cnn实现手写数字识别

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

In [ ]: mnist = input_data.read_data_sets('MNIST_data',one_hot =Tr ue)

batch_size =100

n_batch = mnist.train.num_examples // batch_size

def weight_variable(shape):

initial = tf.truncated_normal(shape,stddev =0.1)

return tf.Variable(initial)

def bias_variable(shape):

initial = tf.constant(0.1,shape=shape)

return tf.Variable(initial)

def conv2d(x,W):

return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

#strides[0] = strides[3] = 1:

def max_pool_2x2(x):

return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1], padding='SAME')

#ksize

#ksize: A list of ints that has length >= 4. The size of th

e window for each dimension o

f the input tensor.

#In general for images, your input is of shape [batch_size, 64, 64, 3] for an RGB image of 64x64 pixels.

#The kernel size ksize will typically be [1, 2, 2, 1] if yo u have a 2x2 window over which you take the maximum.

# On the batch size dimension and the channels dimension, k size is 1 because we don't want to take the maximum over mu ltiple examples,

# or over multiples channels.

#strides

# The first 1 is the batch: You don't usually want to skip over examples in your batch, or you shouldn't have included them in the first place. :)

# The last 1 is the depth of the convolution: You don't usu ally want to skip inputs, for the same reason.

x = tf.placeholder(tf.float32,[None,784])#none为任意维度

y = tf.placeholder(tf.float32,[None,10])

x_image = tf.reshape(x,[-1,28,28,1])#-1计算得出

W_conv1 = weight_variable([5,5,1,32])#w,h,输入channel,输出channel

b_conv1 = bias_variable([32])#维数?

h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)#x_

image为一批数据

h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5,5,32,64])

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)

h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7*7*64,1024])

b_fc1 = bias_variable([1024])

h_pool2_fla = tf.reshape(h_pool2,[-1,7*7*64])

h_fc1 = tf.nn.relu(tf.matmul(h_pool2_fla,W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)

h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

W_fc2 = weight_variable([1024,10])

b_fc2 = bias_variable([10])

prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b _fc2)

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy _with_logits(labels=y,logits=prediction))

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_e ntropy)

correct_prediction = tf.equal(tf.argmax(prediction,1),tf.a rgmax(y,1))#argmax返回一维tensor中最大值的位置,1每行位置最大值

相关文档
最新文档