(nk)d
05.12.2020
教学ppt
3
学习活动1:梳理基础知识
3.等差中项:
若a,b,c成等差数列,则b称a与c的 等差中项. b = a + c
05.12.2020
教学ppt
12
课外作业 3.已知{an}为等差数列,前10项的和S10=100, 前100项的和S100=10,求前110项的和S110
05.12.2020
教学ppt
13
相关文档
最新文档