七年级相交线与平行线专项练习题
新版七下数学第五章相交线与平行线复习题五套
第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。
初一数学相交线与平行线28道典型题(含 答案和解析)
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
初一体育 相交线与平行线测试题含答案
初一体育相交线与平行线测试题含答案
一、选择题
1. 若两条直线相交,那么相交线的特征是什么?
- A. 相交线的交点为直角
- B. 相交线的交点为锐角
- C. 相交线的交点为钝角
- D. 相交线的交点为等角
答案:B. 相交线的交点为锐角
2. 以下哪些情况下两条直线相互平行?
- A. 两条直线夹角为45度
- B. 两条直线夹角为60度
- C. 两条直线夹角为90度
- D. 两条直线夹角为180度
答案:D. 两条直线夹角为180度
3. 使用圆规和直尺将下列几何图形画出来,哪些是平行线?
答案:AB || CD,EF || GH
二、填空题
1. AB线与CD线相交于点E,则可以得出结论:∠AEC + ∠BED = ____。
答案:180度
2. 若两线段AB和CD平行,且AB = 5cm,CD = 8cm,则可以推断出BC的长度为 ____。
答案:8cm
三、解答题
1. 画出下列几何图形中的所有平行线:
答案:EF || GH,AB || CD,BC || DE,FG || HI
2. 对于下图中的线段AB和CD:
(a) 写出AB与CD是否平行的判定条件。
(b) 若判定条件成立,请写出证明方法。
若不成立,请说明理由并给出正确的判定条件。
答案:
(a) 判定条件:AB与CD的斜率相等。
(b) 证明方法:比较AB和CD的斜率,若斜率相等,则AB与CD平行。
如果斜率不相等,则AB与CD不平行。
以上是初一体育相交线与平行线测试题的答案。
初中数学专项练习《相交线与平行线》100道计算题包含答案(专项练习)(综合题)
初中数学专项练习《相交线与平行线》100道计算题包含答案(专项练习)一、解答题(共100题)1、如图,在▱ABCD中,E,F分别为边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.2、完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求证:∠EGF=90°.3、如图,已知直线AB、CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,判断MQ与NP关系,并说明理由.4、已知,AC⊥AB,EF⊥BC,AD⊥BC,∠1=∠2,请问AC⊥DG吗?请写出推理过程.5、如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,说明AB∥CD6、将一副直角三角尺如图放置,已知AE∥BC,求∠AFD的度数.7、如图,已知,点在的右侧,的平分线相交于点.探索与之间的等量关系,并说明理由。
8、已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.9、如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.请说明理由10、某校要在一块三角形空地上种植花草,如图所示,AC=13米、AB=14米、BC=15米,若线段CD是一条引水渠,且点D在边AB上.已知水渠的造价每米150元.问:点D与点C距离多远时,水渠的造价最低?最低造价是多少元?11、如图,点E,C,F,B在同一条直线上,EC=BF,AC∥DF,∠A=∠D.求证:AB=DE.12、如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥CD.13、如图,已知∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.证明:∵DE⊥BC,AB⊥BC(已知)∴∠DEC=∠ABC=90°________∴DE∥AB________∴∠2=________,________∠1=________,________又∵∠1=∠2________∴∠A=∠3________14、如图,在△ABC中,AC⊥BC,CD⊥AB于点D,试说明:∠ACD=∠B.(提示:三角形内角和为180 )15、如图,在△ABC中,∠ABC=36°,∠C=64°,AD平分∠BAC,交BC于D,BE⊥AC,交AD、AC于H、E,且DF∥BE.求∠FDC和∠AHB的度数.16、如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE 的平分线相交于点P,试说明△EPF为直角三角形.17、小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是;如图③,M为边AC延长线上一点,则BD、MF的位置关系是;(2)请就图①、图②、或图③中的一种情况,给出证明.我选图来证明.18、如图,直线AD与AE相交于点A,直线BC分别交AD、AE于点B、C,直线DE分别交AD、AE于点D、E,分别写出图中的两对同位角、两对内错角、两对同旁内角.19、已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:ABC≌CDE.20、如图,已知∠1=∠2,∠5=140°,求∠3的度数。
2023年七年级下册数学第五章相交线与平行线证明题阅读理解填理由专项训练(14道)
2023年七年级下册第五章《平行线与相交线》填理由题专项训练(14道)1.如图,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E.证明:∵AB⊥BF,CD⊥BF(已知),∴∠ABD=∠CDF=90°(),∴∥(同位角相等,两直线平行),∵∠1=∠2(已知),∴AB∥EF(),∴CD∥EF(),∴∠3=∠E(两直线平行,同位角相等).2.如图,已知AB⊥AC,DE⊥AC,∠B=∠D.试说明:AD∥BC.解:∵AB⊥AC,DE⊥AC(已知),∴AB∥DE(在同一平面内,垂直于同一条直线的两条直线平行).∴=∠DEC().又∵∠B=∠D(已知),∴∠D=(等量代换),∴AD∥BC().3.已知:如图,BC∥ED,BD平分∠ABC,EF平分∠AED.求证:BD∥EF.证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=12∠AED,∠2=12∠ABC().∵BC∥ED,∴∠AED=()∴12∠AED=12∠ABC.∴∠1=∠2().∴BD∥EF().4.如图,点B在AG上,AG∥CD,CF平分∠BCD,∠ABE=∠BCF,BE⊥AF于点E.求证:∠F=90°.证明:∵AG∥CD,∴∠ABC=∠BCD()∵∠ABE=∠BCF,∴∠ABC﹣∠ABE=∠BCD﹣∠BCF,即∠CBE=∠DCF,∵CF平分∠BCD,∴∠BCF=∠DCF()∴=∠BCF.∴BE∥CF()∴=∠F.∵BE⊥AF,5.(2023秋•海口期末)如图,AB∥CD,∠1=∠A.(1)试说明:AC∥ED;(2)若∠2=∠3,FC与BD的位置关系如何?为什么?解:(1)∵AB∥CD,(已知)∴∠1=∠BED,()又∵∠1=∠A,(已知)∴∠BED=∠,(等量代换)∴∥.()(2)FC与BD的位置关系是:.理由如下:∵AC∥ED,(已知)∴∠2=∠.()又∵∠2=∠3,(已知)∴∠=∠.(等量代换)∴∥.()6.已知:如图,在△ABC中,FG∥CD,∠1=∠3.求证:∠B+∠BDC=180°.解:因为FG∥CD(已知),所以∠1=.又因为∠1=∠3(已知),所以∠2=(等量代换).所以BC∥(),所以∠B+∠BDE=180°().7.如图,已知∠D=108°,∠BAD=72°,AC⊥BC于C,EF⊥BC于F.求证:∠1=∠2.证明:∵∠D=108°,∠BAD=72°(已知)∴∠D+∠BAD=180°∴AB∥CD()∴∠1=()又∵AC⊥BC于C,EF⊥BC于F(已知)∴EF∥()∴∠2=()∴∠1=∠2()8.如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°.试说明:∠GDC=∠B.解:∵AD⊥BC,EF⊥BC(已知)∴∠ADB=∠EFB=90°()∴EF∥AD()∴+∠2=180°()又∵∠2+∠3=180°(已知)∴∠1=()∴∥()9.(2023秋•丹江口市期末)如图,E、F分别在AB和CD上,∠1=∠D,∠2与∠C互余,AF⊥CE于G,求证:AB∥CD.证明:∵AF⊥CE(已知),∴∠CGF=90°(垂直的定义),∵∠1=∠D(已知),∴AF∥(),∴∠4==90°(),又∵∠2+∠3+∠4=180°,∴∠2+∠3=90°,∵∠2与∠C互余(已知),∴∠2+∠C=90°,∴∠C=,∴AB∥.()10.(2023秋•青神县期末)如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.(1)∵∠1=∠2(已知)∴∥CD()∴∠ABD+∠CDB=()(2)∵∠BAC=65°,∠ACD=115°,(已知)∴∠BAC+∠ACD=180°(等式性质)∴AB∥CD()(3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°,(已知)∴∠ABD=∠CDF=90°(垂直的定义)∴∥(同位角相等,两直线平行)又∵∠BAC=55°,(已知)∴∠ACD=.()11.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并说明理由.证明:∵∠1+∠2=180°()∠1=∠DFH()∴()∴EH∥AB()∴∠3=∠ADE()∵∠3=∠B∴∠B=∠ADE()∴DE∥BC∴∠AED=∠C()12.如图,已知AB∥CD,BE平分∠ABC,DB平分∠CDF,且∠ABC+∠CDF=180°.求证:BE⊥DB.证明:∵AB∥CD∴∠ABC=∠BCD()∵∠ABC+∠CDF=180°()∴∠BCD+∠CDF=180°()∴BC∥DF()于是∠DBC=∠BDF()∵BE平分∠ABC,DB平分∠CDF∴∠EBC=12∠ABC,∠BDF=()∵∠EBC+∠DBC=∠EBC+∠BDF=12(∠ABC+∠CDF)即∠EBD=∴BE⊥DB()13.如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠1=∠C,(已知)∴GD∥.()∴∠2=∠DAC.()∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°.(等量代换)∴AD∥EF.()∴∠ADC=∠.()∵EF⊥BC,(已知)∴∠EFC=90°.()∴∠ADC=90°.(等量代换)14.(2023秋•南关区期末)如图,已知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵AB∥DC(),∴∠B+∠DCB=180°().∵∠B=(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.∵AC⊥BC(已知),∴∠ACB=(垂直的定义).∴∠2=.∵AB∥DC(已知),∴∠1=().∵AC平分∠DAB(已知),∴∠DAB=2∠1=(角平分线的定义).∵AB∥DC(已知),∴+∠DAB=180°(两条直线平行,同旁内角互补).。
相交线和平行线测试题及答案七年级
七年级相交线与平行线测试题一、选择题1. 下列正确说法的个数是①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A . 1, B. 2, C. 3, D. 42. 下列说法正确的是A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.3. 下列图中∠1和∠2是同位角的是A. ⑴、⑵、⑶,B. ⑵、⑶、⑷,C. ⑶、⑷、⑸,D. ⑴、⑵、⑸4. 如果一个角的补角是150°,那么这个角的余角的度数是A.30°B.60°C.90°D.120°5. 下列语句中,是对顶角的语句为A.有公共顶点并且相等的两个角B.两条直线相交,有公共顶点的两个角C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角6. 下列命题正确的是A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行7. 两平行直线被第三条直线所截,同旁内角的平分线A.互相重合B.互相平行C.互相垂直D.无法确定8. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;下列图案中,不能由一个图形通过旋转而构成的是9. 三条直线相交于一点,构成的对顶角共有A、3对B、4对C、5对D、6对10. 如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有A.5个B.4个C.3个D.2个11. 如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为;A、30B、36C、42D、1812. 如图,若AB∥CD,则∠A、∠E、∠D之间的关系是A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°二、填空题13. 一个角的余角是30º,则这个角的补角是 .14. 一个角与它的补角之差是20º,则这个角的大小是 .15. 时钟指向3时30分时,这时时针与分针所成的锐角是 .16. 如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.17. 如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD = 28º,则∠BOE = 度,∠AOG = 度.18. 如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度.19. 把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠OGC = .20. 如图⑦,正方形ABCD中,M在DC上,且BM = 10,N是AC上一动点,则DN + MN的最小值为 .21. 如图所示,当半径为30cm的转动轮转过的角度为120 时,则传送带上的物体A平移的距离为cm ;22. 如图所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到图中EF和EG的位置,则△EFG为三角形,若AD=2cm,BC=8cm,则FG = ;23. 如图9,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等于,∠3的同旁内角等于.24. 如图10,在△ABC 中,已知∠C =90°,AC =60 cm,AB =100 cm,a 、b 、c …是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC 平行,另一组对边分别在BC 上或与BC 平行. 若各矩形在AC 上的边长相等,矩形a 的一边长是72 cm,则这样的矩形a 、b 、c …的个数是_ . 三、计算题25. 如图,直线a 、b 被直线c 所截,且a //b ,若∠1=118°求∠2为多少度2.6 已知一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数等于多少四、证明题27 已知:如图,DA ⊥AB,DE 平分∠ADC,CE 平分∠BCD,且∠1+∠2=90°.试猜想BC 与AB 有怎样的位置关系,并说明其理由28. 已知:如图所示,CD ∥EF,∠1=∠2,. 试猜想∠3与∠ACB 有怎样的大小关系,并说明其理由29. 如图,已知∠1+∠2+180°,∠DEF=∠A,试判断∠ACB 与∠DEB 的大小关系,并对结论进行说明.30. 如图,∠1=∠2,∠D=∠A,那么∠B=∠C 吗 为什么五、应用题31. 如图a 示,五边形ABCDE 是张大爷十年前承包的一块土地示意图,经过多年开垦荒地,现已变成图b 所示的形状,但承包土地与开垦荒地的分界小路即图b 中折线CDE 还保留着.张大爷想过E 点修一条直路,直路修好后,•要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关知识,按张大爷的要求设计出修路方案.不计分界小路与直路的占地面积 1写出设计方案,并在图中画出相应的图形; 2说明方案设计理由.AECD BNM AECDBa b1——12:BDDBDDCCDAAC 13——24 120° 100° 75° 80° 62°,59° 90° 125° 1021A ECDBF E D C BA211D 2H FA G EC B E A B CD G F 321F AGECD B20π直角,6cm80,80,1009三、25解:∵∠1+∠3=180°平角的定义又∵∠1=118°已知∴∠3= 180°-∠1 = 180°-118°= 62°∵a∥b已知∴∠2=∠3=62°两直线平行,内错角相等答:∠2为62°26解:设这个角的余角为x,那么这个角的度数为90°-x,这个角的补角为90°+x,这个角的余角的补角为180°-x依题意,列方程为:180°-x=21x+90°+90°解之得:x=30°这时,90°-x=90°-30°=60°.答:所求这个的角的度数为60°.另解:设这个角为x,则:180°-90°-x-21180°-x = 90°解之得:x=60°答:所求这个的角的度数为60°.四、27解: BC与AB位置关系是BC⊥AB ;其理由如下:∵DE平分∠ADC, CE平分∠DCB 已知,∴∠ADC=2∠1, ∠DCB=2∠2 角平分线定义.∵∠1+∠2=90°已知∴∠ADC+∠DCB = 2∠1+2∠2= 2∠1+∠2=2×90°=180°.∴AD∥BC同旁内角互补,•两直线平行.∴∠A+∠B=180°两直线平行,同旁内角互补.∵DA⊥AB 已知∴∠A=90°垂直定义.∴∠B=180°-∠A = 180°-90°=90°∴BC⊥AB 垂直定义.28解: ∠3与∠ACB的大小关系是∠3=∠ACB,其理由如下:∵CD∥EF 已知,∴∠2=∠DCB两直线直行,同位角相等.又∵∠1=•∠2 已知,∴∠1=∠DCB 等量代换.∴GD∥CB 内错角相等,两直线平行 .∴∠3=∠ACB 两直线平行,同位角相等 .29解:∠ACB与∠DEB的大小关系是∠ACB=∠DEB.其理由如下:∵∠1+∠2=1800,∠BDC+∠2=1800,∴∠1=∠BDC∴BD∥EF∴∠DEF=∠BDE∵∠DEF=∠A∴∠BDE=∠A∴DE∥AC∴∠ACB=∠DEB;30解:∵∠1=∠2∴AE∥DF∴∠AEC=∠D∵∠A=∠D∴∠AEC=∠A∴AB∥CD∴∠B=∠C.五、31.解:1画法如答图.连结EC,过点D作DF∥EC,交CM于点F,连结EF,EF即为所求直路的位置.2设EF交CD于点H,由上面得到的结论,可知:S△ECF= S△ECD, S△HCF= S△EHD.所以S五边形ABCDE=S四边形ABFE , S五边HFNMAEDB=S四边形EFMN. 形EDCMN。
七年级数学-相交线与平行线专项习题(含答案解析)
1. 已知多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,则常数a(含答案解析)的值是 .2. 观察如图图形,并阅读相关文字:那么5条直线相交,最多交点的个数是()A .10B .14C .21D .153. 已知x -x 1=3,则x 4+x 14= .4. 已知(a 2+b 2+3)(a 2+b 2-3)=7,ab =3,则(a +b )2= .5.6. 如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数;(2)若OE,OF分别平分∠BOD,∠BOC,求∠EOF的度数.=x 3+(1-2a )x 2-(1+2a )x +2a 1.解:(x -2a )•(x 2+x -1)=x 3+x 2-x -2ax 2-2ax +2a ,∵多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,∴1-2a =0,解得:a =0.5,故答案为:0.5.2. 解:两条直线相交,最多交点数为1个;三条直线相交,最多交点数为1+2=3(个);四条直线相交,最多交点数为1+2+3=6(个);五条直线相交,最多交点数为1+2+3+4=10(个).故选:A .3. 解:1194. 解:∵(a 2+b 2+3)(a 2+b 2-3)=7,ab =3,即(a 2+b 2)2-32=7,∴(a 2+b 2)2=7+9=16,∴a 2+b 2=4,∴(a +b )2=a 2+b 2+2ab=4+2×3=4+6=10.故答案为:10.5.6. 解:(1)设∠BOD =x °,∵∠AOC 的度数比∠BOD 的度数的3倍多10度,且∠COD =90°, ∴x +(3x +10)+90=180,解得:x =20,∴∠BOD =20°;(2)∵OE 、OF 分别平分∠BOD 、∠BOC ,。
2024-2025学年人教版数学七年级下学期《第5章相交线与平行线》测试卷及答案解析
A.3.5
B.4
10.如图,下列说法错误的是( )
C.5.5
第 2 页 共 38 页
D.6.5
A.∠A 与∠B 是同旁内角
B.∠1 与∠3 是同位角
C.∠2 与∠A 是同位角
D.∠2 与∠3 是内错角
11.下列所示的四个图形中,∠1 和∠2 是同位角的是( )
A.①②
B.②③
12.如图,∠BAC 和∠BCA 是( )
A.A 点
B.B 点
C.C 点
8.下列图形中,线段 MN 的长度表示点 M 到直线 l 的距离的是(
D.D 点 )
A.
B.
C.
D.
9.如图,A 是直线 l 外一点,过点 A 作 AB⊥l 于点 B,在直线 l 上取一点 C,连结 AC,使
AC=2ABLeabharlann P 在线段 BC 上连结 AP.若 AB=3,则线段 AP 的长不可能是( )
循反射定律发生反射,当光线 PQ 经过 n 次反射后与边 OA 或 OB 平行时,称角为定角α
的 n 阶平行逃逸角,特别地,当光线 PQ 直接与 OA 平行时,称角β为定角α的零阶平行
逃逸角.
(1)已知∠AOB=α=20°,
①如图 1,若 PQ∥OA,则∠BPQ=
°,即该角为α的零阶平行逃逸角;
第 5 页 共 38 页
25.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,
C.110°
D.100°
3.如图,若 AB,CD 相交于点 O,∠AOE=90°,则下列结论不正确的是( )
A.∠EOC 与∠BOC 互为余角
B.∠EOC 与∠AOD 互为余角
七年级下册相交线与平行线练习题及答案
七年级下册相交线与平行线练习题及答案第五章相交线与平行线一、典型例题例1.如图1,直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
图1例2.已知:如图2,AB∥EF∥CD,EG平分∠XXX,∠B+∠BED+∠D=192°,求∠EGD的度数。
图2例3.如图3,已知AB∥CD,且∠B=40°,∠D=70°,求∠DEB的度数。
图3例4.平面上n条直线两两相交且无3条或3条以上直线共点,有多少个不同交点?例5.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?例6.10条直线两两相交,最多将平面分成多少块不同的区域?例7.两条直线相交于一点,所形成的角中有2对对顶角,4对邻补角,那么,三条直线相交于一点时,有多少对对顶角,多少对邻补角?四条直线相交于一点时,有多少对对顶角,多少对邻补角?n条直线相交于一点时,有多少对对顶角,多少对邻补角?二、巩固练1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条。
A。
6B。
7C。
8D。
92.平面上三条直线相互间的交点个数是()。
A。
3B。
1或3C。
1或2或3D。
不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()。
A。
36条B。
33条C。
24条D。
21条4.已知平面中有n个点,A、B、C三个点在一条直线上,A、D、F、E四个点也在一条直线上,除这些之外,再没有三点共线或四点共线,以这n个点作一条直线,一共可以画出38条不同的直线,这时n等于()。
A。
9B。
10C。
11D。
125.若平行直线AB、CD与相交直线EF、GH相交成如图所示的图形,则共得同旁内角()。
A。
4对B。
8对C。
12对D。
16对6.如图,已知FD∥BE,则∠1+∠2-∠3=()。
图4A。
90°B。
135°C。
人教版七年级数学下册《相交线与平行线》专项练习题-附含答案
人教版七年级数学下册《相交线与平行线》专项练习题-附含答案一.选择题(共9小题满分18分每小题2分)1.(2分)(2022秋•丹东期末)若将一副三角板按如图所示的方式放置则下列结论正确的是()A.∠1=∠2 B.如果∠2=30°则有AC∥DEC.如果∠2=45°则有∠4=∠D D.如果∠2=50°则有BC∥AE解:∵∠CAB=∠DAE=90°∴∠1=∠3 故A错误.∵∠2=30°∴∠1=∠3=60°∴∠CAE=90°+60°=150°∴∠E+∠CAE=180°∴AC∥DE故B正确∵∠2=45°∴∠1=∠2=∠3=45°∵∠E+∠3=∠B+∠4∴∠4=30°∵∠D=60°∴∠4≠∠D故C错误∵∠2=50°∴∠3=40°∴∠B≠∠3∴BC不平行AE故D错误.故选:B.2.(2分)(2022春•宜州区期中)如图AB∥CD BF交CD于点E AE⊥BF∠CEF=35°则∠A是()A.35°B.45°C.55°D.65°解:∵AE⊥BF∴∠AEF=90°∴∠AEC=90°﹣∠CEF=90°﹣35°=55°∵AB∥CD∴∠A=∠AEC=55°.故选:C.3.(2分)(2022春•江汉区校级月考)如图给出了过直线外一点作已知直线的平行线的方法其依据是()A.同位角相等两直线平行B.内错角相等两直线平行C.同旁内角互补两直线平行D.对顶角相等两直线平行解:如图给出了过直线外一点作已知直线的平行线的方法其依据是同位角相等两直线平行.故选:A.4.(2分)(2022春•新罗区期中)如图将一个宽度相等的纸条沿AB折叠一下若∠1=140°则∠2的值为()A.100°B.110°C.120°D.130°解:如图:∵宽度相等的纸条沿AB折叠一下∴纸条两边互相平行∴2∠3=∠1 ∠2+∠3=180°∵∠1=140°∴∠3=∠1=70°∴∠2=180°﹣∠3=110°故选:B.5.(2分)(2022春•温江区期末)将一副直角三角板如图放置已知∠B=60°∠F=45°AB∥EF则∠CGD=()A.45°B.60°C.75°D.105°解:∵∠B=60°∴∠A=30°∵EF∥BC∴∠FDA=∠F=45°∴∠CGD=∠A+∠FDA=45°+30°=75°.故选:C.6.(2分)(2022春•牡丹江期中)如图AB∥CD F为AB上一点FD∥EH且FE平分∠AFG过点F作FG ⊥EH于点G且∠AFG=2∠D则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是()A.1个B.2个C.3个D.4个解:延长FG交CH于I.∵AB∥CD∴∠BFD=∠D∠AFI=∠FIH∵FD∥EH∴∠EHC=∠D∵FE平分∠AFG∴∠FIH=2∠AFE=2∠EHC∴3∠EHC=90°∴∠EHC=30°∴∠D=30°∴2∠D+∠EHC=2×30°+30°=90°∴①∠D=30°;②2∠D+∠EHC=90°正确∵FE平分∠AFG∴∠AFI=30°×2=60°∵∠BFD=30°∴∠GFD=90°∴∠GFH+∠HFD=90°可见∠HFD的值未必为30°∠GFH未必为45°只要和为90°即可∴③FD平分∠HFB④FH平分∠GFD不一定正确.故选B.7.(2分)(2019秋•淮阴区期末)如图将长方形ABCD沿线段EF折叠到EB'C'F的位置若∠EFC'=100°则∠DFC'的度数为()A.20°B.30°C.40°D.50°解:由翻折知∠EFC=∠EFC'=100°∴∠EFC+∠EFC'=200°∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°故选:A.8.(2分)(2021春•奉化区校级期末)如图AD∥BC∠D=∠ABC点E是边DC上一点连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB作∠FEH的角平分线EG交BH于点G若∠DEH =100°则∠BEG的度数为()A.30°B.40°C.50°D.60°解:设FBE=∠FEB=α则∠AFE=2α∠FEH的角平分线为EG设∠GEH=∠GEF=β∵AD∥BC∴∠ABC+∠BAD=180°而∠D=∠ABC∴∠D+∠BAD=180°∴AB∥CD∠DEH=100°则∠CEH=∠FAE=80°∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β在△AEF中 80°+2α+180﹣2β=180°故β﹣α=40°而∠BEG=∠FEG﹣∠FEB=β﹣α=40°故选:B.9.(2分)(2022春•大观区校级期末)如图AB∥CD P为AB上方一点H、G分别为AB、CD上的点∠PHB、∠PGD的角平分线交于点E∠PGC的角平分线与EH的延长线交于点F下列结论:①EG⊥FG;②∠P+∠PHB=∠PGD;③∠P=2∠E;④若∠AHP﹣∠PGC=∠F则∠F=60°.其中正确的结论有()个.A.1 B.2 C.3 D.4解:∵GF平分∠PGC GE平分∠PGD∴∠PGF=∠PGC∠PGE=∠PGD∴∠EGF=∠PGF+∠PGE=(∠PGC+∠PGD)=即EG⊥FG故①正确;设PG与AB交于M GE于AB交于N∵AB∥CD∴∠PMB=∠PGD∵∠PMB=∠P+∠PHM∴∠P+∠PHB=∠PGD故②正确;∵HE平分∠BHP GE平分∠PGD∴∠PHB=2∠EHB∠PGD=2∠EGD∵AB∥CD∴∠PMB=∠PGD∠ENB=∠EGD∴∠PMB=2∠ENB∵∠PMB=∠P+∠PHB∠ENB=∠E+∠EHB∴∠P=2∠E故③正确;∵∠AHP﹣∠PMC=∠P∠PMH=∠PGC∠AHP﹣∠PGC=∠F∴∠P=∠F∵∠FGE=90°∴∠E+∠F=90°∴∠E+∠P=90°∵∠P=2∠E∴3∠E=90解得∠E=30°∴∠F=∠P=60°故④正确.综上正确答案有4个故选:D.二.填空题(共10小题满分20分每小题2分)10.(2分)(2022秋•宁强县期末)将一张长方形纸片按如图所示的方式折叠BD、BE为折痕若∠ABE=20°则∠DBC为70 度.解:根据翻折的性质可知∠ABE=∠A′BE∠DBC=∠DBC′又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°∴∠ABE+∠DBC=90°又∵∠ABE=20°∴∠DBC=70°.故答案为:70.11.(2分)(2022春•新乐市校级月考)如图直线EF CD相交于点O OA⊥OB垂足为O且OC平分∠AOF.(1)若∠AOE=40°则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.解:(1)∵OA⊥OB∴∠AOB=90°∵∠AOF+∠AOE=180°∠AOE=40°∴∠AOF=140°∵OC平分∠AOF∴∠AOC=∠COF=70°∵∠BOD+∠AOB+∠AOC=180°∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°∠AOC=∠COF∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE∵∠BOD+∠AOB+∠AOC=180°∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.12.(2分)(2022春•环翠区期末)如图AB∥EF∠C=90°则α、β和γ的关系是α+β﹣γ=90°.解:过点C作CM∥AB过点D作DN∥EF则:∠BCM=∠ABC=α∠EDN=∠DEF=γ∵AB∥EF∴CM∥DN∴∠DCM=∠CDN∵∠BCM+∠DCM=90°∠CDN+∠EDN=β∴α+(β﹣γ)=90°∴α+β﹣γ=90°.故答案为:α+β﹣γ=90°.13.(2分)(2022春•绍兴期末)如图已知直线AB∥CD点M、N分别在直线AB、CD上点E为AB、CD 之间一点且点E在MN的右侧∠MEN=128°.若∠BME与∠DNE的平分线相交于点E1∠BME1与∠DNE1的平分线相交于点E2∠BME2与∠DNE2的平分线相交于点E3……依此类推若∠ME n N=8°则n的值是 4 .解:过E作EH∥AB E1G∥AB∵AB∥CD∴EH∥CD E1G∥CD∴∠BME=∠MEH∠DNE=∠NEH∴∠BME+∠DNE=∠MEH+∠NEH=∠MEN=128°同理∠ME1N=∠BME1+∠DNE1∵ME1平分∠BME NE1平分∠DNE∴∠BME1+∠DNE1=(∠BME+∠DNE)=∠MEN∴∠ME1N=∠MEN同理∠ME2N=∠ME1N=∠MEN∠ME3N=∠ME2N=∠MEN•∴∠ME n N=∠ME n﹣1N=∠MEN若∠ME n N=8°则∠MEN=×128°=8°∴n=4.故答案为:4.14.(2分)(2022春•镜湖区校级期末)有长方形纸片E F分别是AD BC上一点∠DEF=x(0°<x<45°)将纸片沿EF折叠成图1 再沿GF折叠成图2.(1)如图1 当x=32°时∠FGD′=64 度;(2)如图2 作∠MGF的平分线GP交直线EF于点P则∠GPE=2x.(用x的式子表示).解:(1)由折叠可得∠GEF=∠DEF=32°∵长方形的对边是平行的∴∠DEG=∠FGD′∴∠DEG=∠GFE+∠DEF=64°∴∠FGD′=∠EGD=64°∴当x=32°时∠GFD′的度数是64°.故答案为:64;(2)∠GPE=2∠GEP=2x.由折叠可得∠GEF=∠DEF∵长方形的对边是平行的∴设∠BFE=∠DEF=x∴∠EGB=∠BFE+∠D′EF=2x∴∠FGD′=∠EGB=2x由折叠可得∠MGF=∠D′GF=2x∵GP平分∠MGF∴∠PGF=x∴∠GPE=∠PGF+∠BFE=2x∴∠GPE=2∠GEP=2x.故答案为:∠GPE=2x.15.(2分)(2022春•诸暨市期末)从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出已知入射光线OA的反射光线为AB∠OAB=∠COA=72°.在如图中所示的截面内若入射光线OD经反光罩反射后沿DE射出且∠ODE=27°.则∠AOD的度数是45°或99°.解:∵DE∥CF∴∠COD=∠ODE.(两直线平行内错角相等)∵∠ODE=27°∴∠COD=27°.在图1的情况下∠AOD=∠COA﹣∠COD=72°﹣27°=45°.在图2的情况下∠AOD=∠COA+∠COD=72°+27°=99°.∴∠AOD的度数为45°或99°.故答案为:45°或99°.16.(2分)(2022春•九龙坡区校级期中)如图将长方形ABCD沿EF翻折再沿ED翻折若∠FEA″=105°则∠CFE=155 度.解:由四边形ABFE沿EF折叠得四边形A′B′FE∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(2022春•东湖区校级月考)如图直线EF上有两点A、C分别引两条射线AB、CD∠DCF=60°∠EAB=70°射线AB、CD分别绕A点C点以1度/秒和3度/秒的速度同时顺时针转动在射线CD转动一周的时间内使得CD与AB平行所有满足条件的时间=5秒或95秒.解:∵∠EAB=70°∠DCF=60°∴∠BAC=110°∠ACD=120°分三种情况:如图①AB与CD在EF的两侧时∠ACD=120°﹣(3t)°∠BAC=110°﹣t°要使AB∥CD则∠ACD=∠BAC即120°﹣(3t)°=110°﹣t°解得t=5;②CD旋转到与AB都在EF的右侧时∠DCF=360°﹣(3t)°﹣60°=300°﹣(3t)°∠BAC=110°﹣t°要使AB∥CD则∠DCF=∠BAC即300°﹣(3t)°=110°﹣t°解得t=95;③CD旋转到与AB都在EF的左侧时∠DCF=(3t)°﹣(180°﹣60°+180°)=(3t)°﹣300°∠BAC=t°﹣110°要使AB∥CD则∠DCF=∠BAC即(3t)°﹣300°=t°﹣110°解得t=95∴此情况不存在.综上所述当时间t的值为5秒或95秒时CD与AB平行.故答案为:5秒或95秒.18.(2分)(2022春•沙坪坝区校级月考)已知如图AD∥BC BD∥AE DE平分∠ADB且ED⊥CD若∠AED+∠BAD=127.5°则∠BCD﹣∠EAB=37.5 度.解:设∠ADE=x∵DE平分∠ADB∴∠EDB=∠ADE=x又ED⊥CD∴∠EDC=90°∴∠BDC=90°﹣x∵AD∥BC∴∠DBC=∠ADB=2x∠BCD=180°﹣(90°﹣x+2x)=90°﹣x∵BD∥AE∴∠AED=∠EDB=x∵∠AED+∠BAD=127.5°∴∠BAD=127.5°﹣x∠EAB=180°﹣(127.5°﹣x+2x)=52.5°﹣x∴∠BCD﹣∠EAB=(90°﹣x)﹣(52.5°﹣x)=37.5°.故答案为:37.5.19.(2分)(2022春•渭滨区期末)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G D、C分别在M、N的位置上若∠EFG=49°则∠2﹣∠1=16°.解:∵AD∥BC∴∠2=∠DEG∠EFG=∠DEF=49°∵长方形纸片ABCD沿EF折叠后ED与BC的交点为G∴∠DEF=∠GEF=49°∴∠2=2×49°=98°∴∠1=180°﹣98°=82°∴∠2﹣∠1=98°﹣82°=16°.故答案为16°.三.解答题(共9小题满分62分)20.(6分)(2022秋•丹东期末)如图已知∠1=∠BDC∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC DA⊥FE于点A∠FAB=55°求∠ABD的度数.(1)证明:∵∠1=∠BDC∴AB∥CD∴∠2=∠ADC∵∠2+∠3=180°∴∠ADC+∠3=180°∴AD∥CE;(2)解:∵CE⊥AE于E∴∠CEF=90°由(1)知AD∥CE∴∠DAF=∠CEF=90°∴∠ADC=∠2=∠DAF﹣∠FAB∵∠FAB=55°∴∠ADC=35°∵DA平分∠BDC∠1=∠BDC∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.21.(6分)(2019春•本溪期中)已知如图AB∥CD①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D(直接写结论).由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D)(直接写结论).②从图(1)图(2)任选一个图形说明①中其中一个结论成立的理由.[延伸拓展]利用上面(1)(2)得出的结论完成下题③已知AB∥CD∠ABE与∠CDE两个角的角平分线相交于点F.若∠E=60°求∠BFD的度数.解:①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D.由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D).故答案为:∠BED=∠B+∠D;∠BED=360°﹣(∠B+∠D);②如图(1)所示:过点E作EM∥AB∵AB∥CD EM∥AB∴EM∥CD∥AB∴∠B=∠BEM∠MED=∠D∴∠BED=∠BEM+∠MED=∠B+∠D∴∠BED=∠B+∠D;如图(2)所示:过点E作EM∥AB∵AB∥CD EM∥AB∴EM∥CD∥AB∴∠B+∠BEM=180°∠MED+∠D=180°∴∠BED=∠BEM+∠MED=360°﹣(∠B+∠D);③如图(3)过点E作EN∥AB∵BF、DF分别是∠ABE和∠CDE的平分线∴∠EBF=∠ABE∠EDF=∠CDE∵AB∥CD∴∠ABE+∠BEN=180°∵AB∥CD AB∥NE∴NE∥CD∴∠CDE+∠NED=180°∴∠ABE+∠E+∠CDE=360°∵∠E=60°∴∠ABE+∠CDE=300°∴∠EBF+∠EDF=150°∴∠BFD=360°﹣60°﹣150°=150°.22.(6分)(2022•衡东县校级开学)如图1 AB∥CD∠PAB=124°∠PCD=120°求∠APC的大小.小明的解题思路:过点P作PM∥AB通过平行线的性质来求∠APC.(1)按小明的解题思路可求得∠APC的大小为116 度;(2)如图2 已知直线m∥n直线a b分别与直线m n相交于点B、D和点A、C.点P在线段BD上运动(不与B、D两点重合)记∠PAB=α∠PCD=β问∠APC与αβ之间有何数量关系?判断并说明理由;(3)在(2)的条件下若把“线段BD”改为“直线BD”请求出∠APC与αβ之间的数量关系.解:(1)过P作PM∥AB如图:∴∠APM+∠PAB=180°∴∠APM=180°﹣124°=56°∵AB∥CD∴PM∥CD∴∠CPM+∠PCD=180°∴∠CPM=180°﹣120°=60°∴∠APC=56°+60°=116°;故答案为:116;(2)∠APC=∠α+∠β理由如下:过P作PE∥AB交AC于E如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∴∠APC=∠APE+∠CPE=∠α+∠β;(3)当P在线段BD延长线时∠APC=∠α﹣∠β;理由如下:过P作PE∥AB如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∵∠APC=∠APE﹣∠CPE∴∠APC=∠α﹣∠β;当P在DB延长线时∠APC=∠β﹣∠α;理由如下:过P作PE∥AB如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∵∠APC=∠CPE﹣∠APE∴∠APC=∠β﹣∠α综上所述当P在线段BD延长线时∠APC=∠α﹣∠β;当P在DB延长线时∠APC=∠β﹣∠α;当P在线段BD上时∠APC=∠α+∠β.23.(6分)(2022春•鹿邑县月考)如图已知AB∥CD∠ABE与∠CDE的平分线相交于点F.(1)如图1 若∠E=70°求∠BFD的度数;(2)如图2 若∠ABM=∠ABF∠CDM=∠CDF写出∠M和∠E之间的数量关系并证明你的结论.解:(1)如图1 过点E作EN∥AB∵EN∥AB∴∠ABE+∠BEN=180°∵AB∥CD AB∥NE∴NE∥CD∴∠CDE+∠NED=180°∴∠ABE+∠E+∠CDE=360°∵∠E=70°∴∠ABE+∠CDE=290°∵∠ABE与∠CDE的平分线相交于点F∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°过点F作FG∥AB∵FG∥AB∴∠ABF=∠BFG∵AB∥CD FG∥AB∴FG∥CD∴∠CDF=∠GFD∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°证明:∵设∠ABM=x∠CDM=y则∠FBM=2x∠EBF=3x∠FDM=2y∠EDF=3y由(1)得:∠ABE+∠E+∠CDE=360°∴6x+6y+∠E=360°∵∠M+∠EBM+∠E+∠EDM=360°∴6x+6y+∠E=∠M+5x+5y+∠E∴∠M=x+y∴∠E+6∠M=360°.24.(6分)(2022秋•绿园区期末)【问题情景】如图1 若AB∥CD∠AEP=45°∠PFD=120°.过点P 作PM∥AB则∠EPF=105°;【问题迁移】如图2 AB∥CD点P在AB的上方点E F分别在AB CD上连接PE PF过P点作PN∥AB问∠PEA∠PFC∠EPF之间的数量关系是∠PFC=∠PEA+∠FPE请在下方说明理由;【联想拓展】如图3所示在(2)的条件下已知∠EPF=36°∠PFA的平分线和∠PFC的平分线交于点G过点G作GH∥AB则∠EGF=18°.解:(1)∵AB∥PM∴∠1=∠AEP=45°∵AB∥CD∴PM∥CD∴∠2+∠PFD=180°∵∠PFD=120°∴∠2=180°﹣120°=60°∴∠1+∠2=45°+60°=105°.即∠EPF=105°故答案为:105°.(2)∠PFC=∠PEA+∠EPF.理由:∵PN∥AB∴∠PEA=∠NPE∵∠FPN=∠NPE+∠FPE∴∠FPN=∠PEA+∠FPE∵PN∥AB AB∥CD∴PN∥CD∴∠FPN=∠PFC∴∠PFC=∠PEA+∠FPE故答案为:∠PFC=∠PEA+∠FPE.(3)∵GH∥AB AB∥CD∴GH∥AB∥CD∴∠HGE=∠AEG∠HGF=∠CFG又∵∠PEA的平分线和∠PFC的平分线交于点G∴由(2)可知∠CFP=∠FPE+∠AEP∴∠HGF=(∠FPE+∠AEP)∴∠EGF=∠HGF﹣∠HGE=(36°+∠AEP)﹣∠HGE=18°.故答案为:18°.25.(8分)(2022春•富县期末)如图AD∥BC∠BAD的平分线交BC于点G∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图②线段AG上有一点P满足∠ABP=3∠PBG过点C作CH∥AG.若在直线AG上有一点M使∠PBM=∠DCH求的值.(1)证明:∵AD∥BC∴∠GAD=∠BGA∵AG平分∠BAD∴∠BAG=∠GAD∴∠BAG=∠BGA;(2)解:有两种情况:①当M在BP的下方时如图设∠ABC=4x∵∠ABP=3∠PBG∴∠ABP=3x∠PBG=x∵AG∥CH∴∠BCH=∠AGB==90°﹣2x ∵∠BCD=90°∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x ∴∠ABM=∠ABP+∠PBM=3x+2x=5x∠GBM=2x﹣x=x∴∠ABM:∠GBM=5x:x=5;②当M在BP的上方时如图同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x ∠GBM=2x+x=3x∴∠ABM:∠GBM=x:3x=.综上的值是5或.26.(8分)(2022春•武汉期末)已知点E F分别在直线AB CD上点P在直线AB上方.问题探究:(1)如图1 ∠CFP+∠EPF=∠AEP证明:AB∥CD;问题拓展:(2)如图2 AB∥CD∠AEP的角平分线EK所在的直线和∠DFP的角平分线FR所在的直线交于Q点请写出∠EPF和∠EQF之间的数量关系并证明.问题迁移:(3)如图3 AB∥CD直线MN分别交AB CD于点M N若点H在线段MN上且∠MEF=α请直接写出∠HFE∠MEH和∠EHF之间满足的数量关系(用含α的式子表示).(1)证明:如图∵∠AEP是△PEH的外角∴∠AEP=∠EPF+∠EHP∵∠CFP+∠EPF=∠AEP∴∠EHP=∠CFP∴AB∥CD;(2)解:如图 2∠Q+∠P=180°理由如下:∵AB∥CD∴∠AEK=∠CME∠EHF=∠PFD∵EK平分∠AEP∴∠AEK=∠KEP∴∠AEK=∠KEP=∠CME设∠AEK=∠KEP=∠CME=x则∠QMF=x∠AEP=2x∴∠PEH=180°﹣2x∵FR平分∠PFD∴∠PFR=∠DFR设∠PFR=∠DFR=y则∠MFQ=y∠EHF=2y∴∠Q=180°﹣∠QMF﹣∠MFQ=180°﹣x﹣y∵∠EHF是△EHP的外角∴∠EHF=∠PEH+∠P∴∠P=∠EHF﹣∠PEH=2y﹣(180°﹣2x)=2x+2y﹣180°∴2∠Q+∠P=180°;(3)解:如图∵∠MEF=α∴∠HEF=α﹣∠MEH∵∠HEF+∠EHF+∠HFE=180°∴α﹣∠MEH+∠EHF+∠HFE=180°∴∠EHF+∠HFE﹣∠MEH=180°﹣α∴∠HFE∠MEH和∠EHF之间满足的数量关系是∠EHF+∠HFE﹣∠MEH=180°﹣α.27.(8分)(2022春•建邺区校级期末)【探究结论】(1)如图1 AB∥CD E为形内一点连结AE、CE得到∠AEC则∠AEC、∠A、∠C的关系是∠AEC =∠A+∠C(直接写出结论不需要证明):【探究应用】利用(1)中结论解决下面问题:(2)如图2 AB∥CD直线MN分别交AB、CD于点E、F EG1和EG2为∠BEF内满足∠1=∠2的两条线分别与∠EFD的平分线交于点G1和G2求证:∠FG1E+∠G2=180°.(3)如图3 已知AB∥CD F为CD上一点∠EFD=60°∠AEC=3∠CEF若8°<∠BAE<20°∠C的度数为整数则∠C的度数为42°或41°.(1)解:过点E作EF∥AB∴∠A=∠1∵AB∥CD EF∥AB∴EF∥CD∴∠2=∠C.∵∠AEC=∠1+∠2∴∠AEC=∠A+∠C(等量代换)故答案为:∠AEC=∠A+∠C;(2)证明:由(1)可知:∠EG2F=∠1+∠DFG2∵FG2平分∠MFD∴∠EFG2=∠DFG2∵∠1=∠2∴∠EG2F=∠2+∠EFG2∵∠EG1F+∠2+∠EFG2=180°∴∠FG1E+∠G2=180°;(3)由(1)知:∠AEF=∠BAE+∠DFE设∠CEF=x则∠AEC=3x∵∠EFD=60°∴x+3x=∠BAE+60°∴∠BAE=4x﹣60°又∵8°<∠BAE<20°∴8°<4x﹣60°<20°解得17°<x<20°又∵∠DFE是△CEF的外角∴∠C=∠DFE﹣∠CEF=∠DFE﹣x∵∠C的度数为整数∴x=18°或19°∴∠C=60°﹣18°=42°或∠C=60°﹣19°=41°故答案为:42°或41°.28.(8分)(2022春•颍州区期末)(1)问题背景:如图1 已知AB∥CD点P的位置如图所示连结PA PC试探究∠APC与∠A、∠C之间的数量关系并说明理由.解:(1)∠APC与∠A、∠C之间的数量关系是:∠APC=∠A+∠C.理由:如图1 过点P作PE∥AB∴∠APE=∠A∵AB∥CD∴PE∥CD∴∠CPE=∠C∴∠APE+∠CPE=∠A+∠C∴∠APC=∠A+∠C.总结:本题通过添加适当的辅助线从而利用平行线的性质使问题得以解决.(2)类比探究:如图2 已知AB∥CD线段AD与BC相交于点E点B在点A右侧.若∠ABC=40°∠ADC=80°求∠AEC的度数.(3)拓展延伸:如图3 若∠ABC与∠ADC的角平分线相交于点F请直接写出∠BFD与∠AEC之间的数量关系∠BFD=∠AEC.解:(2)如图2 过E点作EM∥AB∴∠BEM=∠ABC∵AB∥CD∴CD∥EM∴∠MED=∠ADC∴∠AEC=∠BED=∠BEM+∠MED=∠ABC+∠ADC=40°+80°=120°;(3)由(2)知:∠AEC=∠ABC+∠ADC如图3 过F点作FN∥AB∴∠ABF=∠BFN∵AB∥CD∴CD∥FN∴∠NFD=∠FDC∴∠BFD=∠ABF+∠FDC∵BF平分∠ABC DF平分∠ADC∴∠ABF=∠ABC∠FDC=∠ADC∴∠BFD=(∠ABC+∠ADC)=∠AEC.即∠BFD=∠AEC.故答案为∠BFD=∠AEC第31页共31。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线专项练习题
一、选择题:
1.如图,DE ∥AB ,∠CAE=3
1
∠CAB ,∠CDE=75°,∠B=65°则∠AEB 是 ( )
A .70°
B .65°
C .60°
D .55°
2.如图所示,∠1的邻补角是( )
A.∠BOC
B.∠BOE 和∠AOF
C.∠AOF
D.∠BOC 和∠AOF 3.如图所示,内错角共有( ) 对 对 对 对
4.如图,直线a 、b 被直线c 所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a ∥b 的条件的序号是( ) A .(1)、(2) B .(1)、(3) C .(1)、(4) D .(3)、(4)
5.如图,点E 在BC 的延长线上,在下列四个条件中,不能判定AB ∥CD 的是( ) A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°
6.如图,如果AB ∥CD ,则α、β、γ之间的关系为 ( )
A.α+β+γ=360°
B.α-β+γ=180°
C.α+β-γ=180°
D.α+β+γ=180° 7.如图,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( ) A.∠A+∠P+∠C=90° B.∠A+∠P+∠C=180°
C.∠A+∠P+∠C=360°
D.∠P+∠C=∠A
8.如图,AB ∥CD ,∠ABF=3
2∠ABE ,∠CDF=3
2∠CDE ,则∠E ∶∠F 等于( )
A .2:1
B .3:1
C .3:2
D .4:3
9.如图,AB ⊥EF ,CD ⊥EF ,∠1=∠F=45°,那么与∠FCD 相等的角有( )
B D
E 1
3
A C
F
2 A .1个 B .2个 C .3个 D .4个
二、填空题:
10.观察图中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1•和∠4是_______角,∠3和∠
4是_____
角,∠3和∠5是
______角.
11.如图,已知CD ⊥AB 于D ,EF ⊥AB 于F ,∠DGC=105°,∠BCG=75°,则∠1+∠2=____度. 12.如图,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度。
13.如图,按虚线剪去长方形纸片相邻的两个角,并使∠1=1200,AB ⊥BC ,则∠2的度数为 。
14.完成推理填空:如图:直线AB 、CD 被EF 所截,若已知AB 成推理填空:如图:已知∠A =
∠F ,∠C =∠D ,求证:BD ∥CE 。
请你认真完成下面的填空。
证明:∵∠A =∠F ( 已知 )
∴AC ∥DF ( ________________ ) ∴∠D =∠ ( _____________ ) 又∵∠C =∠D ( 已知 ), ∴∠1=∠C ( 等量代换 )
∴BD ∥CE ( )。
16.如图:已知∠B =∠BGD ,∠DGF =∠F ,求证:∠B + ∠F =180°。
请你认真完成下面的填空。
证明:∵∠B=∠BGD (已知)
∴AB∥CD (________________)
∵∠DGF=∠F;(已知)
∴CD∥EF (________________)
∵AB∥EF (__________________)
∴∠B +∠F =180°(_______________)。
17.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠
BCD=180°.将下列推理过程补充完整:
(1)∵∠1=∠ABC(已知),
∴AD∥______
(2)∵∠3=∠5(已知),
∴AB∥______, (_____________________________)
(3)∵∠ABC+∠BCD=180°(已知),
∴_______∥________,(___________________________)
18.已知,如图11,∠BAE+∠AED=180°,∠M=∠N,试说明:∠1=∠2.
解:∵∠BAE+∠AED=180°(已知)
∴∥()
∴∠BAE= ∠AEC ()
又∵∠M=∠N(已知)
∴∥()
∴∠NAE= ∠AEM ()
∴∠BAE-∠NAE= -
∴即∠1=∠2
19.如图,EF∥AD,∠1 =∠2,∠BAC = 70°。
将求∠AGD的过程填写完整。
解:∵EF∥AD()
∴∠2 = 。
()
∵∠1 = ∠2( ) ∴ ∠1 = ∠3。
( )
∴ AB ∥ 。
( )
∴∠BAC + = 180°。
( ) ∵∠BAC = 70°,( ) ∴∠AGD = 。
G
F E
D C
B
A 3
21
20.如图,∠5=∠CDA =∠ABC ,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空: ∵∠5=∠CDA (已知) ∴ 图,完成下列推理过程
已知:DE ⊥AO 于E , BO ⊥AO ,∠CFB=∠EDO
证明:CF ∥DO
22.如图,E 在直线DF 上,B 为直线AC 上,若∠AGB=∠EHF ,∠C=∠D ,试判断∠A 与∠F 的关系,并说明理由.
证明:∵DE ⊥AO , BO ⊥AO (已知)
∴∠DEA=∠BOA=900 ( )
∵DE ∥BO ( ) ∴∠EDO=∠DOF ( ) 又∵∠CFB=∠EDO ( )
∴∠DOF=∠CFB ( )
∴CF ∥DO ( )
23.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,在C 、D 之间有一点P ,如果P 点在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化.若点P 在C 、
D 两点的外侧运动时(P 点与点C 、D 不重合),试探索∠PAC ,∠APB ,∠PBD 之间的关系又是如何
24.如图,直线l 与m 相交于点C ,∠C=∠β,AP 、BP 交于点P ,且∠PAC=∠α,∠PBC=∠γ,求证:∠APB=α+∠β+∠γ.
25.如图①是长方形纸带,将纸带沿EF 折叠成图②,再沿BF 折叠成图③.(1)若∠DEF=200,则图③中∠CFE 度数是多少
(2)若∠DEF=α,把图③中∠CFE 用α表示.
l 1
l C
B D
P
l 2 A
E
B F D
图③ E
B
F C
D
图② A
E
B F
C D 图①
26.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示。
大正方形固定不动,把小正方形以1厘米 ∕ 秒的速度向大正方形的内部沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 厘米2,完成下列问题: (1)平移到秒时,重叠部分的面积为 厘米2.
(2)当S =厘米2时,t= .
(3)当2<t ≤4时,S = .
28.已知,如图,∠XOY=900,点A 、B 分别在射线OX 、OY 上移动,BE 是∠ABY 的平分线,
BE 的反向延长线与∠OAB 的平分线相交于C ,点试问∠ACB 的大小是否发生变化。
如果保持不变,请给出证明,如果随点A 、B 移动发生变化,请求出变化的范围。
O E
C
B
A Y
X。